361
Views
14
CrossRef citations to date
0
Altmetric
Reviews

Nanosized Zinc Oxide: Super-Functionalities, Present Scenario of Application, Safety Issues, and Future Prospects in Food Processing and Allied Industries

, , , &

References

  • Paul, S. K.; Sahu, J. K. Nanotechnology in Food Processing. In Advanced Food Process Engineering; Sahu, J.K., Ed.; CRC Press: London, 2014; pp 315–342.
  • Shriwas, S. A.; Aparna, D.; Sonali, M.; Wankhede, M. E.; Chimanpure, J.; Pasricha, R.; Urban, J.; Haram, S. K.; Gosavi, S. W.; Kulkarni, S. K. Synthesis and Analysis of ZnO and CdSe Nanoparticles. J. Phys. 2005, 65(4), 615–620.
  • Chittaranjan, B.; Prasoon, P. S. Zinc Oxide Nanorods: Synthesis and Its Applications in Solar Cell. Int. J. Mod. Eng. Res. 2012, 2(4), 2452–2454.
  • Kong, X. Y.; Wang, Z. L. Spontaneous Polarization Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts. Nano Lett. 2003, 3(12), 1625–1631.
  • Lee, C. Y.; Tseng, T. Y.; Li, S. Y.; Lin, P. Effect of Phosphorus Dopant on Photoluminescence and Field-Emission Characteristics of Mg0.1Zn0.9O Nanowires. J. Appl. Phys. 2006, 99(2), 024303 (1–6).
  • Chen, C.; Liu, P.; Lu, C. Investigation of Photocatalytic Degradation Using Nano-Sized ZnO Catalysts. Chem. Eng. J. 2008, 144(3), 509–513. DOI: 10.1016/j.cej.2008.07.047.
  • Gnanasangeetha, D.; Thambavani, D. S. Biogenic Production of Zinc Oxide Nanoparticles Using Acalyphaindica. J. Chem. Biol. Phys. Sci. 2013, 4(1), 238–246.
  • Lu, J.; Ng, K. M.; Yang, S. Efficient, One-Step Mechanochemical Process for the Synthesis of ZnO Nanoparticles. Ind. Eng. Chem. Res. 2008, 47(4), 1095–1101. DOI: 10.1021/ie071034j.
  • Casey, P.;. Nanoparticle Technologies and Applications. In Nanostructure Control of Materials; Hannink, R.H.J., Hill, A.J., Eds.; Woodhead Publishing Limited: Cambridge, UK, 2006; pp 1–27.
  • Paula, E.; de Fátima, F. S. N.; Coimbra, J.; José, A. N.; Cruz, R.; Medeiros, E. Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications. Food Bioproc. Technol. 2012, 5, 1447–1460. DOI: 10.1007/s11947-012-0797-6.
  • Singhal, G.; Bhavesh, R.; Kasariya, K.; Sharma, A. R.; Singh, R. P. Biosynthesis of Silver Nanoparticles Using Ocimum Sanctum (Tulsi) Leaf Extract and Screening Its Antimicrobial Activity. J. Nanopart. Res. 2011, 13(7), 2981–2988. DOI: 10.1007/s11051-010-0193-y.
  • Anastas, P. T.; Warner, J. C. Green Chemistry. In Theory and Practice, Anastas, P. T., Warner, J. C. Green Chemistry Eds.; Oxford University Press: New York, 1998.
  • Clark, J.; Macquarrie, D. Handbook of Green Chemistry and Technology; Blackwell Publishing: Oxfordshire, UK, 2002.
  • Roselli, M.; Finamore, A.; Garaguso, I.; Britti, M. S.; Mengheri, E. Zinc Oxide Protects Cultured Enterocytes from the Damage Induced by Escherichia Coli. J. Nutr. 2003, 133(12), 4077–4082. DOI: 10.1093/jn/133.8.2622.
  • Brayner, R.; Ferrari-Iliou, R.; Brivois, N.; Djediat, S.; Benedetti, M. F.; Fiévet, F. Toxicological Impact Studies Based on Escherichia Coli Bacteria in Ultra Fine ZnO Nanoparticles Colloidal Medium. Nano Lett. 2006, 6(4), 866–870. DOI: 10.1021/nl052110f.
  • Thill, A.; Zeyons, O.; Spalla, O.; Chauvat, F.; Rose, J.; Auffan, M.; Flank, A. M. Cytotoxicity of CeO2 Nanoparticles for Escherichia Coli: Physico-Chemical Insight of the Cytotoxicity Mechanism. Environ. Sci. Technol. 2006, 40, 6151–6156.
  • Reddy, K. M.; Feris, K.; Bell, J.; Wingett, D. G.; Hanley, C.; Punnoose, A. Selective Toxicity of Zinc Oxide Nanoparticles to Prokaryotic and Eukaryotic Systems. Appl. Phys. Lett. 2007, 90(21), 213–902. DOI: 10.1063/1.2742324.
  • Zhang, L.; Jiang, Y.; Ding, Y.; Povey, M.; York, D. Investigationinto the Antibacterial Behaviour of Suspensions of ZnO Nanoparticles (Zno Nanofluids). J. Nanopart. Res. 2007, 9(3), DOI: 10.1007/s11051-006-9150-1.
  • Stoimenov, P. K.; Klinger, R. L.; Marchin, G. L.; Klabunde, K. J. Metal Oxide Nanoparticles as Bactericidal Agents. Langmuir. 2002, 18(17), 6679–6686. DOI: 10.1021/la0202374.
  • FDA. Part 182-Substances Generally Recognized as Safe; Food and drug administration: Washington DC, USA, 2011. http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c0ecfr&sid0786bafc6f6343634fbf79fcdca7061e1&rgn0div5&view0text&node0213.0.1.1.13&idno021#21:3.0.1.1.13.9 (accessed Mar 28, 2011).
  • Cioffi, N.; Torsi, L.; Ditaranto, N.; Tantillo, G.; Ghibelli, L.; Sabbatini, L.; Bleve-Zacheo, T.; D’Alessio, M.; Zambonin, P. G.; Traversa, E. Copper Nanoparticle/Polymer Composites with Antifungal and Bacteriostatic Properties. Chem. Mater. 2005, 17(21), 5255–5262. DOI: 10.1021/cm0505244.
  • Chaudhry, Q.; Scotter, M.; Blackburn, J.; Ross, B.; Boxall, A.; Castle, L.; Aitken, R.; Watkins, R. Applications and Implications of Nanotechnologies for the Food Sector. Food Addit. Contam Part A. 2008, 25(3), 241–258. DOI: 10.1080/02652030701744538.
  • Bradley, E. L.; Castle, L.; Chaudhry, Q. Applications of Nanomaterialsin Food Packaging with a Consideration of Opportunities for Developing Countries. Trends Food Sci. Technol. 2011, 22(11), 604–610. DOI: 10.1016/j.tifs.2011.01.002.
  • Karunakaran, C.; Rajeswari, V.; Gomathisankar, P. Antibacterial and Photocatalytic Activities of Sonochemically Prepared ZnO and Ag-ZnO. J. Alloys Compd. 2010, 508, 587–591. DOI: 10.1016/j.jallcom.2010.08.128.
  • Karunakaran, C.; Rajeswari, V.; Gomathisankar, P. Enhanced Photocatalytic and Antibacterial Activities of Sol-Gel Synthesized ZnO and Ag-ZnO. Mater. Sci. Semicond. Process. 2011a, 14, 133–138. DOI: 10.1016/j.mssp.2011.01.017.
  • Karunakaran, C.; Rajeswari, V.; Gomathisankar, P. Optical, Electrical, Photocatalytic, and Bactericidal Properties of Microwave Synthesized Nanocrystalline Ag-ZnO and ZnO. Solid State Sci. 2011b, 13, 923–928. DOI: 10.1016/j.solidstatesciences.2011.02.016.
  • Banoee, M.; Seif, S.; Nazari, Z. E.; Jafari-Fesharaki, P.; Shahverdi, H. R.; Moballegh, A.; Moghaddam, K. M.; Shahverdi, A. R. ZnO Nanoparticles Enhanced Antibacterial Activity of Ciprofloxacin against Staphylococcus Aureus and Escherichia Coli. J. Biomed. Mater. Res.-B Appl. Biomater. 2005, 93, 557–561.
  • Dutta, R. K.; Sharma, P. K.; Bhargava, R.; Kumar, N.; Pandey, A. C. Differential Susceptibility of Escherichia Coli Cells Towards Transition Metal-Doped and Matrix-Embeded ZnO Nanoparticles. J. Phys. Chem. B. 2010, 114, 5594–5599. DOI: 10.1021/jp1004488.
  • Bhadra, P.; Mitra, M. K.; Das, G. C.; Dey, R.; Mukherjee, S. Interaction of Chitosan Capped ZnO Nanorods with Escherichia Coli. Mater. Sci. Eng. 2011, 31(5), 929–937.
  • Gordon, T.; Perlstein, B.; Houbara, O.; Felner, I.; Banin, E.; Margel, S. Synthesis and Characterization of Zinc/Iron Oxide Composite Nanoparticles and Their Antibacterial Properties. Colloids Surf. A: Physicochem. Eng. Asp. 2011, 374(1–3), 1–8. DOI: 10.1016/j.colsurfa.2010.10.015.
  • Tunç, S.; Duman, O. Preparation and Characterization of Biodegradable Methyl Cellulose/Montmorillonitenano Composite Films. Appl. Clay Sci. 2010, 48, 414–424. DOI: 10.1016/j.clay.2010.01.016.
  • Simoncic, B.; Tomsic, B. Structures of Novel Antimicrobial Agents for Textiles—A Review. Text. Res. J. 2010, 80(16), 1721–1737. DOI: 10.1177/0040517510363193.
  • Duncan, T. V.;. Applications of Nanotechnology in Food Packaging and Food Safety: Barrier Materials, Antimicrobials and Sensors. J. Colloid Interface Sci. 2011, 363(1), 1–24. DOI: 10.1016/j.jcis.2011.07.044.
  • Qasim, C.; Laurence, C. Food Applications of Nanotechnologies: An Overview of Opportunities and Challenges for Developing Countries. Trends Food Sci. Technol. 2011, 22, 595–603. DOI: 10.1016/j.tifs.2011.01.001.
  • Espitia, P. J. P.; Soares, N. F. F.; Coimbra, J. S. R. C.; Andrade, N. J.; Cruz, R. S.; Medeiros, E. A. A. Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications. Food Bioproc. Technol. 2012, 5, 1447–1464. DOI: 10.1007/s11947-012-0797-6.
  • Takenaka, S.; Karg, E.; Roth, C.; Schulz, H.; Ziesenis, A.; Heinzmann, U.; Schramel, P.; Heyder, J. Pulmonary and Systemic Distribution of Inhaled Ultrafine Silver Particles in Rats. Environ. Health Perspect. 2001, 109, 547–551.
  • Werner, I. H.; Agnes, G. O.; Wim, H. D.; Flemming, R. C.; Adriënne, J. A. M. S. What Do We (Need To) Know about the Kinetic Properties of Nanoparticles in the Body? Regul. Toxicol. Pharm. 2007, 49(3), 217–229. DOI: 10.1016/j.yrtph.2007.07.006.
  • Choi, D. W.; Koh, J. Y. Zinc and Brain Injury. Annu. Rev. Neurosci. 1998, 21, 347–375. DOI: 10.1146/annurev.neuro.21.1.347.
  • Sayes, C. M.; Reed, K. L.; Warheit, D. B. Assessing Toxicity of Fine and Nanoparticles: Comparing in Vitro Measurements to in Vivo Pulmonary Toxicity Profiles. Toxicol. Sci. 2007, 97, 163–180. DOI: 10.1093/toxsci/kfm034.
  • Heng, B. C.; Zhao, X.; Xiong, S.; Ng, K. W.; Boey, F. Y.; Loo, J. S. Toxicity of Zinc Oxide (Zno) Nanoparticles on Human Bronchial Epithelial Cells (BEAS-2B) Is Accentuated by Oxidative Stress. Food Chem. Toxicol. 2010, 48(6), 1762–1766. DOI: 10.1016/j.fct.2010.04.023.
  • Huang, C. C.; Aronstam, R. S.; Chen, D. R.; Huang, Y. W. Oxidative Stress, Calcium Homeostasis, and Altered Gene Expression in Human Lung Epithelial Cells Exposed to ZnO Nanoparticles. Toxicol. InVitro. 2010, 24(1), 45–55. DOI: 10.1016/j.tiv.2009.09.007.
  • Hsiao, I. L.; Huang, Y. J. Effects of Various Physicochemical Characteristics on the Toxicities of ZnO and TiO(2) Nanoparticles toward Human Lung Epithelial Cells. Sci. Total Environ. 2011b, 409(7), 1219–1228. DOI: 10.1016/j.scitotenv.2010.12.033.
  • Igor, P.; Isabelle, P.; Brigitte, B.; Mona, T.; Etienne, D.; Céline, O.; Béatrice, L. Cytotoxicity and Oxidative Stress Induced by Different Metallic Nanoparticles on Human Kidney Cells. Part. Fibre Toxicol. 2011, 8(10), 1–16. DOI: 10.1186/1743-8977-8-1.
  • Nohynek, G.; Antignac, E.; Re, T.; Toutain, H. Safety Assessment of Personal Care Products/Cosmetics and Their Ingredients. Toxicol. Appl. Phamacol. 2010, 243, 239–259. DOI: 10.1016/j.taap.2009.12.001.
  • Auld, D. S.;. Zinc Coordination Sphere in Biochemical Zinc Sites. Biometals. 2001, 14, 271–313. DOI: 10.1023/A:1012976615056.
  • Shi, L.; Zhou, J.; Gunasekaran, S. Low Temperature Fabrication of ZnO-whey Protein Isolate Nanocomposite. Mater. Lett. 2008, 62, 4383–4385. DOI: 10.1016/j.matlet.2008.07.038.
  • Brown, P. H.; Cakmak, I.; Zhang, Q. Forms and Function of Zinc in Plants. In Zinc in Soil and Plants; Robson, A.D., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993; pp 93–106.
  • Fageria, N. K.; Baligar, V. C.; Clark, R. B. Micronutrients in Crop Production. Adv. Agron. 2002, 77, 189–272.
  • Graham, R. D.; Welch, R. M.; Bouis, H. E. Addressing Micronutrient Malnutrition through Enhancing the Nutritional Quality of Staple Foods: Principles, Perspectives and Knowledge Gaps. Adv. Agron. 2001, 70, 77–142.
  • Huang, L.; Li, D. Q.; Lin, Y. J.; Wei, M.; Evans, D. G.; Duan, X. Controllable Preparation of nano-MgO and Investigation of Its Bactericidal Properties. J. Inorg. Biochem. 2005, 99, 986–993. DOI: 10.1016/j.jinorgbio.2004.12.022.
  • Jones, N.; Ray, B.; Ranjit, K. T.; Manna, A. C. Antibacterial Activity of ZnO Nanoparticle Suspensions on a Broad Spectrum of Microorganisms. FEMS Microbiol. Lett. 2008, 279, 71–76. DOI: 10.1111/j.1574-6968.2007.01012.x.
  • Marciano, F. R.; Lima-Oliveira, D. A.; Da-Silva, N. S.; Diniz, A. V.; Corat, E. J.; Trava-Airoldi, V. J. Antibacterial Activity of DLC Films Containing TiO2 Nanoparticles, J. Colloid. Interface Sci. 2009, 340, 87–92. DOI: 10.1016/j.jcis.2009.08.024.
  • Zhang, L. L.; Jiang, Y. H.; Ding, Y. L.; Daskalakis, N.; Jeuken, L.; Povey, M.; O’Neill, A. J.; York, D. W. Mechanistic Investigation into Antibacterial Behaviour of Suspensions of ZnO Nanoparticles against E. Coli. J. Nanopart. Res. 2010, 12, 1625–1636. DOI: 10.1007/s11051-009-9711-1.
  • Wang, Z. L.; Kong, X. Y.; Ding, Y.; Gao, P.; Hughes, W. L.; Yang, R.; Zhang, Y. Semiconducting and Piezoelectric Oxide Nanostructures Induced by Polar Surfaces. Adv. Funct. Mater. 2004, 14, 943–956. DOI: 10.1002/(ISSN)1616-3028.
  • Wang, X.; Ding, Y.; Summers, C. J.; Wang, Z. L. Large Scale Synthesis of Six-Nanometer-Wide ZnO Nanobelts. J. Phys. Chem. B. 2004, 108(26), 8773–8777. DOI: 10.1021/jp048482e.
  • Shah, M. A.; Al-Shahry, M. Zinc Oxide Nanoparticles Prepared by the Reaction of Zinc Metal with Ethanol. JKAU Sci. 2009, 21(1), 61–67. DOI: 10.4197/Sci.21-1.6.
  • Koch, U.; Fojtik, A.; Weller, H.; Henglein, A. Photochemistryof Semiconductor colloids.Preparation of Extremely Small ZnO Particles, Fluorescence Phenomena and Size Quantization Effects. Chem. Phys. Lett. 2000, 122, 507–510. DOI: 10.1016/0009-2614(85)87255-9.
  • Rahman, D.; Ghosh, S. Manipulating Electron Transfer in Hybrid ZnO-Au Nanostructures: Size of Gold Matters. J. Phys. Chem. C. 2016, 120, 14906–14917. DOI: 10.1021/acs.jpcc.6b03551.
  • Aghababazadeh, R.; Mazinani, B.; Mirhabibi, A.; Tamizifar, M. ZnO Nanoparticles Synthesised by Mechanochemical Processing. J. Phys. Conf. Ser. 2006, 26(1), 312. DOI: 10.1088/1742-6596/26/1/075.
  • Ao, W.; Li, J.; Yang, H.; Zeng, X.; Ma, X. Mechanochemical Synthesis of Zinc Oxide Nanocrystalline. Powder Technol. 2006, 168(3), 148–151. DOI: 10.1016/j.powtec.2006.07.014.
  • Shen, L.; Bao, N.; Yanagisawa, K.; Domen, K.; Gupta, A.; Grimes, C. A. Direct Synthesis of ZnO Nanoparticles by a Solution Free Mechanochemical Reaction. Nanotechnol. 2006, 17(20), 5117. DOI: 10.1088/0957-4484/17/20/013.
  • Swihart, M. T.;. Vapor-Phase Synthesis of Nanoparticles. Curr. Opin. Colloid. Interface Sci. 2003, 8(1), 127–133. DOI: 10.1016/S1359-0294(03)00007-4.
  • Hudlikar, M.; Joglekar, S.; Dhaygude, M.; Kodam, K. Latex Mediated Synthesis of ZnS Nanoparticles: Green Synthesis Approach. J. Nanopart. Res. 2012, 14(5), 865. DOI: 10.1007/s11051-012-0865-x.
  • Reed, S. M.; Hutchison, J. E. Green Chemistry in the Organic Teaching Laboratory: An Environmentally Benign Synthesis of Adipic Acid. J. Chem. Educ. 2000, 77(12), 1627–1628.
  • Tundo, P.; Anastas, P. Green Chemistry: Challenging Perspectives; Oxford University Press: Oxford, UK, 2000.
  • Ramimoghadam, D.; Hussein, M. Z. B.; Taufiq-Yap, Y. H. Hydrothermal Synthesis of Zinc Oxide Nanoparticles Using Rice as Soft Biotemplate. Chem. Centr. J. 2013, 71(36), 1–10.
  • Xu, Z.; Hwang, J.-Y.; Li, B.; Huang, X.; Wang, H. The Characterization of Various ZnO Nanostructures Using Field-Emission SEM. JOM. 2008, 60(4), 29–32. DOI: 10.1007/s11837-008-0044-9.
  • Yahya, N.; Daud, H.; Tajuddin, N. A.; Daud, H. M.; Shafie, A.; Puspitasari, P. Application of ZnO Nanoparticles EM Wave Detector Prepared by Sol–Gel and Self-Combustion Techniques. J. Nano. Res. 2010, 11, 25–34. DOI: 10.4028/www.scientific.net/JNanoR.11.25.
  • Ali, M.; Rahaman, H.; Pal, S.; Kar, N.; Ghosh, S. Submicron ZnO Raspberries as Effective Catalysts for Fries Rearrangement. RSC Adv. 2015, 5, 1–6. DOI: 10.1039/C5RA03448E.
  • Maroof, M.; Rahaman, H.; Rahman, D.; Nath, S.; Ghosh, S. Water/N-Heptane Interface as a Viable Platform for the Self-Assembly of ZnO Nanospheres to Nanorods. Cryst. Eng. Commun. 2014, 16, 7696–7700. DOI: 10.1039/C4CE00728J.
  • Rai, M.; Yadav, A.; Gade, A. Silver Nanoparticles as a New Generation of Antimicrobials. Biotechnol. Adv. 2009, 27(1), 76–83. DOI: 10.1016/j.biotechadv.2008.09.002.
  • Sawai, J.;. Quantitative Evaluation of Antibacterial Activities of Metallic Oxide Powders (Zno, MgO and CaO) by Conductimetric Assay. J. Microbiol. Method. 2003, 54(2), 177–182. DOI: 10.1016/S0167-7012(03)00037-X.
  • Sawai, J.; Kojima, H.; Ishizu, N.; Itoh, M.; Igarashi, H.; Sawaki, T.; Shimizu, M. Bactericidal Action of Magnesium Oxide Powder. J. Inorgan. Biochem. 1997, 67(1–4), DOI: 10.1016/S0162-0134(97)80303-0.
  • Sawai, J.; Shoji, S.; Igarashi, H.; Hashimoto, A.; Kokugan, T.; Shimizu, M.; Kojima, H. Hydrogen Peroxide as an Antibacterial Factor in Zinc Oxide Powder Slurry. J. Ferment. Bioeng. 1998, 86(5), 521–522. DOI: 10.1016/S0922-338X(98)80165-7.
  • Amna, S.; Shahrom, M.; Azman, S.; Noor, H. M. K.; Ling, C. A.; Siti, K. M. B.; Habsah, H.; Dasmawati, M. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro. Lett. 2015, 7(3), 219–242. DOI: 10.1007/s40820-015-0040-x.
  • Mishra, Y.; Chakravadhanula, V.; Hrkac, V.; Jebril, S.; Agarwal, D.; Mohapatra, S.; Avasthi, D.; Kienle, L.; Adelung, R. Crystal Growth Behaviour in Au–ZnO Nanocomposite under Different Annealing Environments and Photo Switchability. J. Appl. Phys. 2012, 112(6), 064308 (1–5). DOI: 10.1063/1.4752469s.
  • Adams, L. K.; Lyon, D. Y.; Alvarez, P. J. J. Comparative Eco-Toxicity of Nanoscale TiO2, SiO2, and ZnO Water Suspensions. Water Res. 2006, 40(19), 3527–3532. DOI: 10.1016/j.watres.2006.08.004.
  • Ohira, T.; Yamamoto, O.; Iida, Y.; Nakagawa, Z. Antibacterial Activity of ZnO Powder with Crystallographic Orientationof Materials Science. J. Mater. Med. 2008, 19(3), 1407–1412. DOI: 10.1007/s10856-007-3246-8.
  • Premanathan, M.; Karthikeyan, K.; Jeyasubramanian, K.; Manivannan, G. Selective Toxicity of ZnO Nanoparticles toward Gram Positive Bacteria and Cancer Cells by Apoptosis through Lipid Peroxidation. Nanomed. Nanotechnol. Biol. Med. 2011, 7(2), 184–192. DOI: 10.1016/j.nano.2010.10.001.
  • Xie, Y.; He, Y.; Irwin, P. L.; Jin, T.; Shi, X. Antibacterial Activity and Mechanism of Action of Zinc Oxide Nanoparticles against Campylobacter Jejuni. Appl. Environ. Microbiol. 2011, 77(7), 2325–2331. DOI: 10.1128/AEM.02149-10.
  • Yamamoto, O.;. Influence of Particle Size on the Antibacterial Activity of Zinc Oxide. Int. J. Inorg. Mater. 2001, 3(7), 643–646. DOI: 10.1016/S1466-6049(01)00197-0.
  • Applerot, G.; Lipovsky, A.; Dror, R.; Perkas, N.; Nitzan, Y.; Lubart, R.; Gedanken, A. Enhanced Antibacterial Activity of Nanocrystalline ZnO Due to Increased ROS-mediated Cell Injury. Adv. Funct. Mater. 2009, 19(6), 842–852. DOI: 10.1002/adfm.v19:6.
  • Russell, A. D.;. Similarities and Differences in the Responses of Microorganisms to Biocides. J. Antimicrob. Chemother. 2003, 52(5), 750–763. DOI: 10.1093/jac/dkg486.
  • Jiang, W.; Saxena, A.; Song, B.; Ward, B. B.; Beveridge, T. J.; Myneni, S. C. B. Elucidation of Functional Groups on Gram-Positive and Gram-Negative Bacterial Surfaces Using Infrared Spectroscopy. Langmuir. 2004, 20(26), 11433–11442. DOI: 10.1021/la0490184.
  • Epand, R. M.; Epand, R. F. Lipid Domains in Bacterial Membranes and the Action of Antimicrobial Agents. Biochim. Biophys. Acta (BBA)-Biomembran. 2009, 1788(1), 289–294. DOI: 10.1016/j.bbamem.2008.08.023.
  • Sonohara, R.; Muramatsu, N.; Ohshima, H.; Kondo, T. Difference in Surface Properties between Escherichia Coli and Staphylococcus Aureus as Revealed by Electrophoretic Mobility Measurements. Biophys. Chem. 1995, 55(3), 273–277. DOI: 10.1016/0301-4622(95)00004-H.
  • Jalal, R.; Goharshadi, E. K.; Abareshi, M.; Moosavi, M.; Yousefi, A.; Nancarrow, P. ZnO Nanofluids: Green Synthesis, Characterization, and Antibacterial Activity. Mater. Chem. Phys. 2010, 121(1–2), 198–201. DOI: 10.1016/j.matchemphys.2010.01.020.
  • He, L.; Liu, Y.; Mustapha, A.; Lin, M. Antifungal Activity of Zinc Oxide Nanoparticles against Botrytis Cinerea and Penicillium Expansum. Microbiol. Res. 2011, 166(3), 207–215. DOI: 10.1016/j.micres.2010.03.003.
  • Seil, J. T.; Taylor, E. N.; Webster, T. J. Reduced Activity of Staphylococcus Epidermidis in the Presence of Sonicated Piezoelectric Zinc Oxide Nanoparticles. IEEE 35th Annual Northeast Bioengineering Conference, Boston, MA, USA, Apr 3–5, 2009. Doi: 10.1109/NEBC.2009.4967674.
  • Zhang, L.; Ding, Y.; Povey, M.; York, D. ZnO nanofluids: A potential antibacterial agent. Prog. Nat. Sci. 2008, 18, 939–944. DOI: 10.1016/j.pnsc.2008.01.026.
  • Brunner, T. J.; Wick, P.; Manser, P.; Spohn, P.; Grass, R. N.; Limbach, L. K.; Bruinink, A.; Stark, W. J. In Vitro Cytotoxicity of Oxide Nanoparticles: Comparison to Asbestos, Silica, and the Effect of Particle Solubility. Environ. Sci. Technol. 2006, 40(14), 4374–4381.
  • Kasemets, K.; Ivask, A.; Dubourguier, H.-C.; Kahru, A. Toxicity of Nanoparticles of ZnO, CuO and TiO2 to Yeast Saccharomyces Cerevisiae. Toxicol. InVitro. 2009, 23, 1116–1122. DOI: 10.1016/j.tiv.2009.05.015.
  • Li, M.; Zhu, L.; Lin, D. Toxicity of ZnO Nanoparticles to Escherichia Coli: Mechanism and the Influence of Medium Components. Environ. Sci. Technol. 2011, 45(5), 1977–1983. DOI: 10.1021/es102624t.
  • Lipovsky, A.; Nitzan, Y.; Gedanken, A.; Lubart, R. Antifungal Activity of ZnO Nanoparticles—The Role of ROS Mediated Cell Injury. Nanotechnol. 2011, 22(10), 105101 (1–5). DOI: 10.1088/0957-4484/22/10/105101.
  • Pal, S.; Tak, Y. K.; Song, J. M. Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia Coli. Appl. Environ. Microbiol. 2007, 73(6), 1712–1720.
  • Ma, J.; Liu, J.; Bao, Y.; Zhu, Z.; Wang, X.; Zhang, J. Synthesis of Large Scale Uniform Mulberry-Like ZnO Particles with Microwave Hydrothermal Method and Its Antibacterial Property. Ceram. Int. 2012, 39(3), 2803–2810. DOI: 10.1016/j.ceramint.2012.09.049.
  • Stankovic´, A.; Dimitrijevic´, S.; Uskokovic´, D. Influence of Size Scale and Morphology on Antibacterial Properties of ZnO Powders Hydrothermally Synthesized Using Different Surface Stabilizing Agents. Colloid. Surf. B. 2012, 102, 21–28. DOI: 10.1016/j.colsurfb.2012.07.033.
  • Talebian, N.; Amininezhad, S. M.; Doudi, M. Controllable Synthesis of ZnO Nanoparticles and Their Morphology-Dependent Antibacterial and Optical Properties. J. Photochem. Photobiol. 2013, 120, 66–73. DOI: 10.1016/j.jphotobiol.2013.01.004.
  • Ramani, M.; Ponnusamy, S.; Muthamizhchelvan, C.; Marsili, E. Amino Acid-Mediated Synthesis of Zinc Oxide Nanostructures and Evaluation of Their Facet-Dependent Antimicrobial Activity. Colloids Surf. B. 2014, 117, 233–239. DOI: 10.1016/j.colsurfb.2014.02.017.
  • Yang, H.; Liu, C.; Yang, D.; Zhang, H.; Xi, Z. Comparative Study of Cytotoxicity, Oxidative Stress and Genotoxicity Induced by Four Typical Nanomaterials: The Role of Particle Size, Shape and Composition. J. Appl. Toxicol. 2009, 29(1), 69–78. DOI: 10.1002/jat.v29:1.
  • Li, G.; Hu, T.; Pan, G.; Yan, T.; Gao, X.; Zhu, H. Morphology–Function Relationship of ZnO: Polar Planes, Oxygen Vacancies, and Activity. J. Phys. Chem. C. 2008, 112(31), 11859–11864. DOI: 10.1021/jp8038626.
  • Tong, G.-X.; Du, -F.-F.; Liang, Y.; Hu, Q.; Wu, R.-N.; Guan, J.-G.; Hu, X. Polymorphous ZnO Complex Architectures: Selective Synthesis, Mechanism, Surface Area and Zn-Polar Plane-Codetermining Antibacterial Activity. J. Mater. Chem. B. 2013, 1(4), 454–463. DOI: 10.1039/C2TB00132B.
  • Yamamoto, O.; Shimura, T.; Sawai, J.; Kojima, H.; Sasamoto, T. Effect of CaO Doping on Antibacterial Activity of ZnO Powders. J. Ceram. Soc. Jpn. 2000, 108(2), 156‐160. DOI: 10.2109/jcersj.108.1254_156.
  • Padmavathy, N.; Vijayaraghavan, R. Enhanced Bioactivity of ZnO Nanoparticles-An Antimicrobial Study. Sci. Technol. Adv. Mater. 2008, 9(3), 035004 (1–7). DOI: 10.1088/1468-6996/9/3/035004.
  • Franklin, N. M.; Rogers, N. J.; Apte, S. C.; Batley, G. E.; Gadd, G. E.; Casey, P. S. Comparative Toxicity of Nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a Freshwater Microalga (Pseudo Kirchneriella Subcapitata): The Importance of Particle Solubility. Environ. Sci. Technol. 2007, 41(24), 8484–8490.
  • Raghupathi, K. R.; Koodali, R. T.; Manna, A. C. Size-Dependent Bacterial Growth Inhibition and Mechanism of Antibacterial Activity of Zinc Oxide Nanoparticles. Langmuir. 2011, 27(7), 4020–4028. DOI: 10.1021/la104825u.
  • Jeng, H. A.; Swanson, J. Toxicity of Metal Oxide Nanoparticles in Mammalian Cells. J. Environ. Sci. Health. A. 2006, 41(12), 2699–2711. DOI: 10.1080/10934520600966177.
  • Wang, H.; Wick, R. L.; Xing, B. Toxicity of Nanoparticulate and Bulk ZnO, Al2O3 and TiO2 to the Nematode Caenorhabditis Elegans. Environ. Pollut. 2009, 157(4), 1171–1177. DOI: 10.1016/j.envpol.2009.03.015.
  • Seven, O.; Dindar, B.; Aydemir, S.; Metin, D.; Ozinel, M. A.; Icli, S. Solar Photocatalytic Disinfection of a Group of Bacteria and Fungi Aqueous Suspensions with TiO2, ZnO and Sahara Desert Dust. J. Photochem. Photobiol. A Chem. 2004, 165(1–3), 103–107. DOI: 10.1016/j.jphotochem.2004.03.005.
  • Hirota, K.; Sugimoto, M.; Kato, M.; Tsukagoshi, K.; Tanigawa, T.; Sugimoto, H. Preparation of Zinc Oxide Ceramics with a Sustainable Antibacterial Activity under Dark Conditions. Ceram. Int. 2010, 36(2), 497–506. DOI: 10.1016/j.ceramint.2009.09.026.
  • Alvarez-Peral, F. J.; Zaragoza, O.; Pedreno, Y.; Argüelles, J. C. Protective Role of Trehalose during Severe Oxidative Stresscaused by Hydrogen Peroxide and the Adaptive Oxidative Stress Response in Candida Albicans. Microbiol. 2002, 148(8), 2599–2606. DOI: 10.1099/00221287-148-8-2599.
  • Alebooyeh, R.; Nafchi, A. M.; Jokar, M. The Effects of ZnO Nanorods on the Characteristics of Sago Starch Biodegradable Films. J. Chem. Health Risk. 2012, 2, 13–16.
  • Paul, S. K.; Sarkar, S.; Sethi, L. N.; Ghosh, S. Study on the Effect of Chitosan and Glycerol Composition on Respiration Rate and Optical Parameters of Edible Coated Tomato (Lycopersicum Esculentum Mill) to Extend Shelf-Life during Storage. Int. J. Agric. Food Sci. Technol. 2014, 5(7), 727–740.
  • Cheng, L. H.; Karim, A. A.; Seow, C. C. Effects of Water–Glycerol and Water–Sorbitol Interactions on the Physical Properties of Konjac Glucomannan Films. J. Food Sci. 2006, 71, 62–67. DOI: 10.1111/j.1365-2621.2006.tb08898.x.
  • Müller, C.; Laurindo, J.; Yamashita, F. Effect of Nanoclay Incorporation Method on Mechanical and Water Vapor Barrier Properties of Starch-Based Films. Ind. Crop. Prod. 2011, 33, 605–610. DOI: 10.1016/j.indcrop.2010.12.021.
  • Emamifar, A.; Kadivar, M.; Mohammad, S.; Sabihe, S. Evaluation of Nanocomposite Packaging Containing Ag and ZnO on Shelf Life of Fresh Orange Juice. Innov. Food Sci. Emerg. Technol. 2010, 11(4), 742–748. DOI: 10.1016/j.ifset.2010.06.003.
  • Eskandari, M.; Haghighi, N.; Ahmadi, V.; Haghighi, F.; Mohammadi, S. R. Growth and Investigation of Antifungal Properties of ZnO Nanorod Arrays on the Glass. Phys. B: Condens. Matter. 2011, 406(1), 112–114. DOI: 10.1016/j.physb.2010.10.035.
  • FSAI. The Relevance for Food Safety of Applications of Nanotechnology in the Food and Feed Industries; Food Safety Authority of Ireland Abbey Court: Dublin, 2008; pp 82.
  • Nafchi, A. M.; Nassiri, R.; Sheibani, S.; Ariffin, F.; Karim, A. A. Preparation and Characterization of Bionanocomposite Films Filled with Nanorod-Rich Zinc Oxide. Carbohydr. Polym. 2013, 96(1), 233–239. DOI: 10.1016/j.carbpol.2013.03.055.
  • Prasad, T. N. V. K. V.; Sudhakar, P.; Sreenivasulu, Y.; Latha, P.; Munaswamy, V.; Raja, R. K.; Sreeprasad, T. S.; Sajanlal, P. R.; Pradeep, T. Effect of Nanoscale Zinc Oxide Particles on the Germination, Growth and Yield of Peanut. J. Plant Nutr. 2012, 35(6), 905–927. DOI: 10.1080/01904167.2012.663443.
  • Batsmanova, L. M.; Gonchar, L. M.; Taran, N. Y.; Okanenko, A. A. Using a Colloidal Solution of Metal Nanoparticles as Micronutrient Fertiliser for Cereals. Proceedings of the International Conference Nanomaterials, Ukraine, 2013.
  • De Berardis, B.; Civitelli, G.; Condello, M.; Lista, P.; Pozzi, R.; Arancia, G.; Meschini, S. Exposure to ZnO Nanoparticles Induces Oxidative Stress and Cytotoxicity in Human Colon Carcinoma Cells. Toxicol. Appl. Pharm. 2010, 246, 116–127. DOI: 10.1016/j.taap.2010.04.012.
  • Zhang, M.; Yang, H.; Xian, T.; Wei, Z. Q.; Jiang, J. L.; Feng, Y. C.; Liu, X. Q. Polyacrylamide Gel Synthesis and Photocatalytic Performance of Bi2Fe4O9 Nanoparticles. J. Alloys. Compd. 2011, 509, 809–812. DOI: 10.1016/j.jallcom.2010.09.097.
  • Nair, S.; Sasidharan, A.; Divya, R. V. V.; Menon, D.; Nair, S.; Manzoor, K.; Raina, S. Role of Size Scale of ZnO Nanoparticles and Microparticles on Toxicity toward Bacteria and Osteoblast Cancer Cells. J. Mater. Sci. Mater. Med. 2009, 20, 235–241.
  • Petras, J.; Roman, G.; Asta, J.; Johan, M. Generation of Nitrogen Oxide and Oxygen Radicals by Quantum Dots. J. Biomed. Nanotechnol. 2008, 4, 450–456. DOI: 10.1166/jbn.2008.008.
  • Rasmussen, J. W.; Martinez, E.; Louka, P.; Wingett, D. G. Zinc Oxide Nanoparticles for Selective Destruction of Tumor Cells and Potential for Drug Delivery Applications. Expert Opin. Drug. Deliv. 2010, 7(9), 1063–1077. DOI: 10.1517/17425247.2010.502560.
  • Dhobale, S.; Thite, T.; Laware, S. L. Zinc Oxide Nanoparticles as Novel Alpha-Amylase Inhibitors. J. Appl. Phys. 2008, 104, 0949071–0949076. DOI: 10.1063/1.3009317.
  • Zhao, Z. W.; Chen, X. J.; Tay, B. K.; Chen, J. S.; Han, Z. J.; Khor, K. A. A Novel Amperometric Biosensor Based on ZnO:Co Nanoclusters for Biosensing Glucose. Biosens. Bioelectron. 2007, 23, 135–139. DOI: 10.1016/j.bios.2007.03.014.
  • Silvestre, C.; Duraccio, D.; Cimmino, S. Food Packaging Based on Polymer Nanomaterials. Prog. Polym. Sci. 2011, 36(12), 1766–1782.
  • Pal, S. K.; Nargis, A.; Ghosh, S. Determination of Arsenic in Water Using Fluorescent ZnO Quantum Dots. Anal. Methods. 2016, 8(2), 445–452. DOI: 10.1039/C5AY02472B.
  • Li, J. H.; Hong, R. Y.; Li, M. Y.; Li, H. Z.; Zheng, Y.; Ding, J. Effects of ZnO Nanoparticles on the Mechanical and Antibacterial Properties of Polyurethane Coatings. Prog. Org. Coat. 2009, 64(4), 504–509. DOI: 10.1016/j.porgcoat.2008.08.013.
  • Vicentini, D. S.; Smania, A.; Laranjeira, M. C. M. Chitosan/Poly (Vinyl Alcohol) Films Containing ZnO Nanoparticles and Plasticizers. Mater. Sci. Eng. C. 2010, 30(4), 503–508. DOI: 10.1016/j.msec.2009.01.026.
  • Emamifar, A.; Kadivar, M.; Shahedi, M.; Solaimanian-Zad, S. Effect of Nanocomposite Packaging Containing Ag and ZnO on Inactivation of Lactobacillus Plantarum in Orange Juice. Food Contr. 2011, 22, 408–413. DOI: 10.1016/j.foodcont.2010.09.011.
  • Ahvenainen, R.;. Active and Intelligent Packaging: An Introduction. In Novel Food Packaging Techniques; Ahvenainen, R., Ed.; Woodhead Publishing Ltd: Cambridge, UK, 2003; pp 5–21. DOI: 10.1533/9781855737020.1.5.
  • DeAzeredo, H. M.;. Antimicrobial Nanostructures in Food Packaging. Trends Food Sci. Technol. 2013, 30(1), 56–69. DOI: 10.1016/j.tifs.2012.11.006.
  • Soares, N. F. F.; Pires, A. C. S.; Camilloto, G. P.; Santiagosilva, P.; Espitia, P. J. P.; Silva, W. A. Recent Patents on Active Packaging for Food Application. Recent Pat. Food Nutr. Agric. 2009, 1, 171–178.
  • Yalcin, B.; Otles, S. Intelligent Food Packaging. http://www.logforum.net/vol4/issue4/no3 ( accessed Feb 13, 2008).
  • Kruijf, N. D.; Beest, M. V.; Rijk, R.; Sipiläinen-Malm, T.; Losada, P. P.; Meulenaer, B. D. Active and Intelligent Packaging: Applications and Regulatory Aspects. Food Addit. Contam. 2002, 19(S1), 144–162. DOI: 10.1080/02652030110072722.
  • Yam, K. L.; Takhistov, P. T.; Miltz, J. Intelligent Packaging: Concepts and Applications. J. Food Sci. 2005, 70, R1–R10. DOI: 10.1111/j.1365-2621.2005.tb09052.x.
  • Sabir, S.; Arshad, M.; Chaudhari, S. K. Zinc Oxide Nanoparticles for Revolutionizing Agriculture: Synthesis and Applications. Sci. World J. 2014, 925494 (1–8). DOI: 10.1155/2014/925494.
  • Lin, D.; Xing, B. Phytotoxicity of Nanoparticles: Inhibition of Seed Germination and Root Growth. Environ. Pollut. 2007, 150(2), 243–250. DOI: 10.1016/j.envpol.2007.01.016.
  • Lin, D.; Xing, B. Root Uptake and Phytotoxicity of ZnO Nanoparticles. Environ. Sci. Technol. 2008, 42(15), 5580–5585. DOI: 10.1021/es800422x.
  • Stampoulis, D.; Sinha, S. K.; White, J. C. Assay-Dependent Phytotoxicity of Nanoparticles to Plants. Environ. Sci. Technol. 2009, 43(24), 9473–9479.
  • Lopez-Moreno, M. L.; de La Rosa, G.; Hern ´Andez-Viezcas´, J. A.; Castillo-Michel, H.; Botez, C. E.; Peralta-Videa, J. R.; Gardea-Torresdey, J. L. Evidence of the Differential Biotransformation and Genotoxicity of ZnO and CeO2 Nanoparticles on Soybean (Glycine Max) Plants. Environ. Sci. Technol. 2010, 44(19), 7315–7320. DOI: 10.1021/es903891g.
  • Frederickson, C. J.; Koh, J. Y.; Bush, A. I. The Neurobiology of Zinc in Health and Disease. Nat. Rev. Neurosci. 2005, 6, 449–462. DOI: 10.1038/nrn1671.
  • Halioua, B.; Ziskind, B. Medicine in the Days of the Pharaohs; Belknap Press of Harvard University Press: Cambridge, USA, 2005.
  • Pal, R.; Chakraborty, B.; Nath, A.; Mohindro, S. L.; Ali, M.; Rahman, D.; Ghosh, S.; Basu, A.; Bhattacharya, S.; Baral, R.;, et al. Noble Metal Nanoparticle-Induced Oxidative Stress Modulates Tumor Associated Macrophages (Tams) from an M2 to M1 Phenotype: An in Vitro Approach. Int. Immunopharmacol. 2016, 38, 332–341. DOI: 10.1016/j.intimp.2016.06.006.
  • Guo, G.; Fu, S.; Zhou, L.; Liang, H.; Fan, M.; Luo, F.; Wei, Y. Preparation of Curcumin Loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) Nanofibers and Their in Vitro Antitumor Activity against Glioma 9L Cells. Nanoscale. 2011, 3, 3825–3832. DOI: 10.1039/c1nr10484e.
  • Rajendran, R.; Balakumar, C.; Ahammed, H. A. M.; Jayakumar, S.; Vaideki, K.; Rajesh, E. M. Use of Zinc Oxide Nano Particles for Production of Antimicrobial Textiles. Int. J. Eng. Sci. Technol. 2010, 2, 202–208.
  • Han, Q.; Cao, B.; Zhou, L. P.; Zhang, G. J.; Liu, Z. H. Electrical Transport Study of Single-Walled ZnO Nanotubes: A First-Principles Study of the Length Dependence. J. Phys. Chem. C. 2011, 115, 3447–3452. DOI: 10.1021/jp1089917.
  • Hanley, C.; Layne, J.; Punnoose, A.; Reddy, K. M.; Coombs, I.; Coombs, A.; Feris, K.; Wingett, D. Preferential Killing of Cancer Cells and Activated Human T Cells Using ZnO Nanoparticles. Nanotechnol. 2008, 19, 295103. DOI: 10.1088/0957-4484/19/29/295103.
  • Lanone, S.; Boczkowski, J. Biomedical Applications and Potential Health Risks of Nanomaterials: Molecular Mechanisms. Curr. Mol. Med. 2006, 6(6), 651–663.
  • Wang, B.; Weiyue, F.; Meng, W.; Tiancheng, W.; Yiqun, G.; Motao, Z.; Hong, O.; Junwen, S.; Fang, Z.; Yuliang, Z.;; et al. Acute Toxicological Impact of Nano- and Submicro-Scaled Zinc Oxide Powder on Healthy Adult Mice. J. Nanopart. Res. 2008, 10(2), 263–276.
  • Zvyagin, A. V.; Zhao, X.; Gierden, A.; Sanchez, W.; Ross, J. A.; Roberts, M. S. Imaging of Zinc Oxide Nanoparticle Penetration in Human Skin in Vitro and in Vivo. J. Biomed. Opt. 2008, 13, 064031–064038. DOI: 10.1117/1.3041492.
  • Carmody, R. J.; Cotter, T. G. Signaling Apoptosis: A Radical Approach. Redox Rep. 2001, 6, 77–90. DOI: 10.1179/135100001101536085.
  • Ryter, S. W.; Kim, H. P.; Hoetzel, A.; Park, J. W.; Nakahira, K.; Wang, X.; Choi, A. M. Mechanisms of Cell Death in Oxidative Stress. Antioxid. Redox Signal. 2007, 9, 49–89. DOI: 10.1089/ars.2007.1726.
  • Nel, A.; Xia, T.; Madler, L.; Li, N. Toxic Potential of Materials at the Nanolevel. Science. 2006, 311, 622–627. DOI: 10.1126/science.1114397.
  • Xia, T.; Kovochich, M.; Brant, J.; Hotze, M.; Sempf, J.; Oberley, T.; Sioutas, C.; Yeh, J. I.; Weisner, M. R.; Nel, A. E. Comparison of the Abilities of Ambient and Manufactured Nanoparticles to Induce Cellular Toxicity according to an Oxidative Stress Paradigm. Nano Lett. 2006, 6, 1794–1807. DOI: 10.1021/nl052110f.
  • Lin, W. S.; Xu, Y.; Huang, C. C.; Ma, Y.; Shannon, K. B.; Chen, D. R.; Huang, Y. W. Toxicity of Nano- and Micro-Sized ZnO Particles in Human Lung Epithelial Cells. J. Nanopart. Res. 2009, 11, 25–29. DOI: 10.1007/s11051-008-9419-7.
  • Shankar, A. H.; Prassad, A. S. Zinc and Immune Function: The Biological Basis of Altered Resistance to Infection. Am. J. Clin. Nutr. 1998, 68, 447S–63S. DOI: 10.1093/ajcn/68.2.447S.
  • Truong-Tran, A. Q.; Carter, J.; Ruffin, R. E.; Zalewski, P. D. The Role of Zinc in Caspase Activation and Apoptotic Cell Death. Biomet. 2001, 14, 315–330. DOI: 10.1023/A:1012993017026.
  • Calon, F.; Lim, G. P.; Fusheng, Y.; Takashi, M.; Bruce, T.; Oliver, U.; Phillippe, R.; Antoine, T.; Norman, S.; Karen, H. A.;; et al. Docosahexaenoic Acid Protects from Dendritic Pathology in an Alzheimer’s Disease Mouse Model. Neuron. 2004, 43(5), 633–645.
  • Oberdörster, G.; Oberdörster, E.; Oberdörster, J. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environ. Health Perspect. 2005, 113, 823–839. DOI: 10.1289/ehp.7339.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.