736
Views
17
CrossRef citations to date
0
Altmetric
Reviews

Plant-Derived Supplementary Carbohydrates, Polysaccharides and Oligosaccharides in Management of Diabetes Mellitus: A Comprehensive Review

, , ORCID Icon, ORCID Icon, &

References

  • Association, A. D.;. Epidemiology of Diabetes Interventions and Complications (EDIC). Design, Implementation, and Preliminary Results of a Long-Term Follow-Up of the Diabetes Control and Complications Trial Cohort. Diabetes Care. 1999, 22(1), 99–111.
  • Kirkman, M. S.; Dunbar, S. A. American Diabetes Association Clinical Practice Recommendations 2009 Introduction. AMER DIABETES ASSOC 1701 N BEAUREGARD ST, ALEXANDRIA, VA 22311-1717 USA. 2009.
  • Organization, W. H. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia: report of a WHO/IDF consultation. 2006.
  • Atlas, D. International Diabetes Federation. IDF Diabetes Atlas, 7th ed.; International Diabetes Federation: Brussels, Belgium, 2015.
  • Atkinson, M. A.; Eisenbarth, G. S.; Michels, A. W. Type 1 Diabetes. Lancet. 2014, 383(9911), 69–82. DOI: 10.1016/S0140-6736(13)60591-7.
  • Chatterjee, S.; Khunti, K.; Davies, M. J. Type 2 Diabetes. Lancet. 2017, 389(10085), 2239–2251. DOI: 10.1016/S0140-6736(17)30058-2.
  • Landon, M. B.; Gabbe, S. G. Gestational Diabetes Mellitus. Obstetrics Gynecol. 2011, 118(6), 1379–1393. DOI: 10.1097/AOG.0b013e31823974e2.
  • Esteghamati, A.; Larijani, B.; Aghajani, M. H.; Ghaemi, F.; Kermanchi, J.; Shahrami, A.; Saadat, M.; Esfahani, E. N.; Ganji, M.; Noshad, S.; et al. Diabetes in Iran: Prospective Analysis from First Nationwide Diabetes Report of National Program for Prevention and Control of Diabetes (NPPCD-2016). Sci. Rep. 2017, 7(1), 13461. DOI: 10.1038/s41598-017-13379-z.
  • Ledermann, H.;. Maturity-Onset Diabetes of the Young (MODY) at Least Ten Times More Common in Europe than Previously Assumed? Diabetologia. 1995, 38(12), 1482.
  • Shields, B.; Hicks, S.; Shepherd, M. H.; Colclough, K.; Hattersley, A. T.; Ellard, S. Maturity-Onset Diabetes of the Young (MODY): How Many Cases are We Missing? Diabetologia. 2010, 53(12), 2504–2508. DOI: 10.1007/s00125-010-1799-4.
  • Fendler, W.; Borowiec, M.; Antosik, K.; Szadkowska, A.; Deja, G.; Jarosz-Chobot, P.; Mysliwiec, M.; Wyka, K.; Pietrzak, I.; Skupien, J.; et al. HDL Cholesterol as a Diagnostic Tool for Clinical Differentiation of GCK‐MODY from HNF1A‐MODY and Type 1 Diabetes in Children and Young Adults. Clin. Endocrinol. 2011, 75(3), 321–327. DOI: 10.1111/j.1365-2265.2011.04052.x.
  • Spinks, J.; Johnston, D.; Hollingsworth, B. Complementary and Alternative Medicine (CAM) Use and Quality of Life in People with Type 2 Diabetes And/Or Cardiovascular Disease. Complementary Ther. Med. 2014, 22(1), 107–115. DOI: 10.1016/j.ctim.2013.11.007.
  • Sotaniemi, E. A.; Haapakoski, E.; Rautio, A. Ginseng Therapy in Non-Insulin-Dependent Diabetic Patients: Effects on Psychophysical Performance, Glucose Homeostasis, Serum Lipids, Serum Aminoterminalpropeptide Concentration, and Body Weight. Diabetes Care. 1995, 18(10), 1373–1375.
  • Stull, A. J.; Cash, K. C.; Johnson, W. D.; Champagne, C. M.; Cefalu, W. T. Bioactives in Blueberries Improve Insulin Sensitivity in Obese, Insulin-Resistant Men and Women–4. J. Nutr. 2010, 140(10), 1764–1768. DOI: 10.3945/jn.110.125336.
  • Liu, C.-Y.; Huang, C.-J.; Huang, L.-H.; Chen, I.-J.; Chiu, J.-P.; Hsu, C.-H.; Atkin, S. L. Effects of Green Tea Extract on Insulin Resistance and Glucagon-Like Peptide 1 in Patients with Type 2 Diabetes and Lipid Abnormalities: A Randomized, Double-Blinded, and Placebo-Controlled Trial. PLoS One. 2014, 9(3), e91163. DOI: 10.1371/journal.pone.0091163.
  • Cortez-Navarrete, M.; Martínez-Abundis, E.; Pérez-Rubio, K. G.; González-Ortiz, M.; Méndez-Del Villar, M. Momordica Charantia Administration Improves Insulin Secretion in Type 2 Diabetes Mellitus. J. med. food. 2018, 21, 672–677. DOI: 10.1089/jmf.2017.0114.
  • Kiss, R.; Szabó, K.; Gesztelyi, R.; Somodi, S.; Kovács, P.; Szabó, Z.; Németh, J.; Priksz, D.; Kurucz, A.; Juhász, B.; et al. Insulin-Sensitizer Effects of Fenugreek Seeds in Parallel with Changes in Plasma MCH Levels in Healthy Volunteers. Int. J. Mol. Sci. 2018, 19(3), 771. DOI: 10.3390/ijms19030771.
  • Kim, S. J.; Yuan, H. D.; Chung, S. H. Ginsenoside Rg1 Suppresses Hepatic Glucose Production via AMP-activated Protein Kinase in HepG2 Cells. Biol. Pharm. Bull. 2010, 33(2), 325–328.
  • Shibib, B. A.; Khan, L. A.; Rahman, R. Hypoglycaemic Activity of Coccinia Indica and Momordica Charantia in Diabetic Rats: Depression of the Hepatic Gluconeogenic Enzymes Glucose-6-Phosphatase and Fructose-1, 6-Bisphosphatase and Elevation of Both Liver and Red-Cell Shunt Enzyme Glucose-6-Phosphate Dehydrogenase. Biochem. J. 1993, 292(1), 267–270.
  • Hui, H.; Tang, G.; Go, V. L. W. Hypoglycemic Herbs and Their Action Mechanisms. Chin.Med. 2009, 4(1), 11. DOI: 10.1186/1749-8546-4-11.
  • Waltner-Law, M. E.; Wang, X. L.; Law, B. K.; Hall, R. K.; Nawano, M.; Granner, D. K. Epigallocatechin Gallate, a Constituent of Green Tea, Represses Hepatic Glucose Production. J. Biol. Chem. 2002, 277, 34933–34940. DOI: 10.1074/jbc.M204672200.
  • Shen, Y.; Fukushima, M.; Ito, Y.; Muraki, E.; Hosono, T.; Seki, T.; Ariga, T.; Verification of the Antidiabetic Effects of Cinnamon (Cinnamomum Zeylanicum) Using Insulin-Uncontrolled Type 1 Diabetic Rats and Cultured Adipocytes. Biosci., Biotechnol., Biochem.. 2010, 74(12), 2418–2425.
  • Cao, H.; Graves, D. J.; Anderson, R. A. Cinnamon Extract Regulates Glucose Transporter and Insulin-Signaling Gene Expression in Mouse Adipocytes. Phytomedicine. 2010, 17(13), 1027–1032. DOI: 10.1016/j.phymed.2010.03.023.
  • Cao, H.; Polansky, M. M.; Anderson, R. A. Cinnamon Extract and Polyphenols Affect the Expression of Tristetraprolin, Insulin Receptor, and Glucose Transporter 4 in Mouse 3T3-L1 Adipocytes. Arch. Biochem. Biophys. 2007, 459(2), 214–222. DOI: 10.1016/j.abb.2006.12.034.
  • Ashida, H.; Furuyashiki, T.; Nagayasu, H.; Bessho, H.; Sakakibara, H.; Hashimoto, T.; Kanazawa, K. Anti‐Obesity Actions of Green Tea: Possible Involvements in Modulation of the Glucose Uptake System and Suppression of the Adipogenesis‐Related Transcription Factors. Biofactors. 2004, 22(1‐4), 135–140.
  • Mohammad, S.; Taha, A.; Akhtar, K.; Bamezai, R. N. K.; Baquer, N. Z. In Vivo Effect of Trigonella Foenum Graecum on the Expression of Pyruvate Kinase, Phosphoenolpyruvate Carboxykinase, and Distribution of Glucose Transporter (GLUT4) in Alloxan-Diabetic Rats. Can. J. Physiol. Pharmacol. 2006, 84(6), 647–654. DOI: 10.1139/y05-164.
  • Vijayakumar, M. V.; Singh, S.; Chhipa, R. R.; Bhat, M. K. The Hypoglycaemic Activity of Fenugreek Seed Extract Is Mediated through the Stimulation of an Insulin Signalling Pathway. Br. J. Pharmacol. 2005, 146(1), 41–48. DOI: 10.1038/sj.bjp.0706312.
  • Kim, M.; Ahn, B. Y.; Lee, J. S.; Chung, S. S.; Lim, S.; Park, S. G.; Jung, H. S.; Lee, H. K.; Park, K. S. The Ginsenoside Rg3 Has a Stimulatory Effect on Insulin Signaling in L6 Myotubes. Biochem. Biophys. Res. Commun. 2009, 389(1), 70–73. DOI: 10.1016/j.bbrc.2009.08.088.
  • Zhao, R.; Li, Q.; Xiao, B. Effect of Lycium Barbarum Polysaccharide on the Improvement of Insulin Resistance in NIDDM Rats. Yakugaku Zasshi. 2005, 125(12), 981–988.
  • Shieh, J.-P.; Cheng, K.-C.; Chung, -H.-H.; Kerh, Y.-F.; Yeh, C.-H.; Cheng, J.-T. Plasma Glucose Lowering Mechanisms of Catalpol, an Active Principle from Roots of Rehmannia Glutinosa, in Streptozotocin-Induced Diabetic Rats. J. Agric. Food Chem. 2011, 59(8), 3747–3753. DOI: 10.1021/jf200069t.
  • Gao, X.; Li, B.; Jiang, H.; Liu, F.; Xu, D.; Liu, Z. Dioscorea Opposita Reverses Dexamethasone Induced Insulin Resistance. Fitoterapia. 2007, 78(1), 12–15. DOI: 10.1016/j.fitote.2006.09.015.
  • Liu, M.; Wu, K.; Mao, X.; Wu, Y.; Ouyang, J. Astragalus Polysaccharide Improves Insulin Sensitivity in KKAy Mice: Regulation of PKB/GLUT4 Signaling in Skeletal Muscle. J. Ethnopharmacol. 2010, 127(1), 32–37. DOI: 10.1016/j.jep.2009.09.055.
  • Hsu, F.-L.; Liu, I.-M.; Kuo, D.-H.; Chen, W.-C.; Su, H.-C.; Cheng, J.-T. Antihyperglycemic Effect of Puerarin in Streptozotocin-Induced Diabetic Rats. J. Nat. Prod. 2003, 66(6), 788–792. DOI: 10.1021/np0203887.
  • Takikawa, M.; Inoue, S.; Horio, F.; Tsuda, T. Dietary Anthocyanin-Rich Bilberry Extract Ameliorates Hyperglycemia and Insulin Sensitivity via Activation of AMP-Activated Protein Kinase in Diabetic Mice–3. J. Nutr. 2010, 140(3), 527–533. DOI: 10.3945/jn.109.118216.
  • Wheeler, M. L.;. Cycles: Diabetes Nutrition Recommendations--Past, Present, and Future. Diabetes Spectr. 2000, 13(3), 116.
  • Khazrai, Y.; Defeudis, G.; Pozzilli, P. Effect of Diet on Type 2 Diabetes Mellitus: A Review. Diabetes/Metab. Res. Rev. 2014, 30(S1), 24–33. DOI: 10.1002/dmrr.2515.
  • Vessby, B.;. Dietary Carbohydrates in Diabetes. Am. J. Clin. Nutr. 1994, 59(3), 742S–746S. DOI: 10.1093/ajcn/59.3.742S.
  • Gagnier, J. J.; DeMelo, J.; Boon, H.; Rochon, P.; Bombardier, C. Quality of Reporting of Randomized Controlled Trials of Herbal Medicine Interventions. Am. J. Med. 2006, 119(9), 800. e1-800. e11. DOI: 10.1016/j.amjmed.2006.02.006.
  • Li, G. Q; Kam, A.; Wong, K. H.; Zhou, X.; Omar, E. A.; Alqahtani, A.; Li, K. M.; Razmovski-Naumovski, V.; Chan, K.; Herbal medicines for the management of diabetes. In Diabetes, 396–413; Springer: New York, NY, 2013. DOI: 10.1007/978-1-4614-5441-0_28.
  • Werz, D. B.; Seeberger, P. H. Carbohydrates as the Next Frontier in Pharmaceutical Research. Chemistry. 2005, 11(11), 3194–3206. DOI: 10.1002/(ISSN)1521-3765.
  • Zhang, Y.; Wang, F. Carbohydrate Drugs: Current Status and Development Prospect. Drug Discoveries Ther. 2015, 9(2), 79–87. DOI: 10.5582/ddt.2015.01028.
  • Chalker, J. M.; Wood, C. S.; Davis, B. G. A Convenient Catalyst for Aqueous and Protein Suzuki− Miyaura Cross-Coupling. J. Am. Chem. Soc. 2009, 131(45), 16346–16347. DOI: 10.1021/ja907150m.
  • Geraci, C.; Consoli, G. M. L.; Galante, E.; Bousquet, E.; Pappalardo, M.; Spadaro, A. Calix [4] Arene Decorated with Four Tn Antigen Glycomimetic Units and P3CS Immunoadjuvant: Synthesis, Characterization, and Anticancer Immunological Evaluation. Bioconjugate Chem. 2008, 19(3), 751–758. DOI: 10.1021/bc700411w.
  • Phalipon, A.; Tanguy, M.; Grandjean, C.; Guerreiro, C.; Bélot, F.; Cohen, D.; Sansonetti, P. J.; Mulard, L. A. A Synthetic Carbohydrate-Protein Conjugate Vaccine Candidate against Shigella Flexneri 2a Infection. J. Immunol. 2009, 182(4), 2241–2247. DOI: 10.4049/jimmunol.0803141.
  • Bongat, A. F. G.; Saksena, R.; Adamo, R.; Fujimoto, Y.; Shiokawa, Z.; Peterson, D. C.; Fukase, K.; Vann, W. F.; Kovác, P. Multimeric Bivalent Immunogens from Recombinant Tetanus Toxin H C Fragment, Synthetic Hexasaccharides, and a Glycopeptide Adjuvant. Glycoconjugate J. 2010, 27(1), 69–77. DOI: 10.1007/s10719-009-9259-4.
  • Renaudet, O.; Dasgupta, G.; Bettahi, I.; Shi, A.; Nesburn, A. B.; Dumy, P.; BenMohamed, L.; Unutmaz, D. Linear and Branched Glyco-Lipopeptide Vaccines Follow Distinct Cross-Presentation Pathways and Generate Different Magnitudes of Antitumor Immunity. PloS one. 2010, 5(6), e11216. DOI: 10.1371/journal.pone.0011216.
  • Lipinski, T.; Kitov, P. I.; Szpacenko, A.; Paszkiewicz, E.; Bundle, D. R. Synthesis and Immunogenicity of a Glycopolymer Conjugate. Bioconjugate Chem. 2010, 22(2), 274–281. DOI: 10.1021/bc100397b.
  • Gannon, M. C.; Nuttall, F. Q.; Westphal, S. A.; Fang, S.; Ercan-Fang, N. Acute Metabolic Response to High-Carbohydrate, High-Starch Meals Compared with Moderate-Carbohydrate, Low-Starch Meals in Subjects with Type 2 Diabetes. Diabetes Care. 1998, 21(10), 1619–1626.
  • Mary Rother Kristina I Delahanty Linda M, D.P.P.R.G.S.A.C.E.S.L.W.G.B.E.J.H.E.S.I.U.N.K.W.C.M.M.G.T.M.H. A High-Carbohydrate, High-Fiber, Low-Fat Diet Results in Weight Loss among Adults at High Risk of Type 2 Diabetes. J. Nutr. 2017, 147(11), 2060–2066. doi:10.3945/jn.117.252395.
  • De Natale, C.; Annuzzi, G.; Bozzetto, L.; Mazzarella, R.; Costabile, G.; Ciano, O.; Riccardi, G.; Rivellese, A. A. Effects of a Plant-Based High-Carbohydrate/High-Fiber Diet versus High–Monounsaturated Fat/Low-Carbohydrate Diet on Postprandial Lipids in Type 2 Diabetic Patients. Diabetes Care. 2009, 32(12), 2168–2173. DOI: 10.2337/dc09-0266.
  • Dickinson, S.; Hancock, D. P.; Petocz, P.; Ceriello, A.; Brand-Miller, J. High–Glycemic Index Carbohydrate Increases Nuclear factor-κB Activation in Mononuclear Cells of Young, Lean Healthy Subjects–. Am. J. Clin. Nutr. 2008, 87(5), 1188–1193. DOI: 10.1093/ajcn/87.5.1188.
  • Jung, R.; Shetty, P.; James, W. Nutritional Effects on Thyroid and Catecholamine Metabolism. Clinical Sci. 1980, 58(3), 183–191.
  • Koh, H.; Tsushima, M.; Harano, Y. Effect of Carbohydrate Intake on Serum 3, 5, 3’-Triiodothyronine-Response to Glucose Ingestion and Its Relation to Glucose Tolerance in Lean Non-lnsulin-Dependent Diabetic Patients. Arzneimittelforschung. 1999, 49(01), 30–34. DOI: 10.1055/s-0031-1300354.
  • Story, L.; Anderson, J.; Chen, W-J.; Karounos, D.; Jefferson, B.; Adherence to High-Carbohydrate, High-Fiber Diets: Long-Term Studies of Non-Obese Diabetic Men. J. Am. Diet. Assoc. 1985, 85(9), 1105–1110.
  • Voragen, A. G.;. Technological Aspects of Functional Food-Related Carbohydrates. Trends Food Sci. Technol. 1998, 9(8–9), 328–335. DOI: 10.1016/S0924-2244(98)00059-4.
  • Roberfroid, M.; Slavin, J. Nondigestible oligosaccharides. Crit. Rev. Food Sci. Nutr. 2000, 40(6), 461–480. DOI: 10.1080/10408690091189239.
  • Crittenden, R. A.; Playne, M. J. Production, Properties and Applications of Food-Grade Oligosaccharides. Trends Food Sci. Technol. 1996, 7(11), 353–361. DOI: 10.1016/S0924-2244(96)10038-8.
  • Roberfroid, M. B.;. Functional Effects of Food Components and the Gastrointestinal System: Chicory Fructooligosaccharides. Nutr. Rev. 1996, 54(11), S38–S42.
  • Mussatto, S. I.; Mancilha, I. M. Non-Digestible Oligosaccharides: A Review. Carbohydr. Polym. 2007, 68(3), 587–597. DOI: 10.1016/j.carbpol.2006.12.011.
  • Johansen, H. N.; Glitsø, V.; Bach Knudsen, K. E. Influence of Extraction Solvent and Temperature on the Quantitative Determination of Oligosaccharides from Plant Materials by High-Performance Liquid Chromatography. J. Agric. Food Chem. 1996, 44(6), 1470–1474. DOI: 10.1021/jf950482b.
  • Broekaert, W. F.; Courtin, C. M.; Verbeke, K.; Van de Wiele, T.; Verstraete, W.; Delcour, J. A. Prebiotic and Other Health-Related Effects of Cereal-Derived Arabinoxylans, Arabinoxylan-Oligosaccharides, and Xylooligosaccharides. Crit. Rev. Food Sci. Nutr. 2011, 51(2), 178–194. DOI: 10.1080/10408390903044768.
  • Karlsson, F. H.; Tremaroli, V.; Nookaew, I.; Bergström, G.; Behre, C. J.; Fagerberg, B.; Nielsen, J.; Bäckhed, F.; Gut Metagenome in European Women with Normal, Impaired and Diabetic Glucose Control. Nature. 2013, 498(7452), 99. DOI: 10.1083/nature12198.
  • Qin, J.; Li, Y.; Cai, Z.; Li, S.; Zhu, J.; Zhang, F.; Liang, S.; Zhang, W.; Guan, Y.; Shen, D.; et al. A Metagenome-Wide Association Study of Gut Microbiota in Type 2 Diabetes. Nature. 2012, 490(7418), 55–60. DOI: 10.1038/nature11450.
  • Chen, H. H.; Chen, Y. K.; Chang, H. C.; Lin, S. Y. Immunomodulatory Effects of Xylooligosaccharides. Food Sci. Technol. Res. 2012, 18(2), 195–199. DOI: 10.3136/fstr.18.195.
  • Sheu, W.-H.-H.; Lee, I.-T.; Chen, W.; Chan, Y.-C. Effects of Xylooligosaccharides in Type 2 Diabetes Mellitus. J. Nutr. Sci. Vitaminol. 2008, 54(5), 396–401.
  • Dewulf, E.M., Cani, P. D.; Claus, S. P.; Fuentes, S.; Puylaert, P. G.; Neyrinck, A. M.; Bindels, L. B.; de Vos, W. M.; Gibson, G. R.; Thissen, J. P.; et al. Insight into the Prebiotic Concept: Lessons from an Exploratory, Double Blind Intervention Study with Inulin-Type Fructans in Obese Women. Gut. 2013, 62(8):1112–1121. DOI: 10.1136/gutjnl-2012-303304.
  • Gobinath, D.; Madhu, A. N.; Prashant, G.; Srinivasan, K.; Prapulla, S. G. Beneficial Effect of Xylo-Oligosaccharides and Fructo-Oligosaccharides in Streptozotocin-Induced Diabetic Rats. Br. J. Nutr. 2010, 104(1), 40–47. DOI: 10.1017/S0007114510000243.
  • Yamashita, K.; Kawai, K.; Itakura, M. Effects of Fructo-Oligosaccharides on Blood Glucose and Serum Lipids in Diabetic Subjects. Nutr. Res. 1984, 4(6), 961–966. DOI: 10.1016/S0271-5317(84)80075-5.
  • Okazaki, M.; Koda, H.; Izumi, R.; Fujikawa, S.; Matsumoto, N. In Vitro Digestibility and in Vivo Utilization of Xylobiose. J. Jpn. Soc. Nutr. Food Sci. (Japan). 1991. DOI: 10.4327/jsnfs.44.41.
  • Luo, J.; Rizkalla, S. W.; Alamowitch, C.; Boussairi, A.; Blayo, A.; Barry, J. L.; Laffitte, A.; Guyon, F.; Bornet, F. R.; Slama, G. Chronic Consumption of Short-Chain Fructooligosaccharides by Healthy Subjects Decreased Basal Hepatic Glucose Production but Had No Effect on Insulin-Stimulated Glucose Metabolism. Am. J. Clin. Nutr. 1996, 63(6), 939–945. DOI: 10.1093/ajcn/63.6.939.
  • Liu, F.; Li, P.; Chen, M.; Luo, Y.; Prabhakar, M.; Zheng, H.; He, Y.; Qi, Q.; Long, H.; Zhang, Y.; et al. Fructooligosaccharide (FOS) and Galactooligosaccharide (GOS) Increase Bifidobacterium but Reduce Butyrate Producing Bacteria with Adverse Glycemic Metabolism in Healthy Young Population. Sci. Rep. 2017, 7(1), 11789. DOI: 10.1038/s41598-017-10722-2.
  • Dehghan, P.; Gargari, B. P.; Jafar-Abadi, M. A. Oligofructose-Enriched Inulin Improves Some Inflammatory Markers and Metabolic Endotoxemia in Women with Type 2 Diabetes Mellitus: A Randomized Controlled Clinical Trial. Nutrition. 2014, 30(4), 418–423. DOI: 10.1016/j.nut.2013.09.005.
  • Colagiuri, S.; Miller, J. J.; Edwards, R. A. Metabolic Effects of Adding Sucrose and Aspartame to the Diet of Subjects with Noninsulin-Dependent Diabetes Mellitus. Am. J. Clin. Nutr. 1989, 50(3), 474–478. DOI: 10.1093/ajcn/50.3.474.
  • Abraira, C.; Derler, J. Large Variations of Sucrose in Constant Carbohydrate Diets in Type II Diabetes. Am. J. Med. 1988, 84(2), 193–200.
  • Loghmani, E.; Rickard, K.; Washburne, L.; Vandagriff, J.; Fineberg, N.; Golden, M. Glycemic Response to Sucrose-Containing Mixed Meals in Diets of Children with Insulin-Dependent Diabetes Mellitus. J. Pediatr. 1991, 119(4), 531–537.
  • Black, R. N. A.; Spence, M.; McMahon, R. O.; Cuskelly, G. J.; Ennis, C. N.; McCance, D. R.; Young, I. S.; Bell, P. M.; Hunter, S. J. Effect of Eucaloric High-And Low-Sucrose Diets with Identical Macronutrient Profile on Insulin Resistance and Vascular Risk: A Randomized Controlled Trial. Diabetes. 2006, 55(12), 3566–3572. DOI: 10.2337/db06-0220.
  • Rickard, K. A.; Cleveland, J. L.; Loghmani, E. S.; Fineberg, N. S.; Freidenberg, G. R.; Similar Glycemic Responses to High versus Moderate Sucrose-Containing Foods in Test Meals for Adolescents with Type 1 Diabetes and Fasting Euglycemia. J. Acad. Nutr. Diet. 2001, 101(10), 1202. DOI: 10.1016/S0002-8223(01)00295-4.
  • Schwingshandl, J.; Rippel, S.; Unterluggauer, M.; Borkenstein, M. Effect of the Introduction of Dietary Sucrose on Metabolic Control in Children and Adolescents with Type I Diabetes. Acta Diabetologica. 1994, 31(4), 205–209.
  • Surat Komindr, M.;. Impact of Isomaltulose and Sucrose Based Breakfasts on Postprandial Substrate Oxidation and Glycemic/Insulinemic Changes in Type-2 Diabetes Mellitus Subjects. J. Med. Assoc. Thai. 2016, 99(3), 282–289.
  • Fei, B. B.; Ling, L.; Hua, C.; Ren, S.-Y. Effects of Soybean Oligosaccharides on Antioxidant Enzyme Activities and Insulin Resistance in Pregnant Women with Gestational Diabetes Mellitus. Food Chem. 2014, 158, 429–432. DOI: 10.1016/j.foodchem.2014.02.106.
  • Kershengolts, B.; Sydykova, L. A.; Sharoyko, V. V.; Anshakova, V. V.; Stepanova, A. V.; Varfolomeeva, N. A. Lichens’b-Oligosaccharides in the Correction of Metabolic Disorders in Type 2 Diabetes Mellitus. Wiadomosci lekarskie (Warsaw, Poland: 1960). 2015, 68(4), 480–482.
  • Calvo-Rubio, M. B. Montero, F. P.; Campos, L. S.; Barco, C. E.; Ruiz, J. A.; Tapia, G. B.; Use of Guar Gum as A Supplement to the Usual Diet in Type 2 Diabetes. A Long-Term Study. Aten. primaria. 1989, 6, 20–1, 4–5, 8–30.
  • Behall, K. M.; Scholfield, D. J.; McIvor, M. E.; Van Duyn, M. S.; Leo, T. A.; Michnowski, J. E.; Cummings, C. C.; Mendeloff, A. I. Effect of Guar Gum on Mineral Balances in NIDDM Adults. Diabetes Care. 1989, 12(5), 357–364.
  • Panlasigui, L. N.; Thompson, L. U.; Juliano, B. O.; Perez, C. M.; Jenkins, D. J. A.; Yiu, S. H. Extruded Rice Noodles: Starch Digestibility and Glycemic Response of Healthy and Diabetic Subjects with Different Habitual Diets. Nutr. Res. 1992, 12(10), 1195–1204. DOI: 10.1016/S0271-5317(05)80776-6.
  • Qi, ; Xu, C.; Yan, H.; Ma, J.; Comparison of Icodextrin and Glucose Solutions for Long Dwell Exchange in Peritoneal Dialysis: A Meta-Analysis of Randomized Controlled Trials. Peritoneal Dialysis Int. 2011, 31(2), 179–188. DOI: 10.3747/pdi.2009.00264.
  • de Moraes, T. P.; Andreoli, M. C. C.; Canziani, M. E.; Da Silva, D. R.; Caramori, J. C. T.; Ponce, D.; Cassi, H. V.; de Andrade Bastos, K.; Rio, D. R. A.; Pinto, S. W.; et al. Icodextrin Reduces Insulin Resistance in Non-Diabetic Patients Undergoing Automated Peritoneal Dialysis: Results of a Randomized Controlled Trial (STARCH). Nephrol. Dialysis Transplant. 2015, 30(11), 1905–1911. DOI: 10.1093/ndt/gfv247.
  • Takatori, Y.; Akagi, S.; Sugiyama, H.; Inoue, J.; Kojo, S.; Morinaga, H.; Nakao, K.; Wada, J.; Makino, H.; Icodextrin Increases Technique Survival Rate in Peritoneal Dialysis Patients with Diabetic Nephropathy by Improving Body Fluid Management: A Randomized Controlled Trial. Clin. J. Am. Soc. Nephrol. 2011, 6(6):1337–1344. DOI: 10.2215/CJN.10041110.
  • Regand, A.; Tosh, S. M.; Wolever, T. M. S.; Wood, P. J. Physicochemical Properties of β-glucan in Differently Processed Oat Foods Influence Glycemic Response. J. Agric. Food Chem. 2009, 57(19), 8831–8838. DOI: 10.1021/jf901271v.
  • Lu, Z.; Walker, K. Z.; Muir, J. G.; O’Dea, K. Arabinoxylan Fibre Improves Metabolic Control in People with Type II Diabetes. Eur. J. Clin. Nutr. 2004, 58(4), 621. DOI: 10.1038/sj.ejcn.1601857.
  • Ingerslev, A. K.; Theil, P. K.; Hedemann, M. S.; Lærke, H. N.; Bach Knudsen, K. E. Resistant Starch and Arabinoxylan Augment SCFA Absorption, but Affect Postprandial Glucose and Insulin Responses Differently. Br. J. Nutr. 2014, 111(9), 1564–1576. DOI: 10.1017/S0007114513004066.
  • Manhire, A.; Henry, C. L.; Hartog, M.; Heaton, K. W. Unrefined Carbohydrate and Dietary Fibre in Treatment of Diabetes Mellitus. J. Human Nutr. 1981, 35(2), 99–101.
  • Simpson, R.; McDonald, J.; Wahlqvist, M.; Balazs, N.; Dunlop, M. Effect of Naturally Occurring Dietary Fibre in Western Foods on Blood Glucose. Aust. N.Z. j. med.. 1981, 11(4), 484–487.
  • Jenkins, D. J.; Leeds, A. R.; Gassull, M. A.; Cochet, B.; Alberti, G. M. Decrease in Postprandial Insulin and Glucose Concentrations by Guar and Pectin. Ann. Internal Med. 1977, 86(1), 20–23.
  • Jenkins, D.; Dietary Fiber and Other Antinutrients: Metabolic Effects and Therapeutic Implications. Nutr. Pharmacol.. 1981.
  • Holt, S.; Carter, D.; Tothill, P.; Heading, R.; Prescott, L. Effect of Gel Fibre on Gastric Emptying and Absorption of Glucose and Paracetamol. Lancet. 1979, 313(8117), 636–639. DOI: 10.1016/S0140-6736(79)91079-1.
  • Ebeling, P.; Yki-Järvinen, H.; Aro, A.; Helve, E.; Sinisalo, M.; Koivisto, V. A. Glucose and Lipid Metabolism and Insulin Sensitivity in Type 1 Diabetes: The Effect of Guar Gum. Am. J. Clin. Nutr. 1988, 48(1), 98–103. DOI: 10.1093/ajcn/48.1.98.
  • Dall’Alba, V.; Silva, F. M.; Antonio, J. P.; Steemburgo, T.; Royer, C. P.; Almeida, J. C.; Gross, J. L.; Azevedo, M. J. Improvement of the Metabolic Syndrome Profile by Soluble Fibre–Guar Gum–In Patients with Type 2 Diabetes: A Randomised Clinical Trial. Br. J. Nutr. 2013, 110(9), 1601–1610. DOI: 10.1017/S0007114513001025.
  • Au, M. M.; Goff, H.D.; Kisch, J.A.; Coulson, A.; Wright, A. J.; Effects of Soy-Soluble Fiber and Flaxseed Gum on the Glycemic and Insulinemic Responses to Glucose Solutions and Dairy Products in Healthy Adult Males. J. Am. Coll. Nutr. 2013, 32(2), 98–100. DOI: 10.1080/07315724.2013.767579.
  • Niemi, M.; Keinänen-Kiukaanniemi, S.; Salmela, P. Long-Term Effects of Guar Gum and Microcrystalline Cellulose on Glycaemic Control and Serum Lipids in Type 2 Diabetes. Eur. J. Clin. Pharmacol. 1988, 34(4), 427–429.
  • Cui, W.; Mazza, G. Physicochemical Characteristics of Flaxseed Gum. Food Res. Int. 1996, 29(3–4), 397–402. DOI: 10.1016/0963-9969(96)00005-1.
  • Ble-Castillo, J.; Jimenez-Dominguez, G.; Juarez-Rojop, I. E.; Tovilla-Zarate, C. A.; Aparicio-Trapala, M. A.; Olvera-Hernandez, V.; Aguilar-Barojas, S.; Garcia-Vazquez, C.; Diaz-Zagoya, J. C. Effects of Acute Ingestion of Native Banana Starch on Postprandial Glucose Metabolism in Obese and Normal-Weight Subjects. Atherosclerosis. 2014, 235(2), e109. DOI: 10.1016/j.atherosclerosis.2014.05.295.
  • Kaufman, F. R.; Halvorson, M.; Kaufman, N. D. A Randomized, Blinded Trial of Uncooked Cornstarch to Diminish Nocturnal Hypoglycemia at Diabetes Camp. Diabetes Res. Clin. Pract. 1995, 30(3), 205–209.
  • Lin, C.-H.; Chang, D-M.; Wu, D-J.; Peng, H-Y.; Chuang, L-M.; Assessment of Blood Glucose Regulation and Safety of Resistant Starch Formula-Based Diet in Healthy Normal and Subjects with Type 2 Diabetes. Medicine 2015, 94(33). doi:10.1097/MD.0000000000000874
  • Tessari, P.; Lante, A. A Multifunctional Bread Rich in Beta Glucans and Low in Starch Improves Metabolic Control in Type 2 Diabetes: A Controlled Trial. Nutrients. 2017, 9(3), 297. DOI: 10.3390/nu9030297.
  • Crouse, J. R.; Gerson, C. D.; DeCarli, L. M.; Lieber, C. S. Role of Acetate in the Reduction of Plasma Free Fatty Acids Produced by Ethanol in Man. J. Lipid Res. 1968, 9(4), 509–512.
  • Akanji, A.; Bruce, M.; Frayn, K. Effect of Acetate Infusion on Energy Expenditure and Substrate Oxidation Rates in Non-Diabetic and Diabetic Subjects. Eur. J. Clin. Nutr. 1989, 43(2), 107–115.
  • Robertson, M.; Currie, J. M.; Morgan, L. M.; Jewell, D. P.; Frayn, K. N. Prior Short-Term Consumption of Resistant Starch Enhances Postprandial Insulin Sensitivity in Healthy Subjects. Diabetologia. 2003, 46(5), 659–665. DOI: 10.1007/s00125-003-1081-0.
  • Giacco, R.; Clemente, G.; Brighenti, F.; Mancini, M.; D'avanzo, A.; Coppola, S.; Ruffa, G.; Lasorella, G.; Rivieccio, A. M.; Rivellese, A. A.; et al. Metabolic Effects of Resistant Starch in Patients with Type 2 Diabetes. Diabetes Nutri. Metab. 1998, 11(6), 330–335.
  • Chang, D.; Chang, C.; Chuang, L. Continuous Glucose Monitoring in Finding Subtle Changes in Glycemic Regulation: Effect of High Fiber Meal on Glucose Variability. Infusystems Asia. 2011, 6, 5–8.
  • Aliasgharzadeh, A.; Dehghan, P.; Gargari, B. P.; Asghari-Jafarabadi, M. Resistant Dextrin, as a Prebiotic, Improves Insulin Resistance and Inflammation in Women with Type 2 Diabetes: A Randomised Controlled Clinical Trial. Br. J. Nutr. 2015, 113(2), 321–330. DOI: 10.1017/S0007114514003675.
  • Panahi, S.; Ezatagha, A.; Temelli, F.; Vasanthan, T.; Vuksan, V. β-Glucan from Two Sources of Oat Concentrates Affect Postprandial Glycemia in Relation to the Level of Viscosity. J. Am. Coll. Nutr. 2007, 26(6), 639–644.
  • Vuksan, V.; Jenkins, D.; Spadafora, P.; Sievenpiper, J. L.; Owen, R.; Vidgen, E.; Brighenti, F.; Josse, R.; Leiter, L. A.; Bruce-Thompson, C.; Konjac-Mannan (Glucomannan) Improves Glycemia and Other Associated Risk Factors for Coronary Heart Disease in Type 2 Diabetes. A Randomized Controlled Metabolic Trial. Diabetes Care. 1999, 22(6), 913–919. DOI: 10.2337/diacare.22.6.913.
  • Huang, C.; Zhang, M. Y.; Peng, S. S.; Hong, J. R.; Wang, X.; Jiang, H. J.; Zhang, F. L.; Bai, Y. X.; Liang, J. Z.; Yu, Y. R. Effect of Konjac Food on Blood Glucose Level in Patients with Diabetes. Biomed. Environ. Sci. 1990, 3(2), 123–131.
  • Yoshida, M.; Vanstone, C. A.; Parsons, W. D.; Zawistowski, J.; Jones, P. J. H. Effect of Plant Sterols and Glucomannan on Lipids in Individuals with and without Type II Diabetes. Eur. J. Clin. Nutr. 2006, 60(4), 529. DOI: 10.1038/sj.ejcn.1602347.
  • Zhu, F.;. Structure, Properties, and Applications of Aroid Starch. Food Hydrocolloids. 2016, 52, 378–392. DOI: 10.1016/j.foodhyd.2015.06.023.
  • Cai, H.; Liu, F.; Zuo, P.; Huang, G.; Song, Z.; Wang, T.; Lu, H.; Guo, F.; Han, C.; Sun, G. Practical Application of Antidiabetic Efficacy of Lycium Barbarum Polysaccharide in Patients with Type 2 Diabetes. Med. Chem. 2015, 11(4), 383–390.
  • Amado, R.; Neukom, H. Minor Constituents of Wheat Flour: The Pentosans. Progress in biotechnology, 1985.
  • Henry, R. J.;. A Comparison of the Non‐Starch Carbohydrates in Cereal Grains. J. Sci. Food Agric. 1985, 36(12), 1243–1253. DOI: 10.1002/(ISSN)1097-0010.
  • Jenkins, D.; Wolever, T. M.; Leeds, A. R.; Gassull, M. A.; Haisman, P.; Dilawari, J.; Goff, D. V.; Metz, G. L.; Alberti, K. G. Dietary Fibres, Fibre Analogues, and Glucose Tolerance: Importance of Viscosity. Br. Med. J. 1978, 1(6124), 1392–1394.
  • Leclere, C. J.; Champ, M.; Boillot, J.; Guille, G.; Lecannu, G.; Molis, C.; Bornet, F.; Krempf, M.; Delort-Laval, J.; Galmiche, J. P. Role of Viscous Guar Gums in Lowering the Glycemic Response after a Solid Meal. Am. J. Clin. Nutr. 1994, 59(4), 914–921. DOI: 10.1093/ajcn/59.4.914.
  • Cherbut, C.; Bruley Des Varannes, S.; Schnee, M.; Rival, M.; Galmiche, J. P.; Delort-Laval, J. Involvement of Small Intestinal Motility in Blood Glucose Response to Dietary Fibre in Man. Br. J. Nutr. 1994, 71(5), 675–685.
  • Van Duyn, M.; Leo, T. A.; McIvor, M. E.; Behall, K. M.; Michnowski, J. E.; Mendeloff, A. I. Nutritional Risk of High-Carbohydrate, Guar Gum Dietary Supplementation in Non-Insulin-Dependent Diabetes Mellitus. Diabetes Care. 1986, 9(5), 497–503.
  • Butt, M. S.; Shahzadi, N.; Sharif, M. K.; Nasir, M. Guar Gum: A Miracle Therapy for Hypercholesterolemia, Hyperglycemia and Obesity. Crit. Rev. Food Sci. Nutr. 2007, 47(4), 389–396. DOI: 10.1080/10408390600846267.
  • Kirsten, R.; Heintz, B.; Nelson, K.; Oremek, G.; Speck, U. Influence of Two Guar Preparations on Glycosylated Hemoglobin, Total Cholesterol and Triglycerides in Patients with Diabetes Mellitus. Int. J. Clin. Pharmacol. Ther. Toxicol. 1992, 30(12), 582–586.
  • Foundation, B. N. Complex Carbohydrates in Food: The Report of the British Nutrition Foundation’s Task Force. 1990: Chapman and Hall.
  • Dainty, S. A.; Klingel, S. L.; Pilkey, S. E.; McDonald, E.; McKeown, B.; Emes, M. J.; Duncan, A. M. Resistant Starch Bagels Reduce Fasting and Postprandial Insulin in Adults at Risk of Type 2 Diabetes–3. J. Nutr. 2016, 146(11), 2252–2259. DOI: 10.3945/jn.116.239418.
  • Lin, M.-H.A.; Wu, M-C.; Lu S, Lin, J.; Glycemic Index, Glycemic Load and Insulinemic Index of Chinese Starchy Foods. World J. Gastroenterol. 2010, 16(39), 4973. DOI: 10.3748/wjg.v16.i39.4973.
  • Rodrigues, C. S.; de Oliveira Dutra, J.; Silva, H. Effect of a Rice Bran Fiber Diet on Serum Glucose Levels of Diabetic Patients in Brazil. Archivos latinoamericanos de nutricion. 2005, 55(1), 23–27.
  • Volek, J. S.; Fernandez, M. L.; Feinman, R. D.; Phinney, S. D. Dietary Carbohydrate Restriction Induces a Unique Metabolic State Positively Affecting Atherogenic Dyslipidemia, Fatty Acid Partitioning, and Metabolic Syndrome. Prog. Lipid Res. 2008, 47(5), 307–318. DOI: 10.1016/j.plipres.2008.02.003.
  • Major, C. A.; Henry, M. J.; de Veciana, M.; Morgan, M. A.; The Effects of Carbohydrate Restriction in Patients with Diet-Controlled Gestational Diabetes. Obstetrics Gynecol.. 1998, 91(4), 600–604. DOI: 10.1016/S0029-7844(98)00003-9.
  • Westman, E. C.; Yancy, W. S.; Mavropoulos, J. C.; Marquart, M.; McDuffie, J. R. The Effect of a Low-Carbohydrate, Ketogenic Diet versus a Low-Glycemic Index Diet on Glycemic Control in Type 2 Diabetes Mellitus. Nutr. Metab. 2008, 5(1), 36. DOI: 10.1186/1743-7075-5-36.
  • De Stoppelaar, J.; Van Houte, J.; Dirks, O. B. The Effect of Carbohydrate Restriction on the Presence of Streptococcus Mutans, Streptococcus Sanguis and Iodophilic Polysaccharide-Producing Bacteria in Human Dental Plaque. Caries Res. 1970, 4(2), 114–123. DOI: 10.1159/000259633.
  • Daly, M. E.; Paisey, R.; Paisey, R.; Millward, B. A.; Eccles, C.; Williams, K.; Hammersley, S.; MacLeod, K. M.; Gale T. J.; Short‐Term Effects of Severe Dietary Carbohydrate‐Restriction Advice in Type 2 Diabetes—A Randomized Controlled Trial. Diabetic Med.. 2006, 23(1), 15–20. DOI: 10.1111/j.1464-5491.2005.01760.x.
  • Feinman, R. D.; Pogozelski, W. K.; Astrup, A.; Bernstein, R. K.; Fine, E. J.; Westman, E. C.; Accurso, A.; Frassetto, L.; Gower, B. A.; McFarlane, S. I.; et al. Dietary Carbohydrate Restriction as the First Approach in Diabetes Management: Critical Review and Evidence Base. Nutrition. 2015, 31(1), 1–13. DOI: 10.1016/j.nut.2014.06.011.
  • Behera, S. S.; Ray, R. C. Konjac Glucomannan, a Promising Polysaccharide of Amorphophallus Konjac K Koch in Health Care. Int. J. Biol. Macromol. 2016, 92, 942–956. DOI: 10.1016/j.ijbiomac.2016.07.098.
  • Alvani, K.; Qi, X.; Tester, R. F. Use of Carbohydrates, Including Dextrins, for Oral Delivery. Starch‐Stärke. 2011, 63(7), 424–431. DOI: 10.1002/star.v63.7.
  • Chan, K.; Shaw, D.; Simmonds, M. S. J.; Leon, C. J.; Xu, Q.; Lu, A.; Sutherland, I.; Ignatova, S.; Zhu, Y.-P.; Verpoorte, R.; et al. Good Practice in Reviewing and Publishing Studies on Herbal Medicine, with Special Emphasis on Traditional Chinese Medicine and Chinese Materia Medica. J. Ethnopharmacol. 2012, 140(3), 469–475. DOI: 10.1016/j.jep.2012.01.038.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.