803
Views
25
CrossRef citations to date
0
Altmetric
Review

The effect of dietary polyphenols on intestinal absorption of glucose and fructose: Relation with obesity and type 2 diabetes

&

References

  • D’Archivio, M.; Filesi, C.; Di Benedetto, R.; Gargiulo, R.; Giovannini, C.; Masella, R. Polyphenols, Dietary Sources and Bioavailability. Ann. Ist. Super. Sanita. 2007, 43, 348–361.
  • Day, A. J.; Canada, F. J.; Diaz, J. C.; Kroon, P. A.; McLauchlan, R.; Faulds, C. B.; Plumb, G. W.; Morgan, M. R.; Williamson, G. Dietary Flavonoid and Isoflavone Glycosides are Hydrolysed by the Lactase Site of Lactase Phlorizin Hydrolase. FEBS Lett. 2000, 468, 166–170.
  • Scalbert, A.; Manach, C.; Morand, C.; Remesy, C.; Jimenez, L. Dietary Polyphenols and the Prevention of Diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. DOI: 10.1080/1040869059096.
  • Crozier, A.; Jaganath, I. B.; Clifford, M. N. Dietary Phenolics: Chemistry, Bioavailability and Effects on Health. Nat Prod. Rep. 2009, 26, 1001–1043. DOI: 10.1039/b802662a.
  • Aluko, R. E.;. Functional Foods and Nutraceuticals; Springer: London, 2012.
  • Scalbert, A., .; Johnson, I. T.; Saltmarsh, M. Polyphenols: Antioxidants and Beyond. Am J. Clin. Nutr. 2005, 81(1 Suppl), 215S–217S. DOI: 10.1093/ajcn/81.1.215S.
  • Nathan, D. M.;. Long-Term Complications of Diabetes Mellitus. N. Engl. J. Med. 1993, 328, 1676–1685. DOI: 10.1056/NEJM199306103282306.
  • International Diabetes F. IDF Diabetes Atlas; International Diabetes Federation: Brussels, 2015.
  • Schellenberg, E. S.; Dryden, D. M.; Vandermeer, B.; Ha, C.; Korownyk, C. Lifestyle Interventions for Patients with and at Risk for Type 2 Diabetes: A Systematic Review and Meta-Analysis. Ann. Intern. Med. 2013, 159, 543–551. DOI: 10.7326/0003-4819-159-8-201310150-00007.
  • Knowler, W. C.; Barrett-Connor, E.; Fowler, S. E.; Hamman, R. F.; Lachin, J. M.; Walker, E. A.; Nathan, D. M. Reduction in the Incidence of Type 2 Diabetes with Lifestyle Intervention or Metformin. N. Engl. J. Med. 2002, 346, 393–403. DOI: 10.1056/NEJMoa012512.
  • Calhau, C.; Faria, A.; Keating, E.; Martel, F. Interaction of Polyphenols with the Intestinal and Placental Absorption of Some Nutrients and Other Compounds. In Polyphenols in Human Health and Disease; Watson, R.R., Preedy, V.R., Zibadi, S., Eds.; Academic Press: San Diego, 2014; pp 523–536.
  • de Bock, M.; Derraik, J. G.; Cutfield, W. S. Polyphenols and Glucose Homeostasis in Humans. J. Acad. Nutr. Diet. 2012, 112, 808–815.
  • Hanhineva, K.; Torronen, R.; Bondia-Pons, I.; Pekkinen, J.; Kolehmainen, M.; Mykkanen, H.; Poutanen, K. Impact of Dietary Polyphenols on Carbohydrate Metabolism. Int. J. Mol. Sci. 2010, 11, 1365–1402. DOI: 10.3390/ijms11041365.
  • van Dieren, S.; Uiterwaal, C. S.; van der Schouw, Y. T.; van der A, D. L.; Boer, J. M.; Spijkerman, A.; Grobbee, D. E.; Beulens, J. W. Coffee and Tea Consumption and Risk of Type 2 Diabetes. Diabetologia. 2009, 52, 2561–2569. DOI: 10.1007/s00125-009-1516-3.
  • Suksomboon, N.; Poolsup, N.; Boonkaew, S.; Suthisisang, C. C. Meta-Analysis of the Effect of Herbal Supplement on Glycemic Control in Type 2 Diabetes. J. Ethnopharmacol. 2011, 137, 1328–1333. DOI: 10.1016/j.jep.2011.07.059.
  • Knekt, P.; Kumpulainen, J.; Jarvinen, R.; Rissanen, H.; Heliovaara, M.; Reunanen, A.; Hakulinen, T.; Aromaa, A. Flavonoid Intake and Risk of Chronic Diseases. Am. J. Clin. Nutr. 2002, 76, 560–568. DOI: 10.1093/ajcn/76.3.560.
  • Sun, Q.; Wedick, N. M.; Tworoger, S. S.; Pan, A.; Townsend, M. K.; Cassidy, A.; Franke, A. A.; Rimm, E. B.; Hu, F. B.; van Dam, R. M. Urinary Excretion of Select Dietary Polyphenol Metabolites Is Associated with a Lower Risk of Type 2 Diabetes in Proximate but Not Remote Follow-Up in a Prospective Investigation in 2 Cohorts of US Women. J. Nutr. 2015, 145, 1280–1288. DOI: 10.3945/jn.114.208736.
  • Wedick, N. M.; Pan, A.; Cassidy, A.; Rimm, E. B.; Sampson, L.; Rosner, B.; Willett, W.; Hu, F. B.; Sun, Q.; van Dam, R. M. Dietary Flavonoid Intakes and Risk of Type 2 Diabetes in US Men and Women. Am. J. Clin. Nutr. 2012, 95, 925–933. DOI: 10.3945/ajcn.111.028894.
  • Song, Y.; Manson, J. E.; Buring, J. E.; Sesso, H. D.; Liu, S. Associations of Dietary Flavonoids with Risk of Type 2 Diabetes, and Markers of Insulin Resistance and Systemic Inflammation in Women: A Prospective Study and Cross-Sectional Analysis. J. Am. Coll. Nutr. 2005, 24, 376–384.
  • Nettleton, J. A.; Harnack, L. J.; Scrafford, C. G.; Mink, P. J.; Barraj, L. M.; Jacobs, D. R., Jr. Dietary Flavonoids and Flavonoid-Rich Foods are Not Associated with Risk of Type 2 Diabetes in Postmenopausal Women. J. Nutr. 2006, 36, 3039–3045. DOI: 10.1093/jn/136.12.3039.
  • Jiang, X.; Zhang., D.; Jiang, W. Coffee and Caffeine Intake and Incidence of Type 2 Diabetes Mellitus: A Meta-Analysis of Prospective Studies. Eur. J. Nutr. 2014, 53, 25–38. DOI: 10.1007/s00394-013-0603-x.
  • van Dam, R. M.; Hu, F. B. Coffee Consumption and Risk of Type 2 Diabetes: A Systematic Review. JAMA. 2005, 294, 97–104. DOI: 10.1001/jama.294.1.97.
  • Iso, H.; Date, C.; Wakai, K.; Fukui, M.; Tamakoshi, A.; Group, J. S. The Relationship between Green Tea and Total Caffeine Intake and Risk for Self-Reported Type 2 Diabetes among Japanese Adults. Ann. Intern. Med. 2006, 144, 554–562.
  • Ding, M.; Bhupathiraju, S. N.; Chen, M.; van Dam, R. M.; Hu, F. B. Caffeinated and Decaffeinated Coffee Consumption and Risk of Type 2 Diabetes: A Systematic Review and a Dose-Response Meta-Analysis. Diabetes Care. 2014, 37, 569–586. DOI: 10.2337/dc13-1203.
  • van Dam, R. M.; Dekker, J. M.; Nijpels, G.; Stehouwer, C. D.; Bouter, L. M.; Heine, R. J.; Hoorn, S. Coffee Consumption and Incidence of Impaired Fasting Glucose; Impaired Glucose Tolerance; and Type 2 Diabetes: The Hoorn Study. Diabetologia. 2004, 47, 2152–2159. DOI: 10.1007/s00125-004-1573-6.
  • Arnlov, J.; Vessby, B.; Riserus, U. Coffee Consumption and Insulin Sensitivity. JAMA. 2004, 291, 1199–1201. DOI: 10.1001/jama.291.10.1199-b.
  • Jing, Y.; Han, G.; Hu, Y.; Bi, Y.; Li, L.; Zhu, D. Tea Consumption and Risk of Type 2 Diabetes: A Meta-Analysis of Cohort Studies. J. Gen. Intern. Med. 2009, 24, 557–562. DOI: 10.1007/s11606-009-0929-5.
  • Hamer, M.; Witte, D. R.; Mosdol, A.; Marmot, M. G.; Brunner, E. J. Prospective Study of Coffee and Tea Consumption in Relation to Risk of Type 2 Diabetes Mellitus among Men and Women: The Whitehall II Study. Br. J. Nutr. 2008, 100, 1046–1053. DOI: 10.1017/S0007114508944135.
  • Brown, A. L.; Lane, J.; Coverly, J.; Stocks, J.; Jackson, S.; Stephen, A.; Bluck, L.; Coward, A.; Hendrickx, H. Effects of Dietary Supplementation with the Green Tea Polyphenol Epigallocatechin-3-Gallate on Insulin Resistance and Associated Metabolic Risk Factors: Randomized Controlled Trial. Br. J. Nutr. 2009, 101, 886–894. DOI: 10.1017/S0007114508047727.
  • Fukino, Y.; Shimbo, M.; Aoki, N.; Okubo, T.; Iso, H. Randomized Controlled Trial for an Effect of Green Tea Consumption on Insulin Resistance and Inflammation Markers. J. Nutr. Sci. Vitaminol. 2005, 51, 335–342.
  • Nagao, T.; Meguro, S.; Hase, T.; Otsuka, K.; Komikado, M.; Tokimitsu, I.; Yamamoto, T.; Yamamoto, K. A Catechin-Rich Beverage Improves Obesity and Blood Glucose Control in Patients with Type 2 Diabetes. Obesity. 2009, 17, 310–317. DOI: 10.1038/oby.2008.505.
  • Kar, P.; Laight, D.; Rooprai, H. K.; Shaw, K. M.; Cummings, M. Effects of Grape Seed Extract in Type 2 Diabetic Subjects at High Cardiovascular Risk: A Double Blind Randomized Placebo Controlled Trial Examining Metabolic Markers; Vascular Tone; Inflammation; Oxidative Stress and Insulin Sensitivity. Diabet. Med. 2009, 26, 526–531. DOI: 10.1111/j.1464-5491.2009.02727.x.
  • Grassi, D.; Lippi, C.; Necozione, S.; Desideri, G.; Ferri, C. Short-Term Administration of Dark Chocolate Is Followed by a Significant Increase in Insulin Sensitivity and a Decrease in Blood Pressure in Healthy Persons. Am. J. Clin. Nutr. 2005, 81, 611–614. DOI: 10.1093/ajcn/81.3.611.
  • Muniyappa, R.; Hall, G.; Kolodziej, T. L.; Karne, R. J.; Crandon, S. K.; Quon, M. J. Cocoa Consumption for 2 Wk Enhances Insulin-Mediated Vasodilatation without Improving Blood Pressure or Insulin Resistance in Essential Hypertension. Am. J. Clin. Nutr. 2008, 88, 1685–1696. DOI: 10.3945/ajcn.2008.26457.
  • Gostin, L. O.; Obesity, T. Disease: The Culprit Is Sugar; the Response Is Legal Regulation. Hastings Cent. Rep. 2018, 48, 5–7. DOI: 10.1002/hast.804.
  • Basu, A.; Sanchez, K.; Leyva, M. J.; Wu, M.; Betts, N. M.; Aston, C. E.; Lyons, T. J. Green Tea Supplementation Affects Body Weight; Lipids; and Lipid Peroxidation in Obese Subjects with Metabolic Syndrome. J. Am. Coll. Nutr. 2010, 29, 31–40.
  • Nagao, T.; Komine, Y.; Soga, S.; Meguro, S., .; Hase, T.; Tanaka, Y.; Tokimitsu, I. Ingestion of a Tea Rich in Catechins Leads to a Reduction in Body Fat and Malondialdehyde-Modified LDL in Men. Am. J. Clin. Nutr. 2005, 81, 122–129. DOI: 10.1093/ajcn/81.1.122.
  • Suliburska, J.; Bogdanski, P.; Szulinska, M.; Stepien, M.; Pupek-Musialik, D.; Jablecka, A. Effects of Green Tea Supplementation on Elements; Total Antioxidants; Lipids; and Glucose Values in the Serum of Obese Patients. Biol. Trace Elem. Res. 2012, 149, 315–322. DOI: 10.1007/s12011-012-9448-z.
  • Maki, K. C.; Reeves, M. S.; Farmer, M.; Yasunaga, K.; Matsuo, N.; Katsuragi, Y.; Komikado, M.; Tokimitsu, I.; Wilder, D.; Jones, F.; et al. Green Tea Catechin Consumption Enhances Exercise-Induced Abdominal Fat Loss in Overweight and Obese Adults. J. Nutr. 2009, 139, 264–270. DOI: 10.3945/jn.108.098293.
  • Dulloo, A. G.; Duret, C.; Rohrer, D.; Girardier, L.; Mensi, N.; Fathi, M.; Chantre, P.; Vandermander, J. Efficacy of a Green Tea Extract Rich in Catechin Polyphenols and Caffeine in Increasing 24-H Energy Expenditure and Fat Oxidation in Humans. Am. J. Clin. Nutr. 1999, 70, 1040–1045. DOI: 10.1093/ajcn/70.6.1040.
  • Yang, T. Y.; Chou, J. I.; Ueng, K. C.; Chou, M. Y.; Yang, J. J.; Lin-Shiau, S. Y.; Hu, M. E.; Lin, J. K. Weight Reduction Effect of Puerh Tea in Male Patients with Metabolic Syndrome. Phytother. Res. 2014, 28, 1096–1101. DOI: 10.1002/ptr.5111.
  • Davison, K.; Coates, A. M.; Buckley, J. D.; Howe, P. R. Effect of Cocoa Flavanols and Exercise on Cardiometabolic Risk Factors in Overweight and Obese Subjects. Int. J. Obes. 2008, 32, 1289–1296. DOI: 10.1038/ijo.2008.66.
  • Basu, A.; Betts, N. M.; Ortiz, J.; Simmons, B.; Wu, M.; Lyons, T. J. Low-Energy Cranberry Juice Decreases Lipid Oxidation and Increases Plasma Antioxidant Capacity in Women with Metabolic Syndrome. Nutr. Res. 2011, 31, 190–196. DOI: 10.1016/j.nutres.2011.02.003.
  • Basu, A.; Fu, D. X.; Wilkinson, M.; Simmons, B.; Wu, M.; Betts, N. M.; Du, M.; Lyons, T. J. Strawberries Decrease Atherosclerotic Markers in Subjects with Metabolic Syndrome. Nutr. Res. 2010, 30, 462–469. DOI: 10.1016/j.nutres.2010.06.016.
  • Stull, A. J.; Cash, K. C.; Johnson, W. D.; Champagne, C. M.; Cefalu, W. T. Bioactives in Blueberries Improve Insulin Sensitivity in Obese; Insulin-Resistant Men and Women. J. Nutr. 2010, 140, 1764–1768. DOI: 10.3945/jn.110.125336.
  • Lehtonen, H. M.; Suomela, J. P.; Tahvonen, R.; Yang, B.; Venojarvi, M.; Viikari, J.; Kallio, H. Different Berries and Berry Fractions Have Various but Slightly Positive Effects on the Associated Variables of Metabolic Diseases on Overweight and Obese Women. Eur. J. Clin. Nutr. 2011, 65, 394–401. DOI: 10.1038/ejcn.2010.268.
  • Romualdi, D.; Costantini, B.; Campagna, G.; Lanzone, A.; Guido, M. Is There a Role for Soy Isoflavones in the Therapeutic Approach to Polycystic Ovary Syndrome? Results from a Pilot Study. Fertil. Steril. 2008, 90, 1826–1833. DOI: 10.1016/j.fertnstert.2007.09.020.
  • Egert, S.; Bosy-Westphal, A.; Seiberl, J.; Kurbitz, C.; Settler, U.; Plachta-Danielzik, S.; Wagner, A. E.; Frank, J.; Schrezenmeir, J.; Rimbach, G.; et al. Quercetin Reduces Systolic Blood Pressure and Plasma Oxidised Low-Density Lipoprotein Concentrations in Overweight Subjects with a High-Cardiovascular Disease Risk Phenotype: A Double-Blinded; Placebo-Controlled Cross-Over Study. Br. J. Nutr. 2009, 102, 1065–1074. DOI: 10.1017/S0007114509359127.
  • Rizza, S.; Muniyappa, R.; Iantorno, M.; Kim, J. A.; Chen, H.; Pullikotil, P.; Senese, N.; Tesauro, M.; Lauro, D.; Cardillo, C.; et al. Citrus Polyphenol Hesperidin Stimulates Production of Nitric Oxide in Endothelial Cells while Improving Endothelial Function and Reducing Inflammatory Markers in Patients with Metabolic Syndrome. J. Clin. Endocrinol. Metab. 2011, 96, E782–792. DOI: 10.1210/jc.2010-2879.
  • van der Made, S. M.; Plat, J.; Mensink, R. P. Resveratrol Does Not Influence Metabolic Risk Markers Related to Cardiovascular Health in Overweight and Slightly Obese Subjects: A Randomized; Placebo-Controlled Crossover Trial. PLoS One. 2015, 10, e0118393. DOI: 10.1371/journal.pone.0118393.
  • Fujitaka, K.; Otani, H.; Jo, F.; Jo, H.; Nomura, E.; Iwasaki, M.; Nishikawa, M.; Iwasaka, T.; Das, D. K. Modified Resveratrol Longevinex Improves Endothelial Function in Adults with Metabolic Syndrome Receiving Standard Treatment. Nutr. Res. 2011, 31, 842–847. DOI: 10.1016/j.nutres.2011.09.028.
  • Mendez-Del Villar, M.; Gonzalez-Ortiz, M.; Martinez-Abundis, E.; Perez-Rubio, K. G.; Lizarraga-Valdez, R. Effect of Resveratrol Administration on Metabolic Syndrome; Insulin Sensitivity; and Insulin Secretion. Metab. Syndr. Relat. Disord. 2014, 12, 497–501. DOI: 10.1089/met.2014.0082.
  • Askari, F.; Rashidkhani, B.; Hekmatdoost, A. Cinnamon May Have Therapeutic Benefits on Lipid Profile; Liver Enzymes; Insulin Resistance; and High-Sensitivity C-Reactive Protein in Nonalcoholic Fatty Liver Disease Patients. Nutr. Res. 2014, 34, 143–148. DOI: 10.1016/j.nutres.2013.11.005.
  • Allison, D. B.; Gadbury, G.; Schwartz, L. G.; Murugesan, R.; Kraker, J. L.; Heshka, S.; Fontaine, K. R.; Heymsfield, S. B. A Novel Soy-Based Meal Replacement Formula for Weight Loss among Obese Individuals: A Randomized Controlled Clinical Trial. Eur. J. Clin. Nutr. 2003, 57, 514–522. DOI: 10.1038/sj.ejcn.1601587.
  • Li, Z.; Hong, K.; Saltsman, P.; DeShields, S.; Bellman, M.; Thames, G.; Liu, Y.; Wang, H. J.; Elashoff, R.; Heber, D. Long-Term Efficacy of Soy-Based Meal Replacements Vs an Individualized Diet Plan in Obese Type II DM Patients: Relative Effects on Weight Loss; Metabolic Parameters; and C-Reactive Protein. Eur. J. Clin. Nutr. 2005, 59, 411–418. DOI: 10.1038/sj.ejcn.1602089.
  • Wright, E. M.; Turk, E. The Sodium/Glucose Cotransport Family SLC5. Pflugers Arch. 2004, 447, 510–518. DOI: 10.1007/s00424-003-1063-6.
  • Douard, V.; Ferraris, R. P. Regulation of the Fructose Transporter GLUT5 in Health and Disease. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E227–237. DOI: 10.1152/ajpendo.90245.2008.
  • Kellett, G. L.; Brot-Laroche, E.; Mace, O. J.; Leturque, A. Sugar Absorption in the Intestine: The Role of GLUT2. Annu. Rev. Nutr. 2008, 28, 35–54. DOI: 10.1146/annurev.nutr.28.061807.155518.
  • Hediger, M. A.; Coady, M. J.; Ikeda, T. S.; Wright, E. M. Expression Cloning and cDNA Sequencing of the Na+/Glucose Co-Transporter. Nature. 1987, 330, 379–381.
  • Wright, E. M.; Martin, M. G.; Turk, E. Intestinal Absorption in Health and Disease–Sugars. Best Pract. Res. Clin. Gastroenterol. 2003, 17, 943–956.
  • Miyamoto, K.; Hase, K.; Takagi, T.; Fujii, T.; Taketani, Y.; Minami, H.; Oka, T.; Nakabou, Y. Differential Responses of Intestinal Glucose Transporter mRNA Transcripts to Levels of Dietary Sugars. Biochem. J. 1993, 295, 211–215.
  • Corpe, C. P.; Basaleh, M. M.; Affleck, J.; Gould, G.; Jess, T. J.; Kellett, G. L. The Regulation of GLUT5 and GLUT2 Activity in the Adaptation of Intestinal Brush-Border Fructose Transport in Diabetes. Pflugers Arch. 1996, 432, 192–201.
  • Fordtran, J. S.; Rector, F. C., Jr.; Carter, N. W. The Mechanisms of Sodium Absorption in the Human Small Intestine. J. Clin. Invest. 1968, 47, 884–900. DOI: 10.1172/JCI105781.
  • Pappenheimer, J. R.; Reiss, K. Z. Contribution of Solvent Drag through Intercellular Junctions to Absorption of Nutrients by the Small Intestine of the Rat. J. Membr. Biol. 1987, 100, 123–136.
  • Kellett, G. L.; Helliwell, P. A. The Diffusive Component of Intestinal Glucose Absorption Is Mediated by the Glucose-Induced Recruitment of GLUT2 to the Brush-Border Membrane. Biochem. J. 2000, 350, 155–162.
  • Helliwell, P. A.; Rumsby, M. G.; Kellett, G. L. Intestinal Sugar Absorption Is Regulated by Phosphorylation and Turnover of Protein Kinase C betaII Mediated by Phosphatidylinositol 3-Kinase- and Mammalian Target of Rapamycin-Dependent Pathways. J. Biol. Chem. 2003, 278, 28644–28650. DOI: 10.1074/jbc.M301479200.
  • Turk, E.; Zabel, B.; Mundlos, S.; Dyer, J.; Wright, E. M. Glucose/Galactose Malabsorption Caused by a Defect in the Na+/Glucose Cotransporter. Nature. 1991, 350, 354–356. DOI: 10.1038/350354a0.
  • Gouyon, F.; Caillaud, L.; Carriere, V.; Klein, C.; Dalet, V.; Citadelle, D.; Kellett, G. L.; Thorens, B.; Leturque, A.; Brot-Laroche, E. Simple-Sugar Meals Target GLUT2 at Enterocyte Apical Membranes to Improve Sugar Absorption: A Study in GLUT2-null Mice. J. Physiol. 2003, 552, 823–832. DOI: 10.1113/jphysiol.2003.049247.
  • Dyer, J.; Wood, I. S.; Palejwala, A.; Ellis, A.; Shirazi-Beechey, S. P. Expression of Monosaccharide Transporters in Intestine of Diabetic Humans. Am. J. Physiol. Gastrointest. Liver Physiol. 2002, 282, G241–248. DOI: 10.1152/ajpgi.00310.2001.
  • Blakemore, S. J.; Aledo, J. C.; James, J.; Campbell, F. C.; Lucocq, J. M.; Hundal, H. S. The GLUT5 Hexose Transporter Is Also Localized to the Basolateral Membrane of the Human Jejunum. Biochem. J. 1995, 309, 7–12.
  • Scalbert, A.; Williamson, G. Dietary Intake and Bioavailability of Polyphenols. J. Nutr. 2000, 130(8S Suppl), 2073S–2085S. DOI: 10.1093/jn/130.8.2073S.
  • Ludwig, D. S.;. The Glycemic Index: Physiological Mechanisms Relating to Obesity; Diabetes; and Cardiovascular Disease. JAMA. 2002, 287, 2414–2423.
  • Hanamura, T.; Mayama, C.; Aoki, H.; Hirayama, Y.; Shimizu, M. Antihyperglycemic Effect of Polyphenols from Acerola (Malpighia Emarginata DC.) Fruit. Biosci. Biotechnol. Biochem. 2006, 70, 1813–1820. DOI: 10.1271/bbb.50592.
  • Frejnagel, S.; Wroblewska, M. Comparative Effect of Green Tea; Chokeberry and Honeysuckle Polyphenols on Nutrients and Mineral Absorption and Digestibility in Rats. Ann. Nutr. Metab. 2010, 56, 163–169. DOI: 10.1159/000278747.
  • Song, J.; Kwon, O.; Chen, S.; Daruwala, R.; Eck, P.; Park, J. B.; Levine, M. Flavonoid Inhibition of Sodium-Dependent Vitamin C Transporter 1 (SVCT1) and Glucose Transporter Isoform 2 (GLUT2); Intestinal Transporters for Vitamin C and Glucose. J. Biol. Chem. 2002, 277, 15252–15260. DOI: 10.1074/jbc.M110496200.
  • Torronen, R.; Sarkkinen, E.; Tapola, N.; Hautaniemi., E.; Kilpi, K.; Niskanen, L. Berries Modify the Postprandial Plasma Glucose Response to Sucrose in Healthy Subjects. Br. J. Nutr. 2010, 103, 1094–1097. DOI: 10.1017/S0007114509992868.
  • Johnston, K. L.; Clifford, M. N.; Morgan, L. M. Coffee Acutely Modifies Gastrointestinal Hormone Secretion and Glucose Tolerance in Humans: Glycemic Effects of Chlorogenic Acid and Caffeine. Am. J. Clin. Nutr. 2003, 78, 728–733. DOI: 10.1093/ajcn/78.4.728.
  • Welsch, C. A.; Lachance, P. A.; Wasserman, B. P. Dietary Phenolic Compounds: Inhibition of Na+-Dependent D-Glucose Uptake in Rat Intestinal Brush Border Membrane Vesicles. J. Nutr. 1989, 119, 1698–1704. DOI: 10.1093/jn/119.11.1698.
  • Cermak, R.; Landgraf, S.; Wolffram, S. Quercetin Glucosides Inhibit Glucose Uptake into Brush-Border-Membrane Vesicles of Porcine Jejunum. Br. J. Nutr. 2004, 91, 849–855. DOI: 10.1079/BJN20041128.
  • Ader, P.; Block, M.; Pietzsch, S.; Wolffram, S. Interaction of Quercetin Glucosides with the Intestinal Sodium/Glucose Co-Transporter (SGLT-1). Cancer Lett. 2001, 162, 175–180.
  • Wolffram, S.; Block, M.; Ader, P. Quercetin-3-Glucoside Is Transported by the Glucose Carrier SGLT1 across the Brush Border Membrane of Rat Small Intestine. J. Nutr. 2002, 132, 630–635. DOI: 10.1093/jn/132.4.630.
  • Gee, J. M.; DuPont, M. S.; Rhodes, M. J.; Johnson, I. T. Quercetin Glucosides Interact with the Intestinal Glucose Transport Pathway. Free Radic. Biol. Med. 1998, 25, 19–25.
  • Hollman, P. C.; de Vries, J. H.; van Leeuwen, S. D.; Mengelers, M. J.; Katan, M. B. Absorption of Dietary Quercetin Glycosides and Quercetin in Healthy Ileostomy Volunteers. Am. J. Clin. Nutr. 1995, 62, 1276–1282. DOI: 10.1093/ajcn/62.6.1276.
  • Walgren, R. A.; Lin, J. T.; Kinne, R. K.; Walle, T. Cellular Uptake of Dietary Flavonoid Quercetin 4ʹ-Beta-Glucoside by Sodium-Dependent Glucose Transporter SGLT1. J. Pharmacol. Exp. Ther. 2000, 294, 837–843.
  • Kottra, G.; Daniel, H. Flavonoid Glycosides are Not Transported by the Human Na+/Glucose Transporter When Expressed in Xenopus Laevis Oocytes; but Effectively Inhibit Electrogenic Glucose Uptake. J. Pharmacol. Exp. Ther. 2007, 322, 829–835. DOI: 10.1124/jpet.107.124040.
  • Li, J. M.; Che, C. T.; Lau, C. B.; Leung, P. S.; Cheng, C. H. Inhibition of Intestinal and Renal Na+-Glucose Cotransporter by Naringenin. Int. J. Biochem. Cell Biol. 2006, 38, 985–995. DOI: 10.1016/j.biocel.2005.10.002.
  • Kobayashi, Y.; Suzuki, M.; Satsu, H.; Arai, S.; Hara, Y.; Suzuki, K.; Miyamoto, Y.; Shimizu, M. Green Tea Polyphenols Inhibit the Sodium-Dependent Glucose Transporter of Intestinal Epithelial Cells by a Competitive Mechanism. J. Agric. Food Chem. 2000, 48, 5618–5623.
  • Hossain, S. J.; Kato, H.; Aoshima, H.; Yokoyama, T.; Yamada, M.; Hara, Y. Polyphenol-Induced Inhibition of the Response of Na(+)/Glucose Cotransporter Expressed in Xenopus Oocytes. J. Agric. Food Chem. 2002, 50, 5215–5219.
  • Johnston, K.; Sharp, P.; Clifford, M.; Morgan, L. Dietary Polyphenols Decrease Glucose Uptake by Human Intestinal Caco-2 Cells. FEBS Lett. 2005, 579, 1653–1657. DOI: 10.1016/j.febslet.2004.12.099.
  • Kwon, O.; Eck, P.; Chen, S.; Corpe, C. P.; Lee, J. H.; Kruhlak, M.; Levine, M. Inhibition of the Intestinal Glucose Transporter GLUT2 by Flavonoids. FASEB J. 2007, 21, 366–377. DOI: 10.1096/fj.06-6620com.
  • Manzano, S.; Williamson, G. Polyphenols and Phenolic Acids from Strawberry and Apple Decrease Glucose Uptake and Transport by Human Intestinal Caco-2 Cells. Mol. Nutr. Food Res. 2010, 54, 1773–1780. DOI: 10.1002/mnfr.201000019.
  • Elliott, S. S.; Keim, N. L.; Stern, J. S.; Teff, K.; Havel, P. J. Fructose, Weight Gain, and the Insulin Resistance Syndrome. Am. J. Clin. Nutr. 2002, 76, 911–922. DOI: 10.1093/ajcn/76.5.911.
  • Rutledge, A. C.; Adeli, K. Fructose and the Metabolic Syndrome: Pathophysiology and Molecular Mechanisms. Nutr. Rev. 2007, 65, S13–23.
  • van Buul, V. J.; Tappy, L.; Brouns, F. J. Misconceptions about Fructose-Containing Sugars and Their Role in the Obesity Epidemic. Nutr. Res. Rev. 2014, 27, 119–130. DOI: 10.1017/S0954422414000067.
  • Wittekind, A.; Walton, J. Worldwide Trends in Dietary Sugars Intake. Nutr. Res. Rev. 2014, 27, 330–345. DOI: 10.1017/S0954422414000237.
  • Goran, M. I.; Ulijaszek, S. J.; Ventura, E. E. High Fructose Corn Syrup and Diabetes Prevalence: A Global Perspective. Glob. Public Health. 2013, 8, 55–64. DOI: 10.1080/17441692.2012.736257.
  • Toop, C. R.; Gentili, S. Fructose Beverage Consumption Induces a Metabolic Syndrome Phenotype in the Rat: A Systematic Review and meta-Analysis. Nutrients. 2016, 8, pii: E577. DOI: 10.3390/nu8090577.
  • Johnson, R. K.; Appel, L. J.; Brands, M.; Howard, B. V.; Lefevre, M.; Lustig, R. H.; Sacks, F.; Steffen, L. M.; Wylie-Rosett, J. American Heart Association Nutrition Committee of the Council on Nutrition, Physical Activity and Metabolism and the Council on Epidemiology and Prevention. Dietary Sugars Intake and Cardiovascular Health: A Scientific Statement from the American Heart Association. Circulation. 2009, 120, 1011–1020. DOI: 10.1161/CIRCULATIONAHA.109.192627.
  • Stanhope, K. L.;. Sugar Consumption; Metabolic Disease and Obesity: The State of the Controversy. Crit. Rev. Clin. Lab. Sci. 2016, 53, 52–67. DOI: 10.3109/10408363.2015.1084990.
  • Lee, Y.; Lim, Y.; Kwon, O. Selected Phytochemicals and Culinary Plant Extracts Inhibit Fructose Uptake in Caco-2 Cells. Molecules. 2015, 20, 17393–17404. DOI: 10.3390/molecules200917393.
  • Andrade, N.; Araújo, J. R.; Correia-Branco, A.; Carletti, J. V.; Martel, F. Effect of Dietary Polyphenols on Fructose Uptake by Human Intestinal Epithelial (Caco-2) Cells. J. Funct. Foods. 2017, 36, 429–439. DOI: 10.1016/j.jff.2017.07.032.
  • Cao, H.; Ou, J.; Chen, L.; Zhang, Y.; Szkudelski, T.; Delmas, D.; Daglia, M.; Xiao, J. Dietary Polyphenols and Type 2 Diabetes: Human Study and Clinical Trials. Crit. Rev. Food Sci. Nutr. 2018, 11, 1–19. DOI: 10.1080/10408398.2018.1492900.
  • Farhat, G.; Drummond, S.; Al-Dujaili, E. A. Polyphenols and Their Role in Obesity Management: A Systematic Review of Randomized Clinical Trials. Phytother. Res. 2017, 31, 1005–1018. DOI: 10.1002/ptr.5830.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.