573
Views
19
CrossRef citations to date
0
Altmetric
Reviews

Efficient Plant Foods Processing Based on Infrared Heating

, , , &

References

  • Ramaswamy, R.; Krishnamurthy, K.; Jun, S. Microbial Decontamination of Food by Infrared (IR) Heating. In Microbial Decontamination in the Food Industry, 1st ed.; Demirci, A., Ngadi, M.O., Eds.; Woodhead Publishing: England, 2012; pp 450–471.
  • Hebbar, H. U.; Rastogi, N. K. Mass Transfer during Infrared Drying of Cashew Kernel. J. Food Eng. 2001, 47(1), 1–5. DOI: 10.1016/S0260-8774(00)00088-1.
  • Rastogi, N. K.;. Infrared Heating of Foods and Its Combination with Electron Beam Processing. In Electron Beam Pasteurization and Complementary Food Processing Technologies, 1st ed.; Pillai, S.D., Shayanfar, S., Eds.; Woodhead Publishing: England, 2015; pp 61–82.
  • Qi, L. L.; Zhang, M.; Mujumdar, A. S.; Meng, X. Y.; Chen, H. Z. Comparison of Drying Characteristics and Quality of Shiitake Mushrooms (Lentinus Edodes) Using Different Drying Methods. Drying Technol. 2014, 32(15), 1751–1761. DOI: 10.1080/07373937.2014.929588.
  • Xu, Y.; Zhang, M.; Tu, D.; Sun, J.; Zhou, L.; Mujumdar, A. S. A Two‐Stage Convective Air and Vacuum Freeze‐Drying Technique for Bamboo Shoots. Int. J. Food Sci. Technol. 2005, 40(6), 589–595. DOI: 10.1111/j.1365-2621.2005.00956.x.
  • Zhang, M.; Chen, H. Z.; Mujumdar, A. S.; Tang, J.; Miao, S.; Wang, Y. Recent Developments in High-Quality Drying of Vegetables, Fruits, and Aquatic Products. Crit. Rev. Food Sci. Nutr. 2017, 57(6), 1239–1255. DOI: 10.1080/10408398.2014.979280.
  • Navin, K. R.;. Recent Trends and Developments in Infrared Heating in Food Processing. Crit. Rev. Food Sci. Nutr. 2012, 52(9), 737–760. DOI: 10.1080/10408398.2010.508138.
  • Skjöldebrand, C.;. Infrared Heating. In Thermal Technologies in Food Processing, 1st ed.; Richardson, P., Ed.; Woodhead Publishing: England, 2001; pp 208–228.
  • Krishnamurthy, K.; Khurana, H. K.; Jun, S.; Irudayaraj, J.; Demirci, A. Infrared Heating in Food Processing: An Overview. Compr. Rev. Food Sci. Food Saf. 2010, 7(1), 2–13. DOI: 10.1080/07373937.2014.951124.
  • Sakai, N.; Hanzawa, T. Applications and Advances in Far-Infrared Heating in Japan. Trends Food Sci. Technol. 1994, 5(11), 357–362. DOI: 10.1016/0924-2244(94)90213-5.
  • Rosenthal, I.;. Electromagnetic Radiations in Food Science; Springer-Verlag: Berlin, Heidelberg, 1992.
  • Sandu, C.;. Infrared Radiative Drying in Food Engineering: A Process Analysis. Biotechnol. Progr. 1986, 2(3), 109–119. DOI: 10.1002/btpr.5420020305.
  • Hebbar, H. U.; Vishwanathan, K. H.; Ramesh, M. N. Development of Combined Infrared and Hot Air Dryer for Vegetables. J. Food Eng. 2004, 65(4), 557–563. DOI: 10.1016/j.jfoodeng.2004.02.020.
  • Pawar, S. B.; Pratape, V. M. Fundamentals of Infrared Heating and Its Application in Drying of Food Materials: A Review. J. Food Process. Eng. 2015, 40(1), 1745–4530. DOI: 10.1111/jfpe.12308.
  • Pan, Z.; Atungulu, G. G.; Li, X. Infrared Heating. Res. Eng. Technol. Sustainable World. 2013, 20(6), 461–474. DOI: 10.1016/B978-0-12-411479-1.00025-5.
  • Wang, Y.; Zhang, M.; Mujumdar, A. S.; Chen, H. Drying and Quality Characteristics of Shredded Squid in an Infrared-Assisted Convective Dryer. Drying Technol. 1828–1839, 2014(32). DOI: 10.1080/07373937.2014.952379.
  • Pan, Z.; Li, X.; Khir, R.; El-Mashad, H. M.; Atungulu, G. G.; Mchugh, T. H. A Pilot Scale Electrical Infrared Dry-Peeling System for Tomatoes: Design and Performance Evaluation. Biosyst. Eng. 2015, 137, 1–8. DOI: 10.1016/j.biosystemseng.2015.06.003.
  • Sumnu, G.; Turabi, E.; Oztop, M. Drying of Carrots in Microwave and Halogen Lamp-Microwave Combination Ovens. LWT-Food Sci. Technol. 2005, 38(5), 549–553. DOI: 10.1016/j.lwt.2004.07.006.
  • Gabel, M. M.; Pan, Z.; Ksp, A.; Harris, L. J.; Thompson, J. F. Catalytic Infrared Dehydration of Onions. J. Food Sci. 2010, 71(9), E351–E357. DOI: 10.1111/j.1750-3841.2006.00170.x.
  • Shi, J.; Pan, Z.; Mchugh, T. H.; Wood, D.; Hirschberg, E.; Olson, D. Drying and Quality Characteristics of Fresh and Sugar-Infused Blueberries Dried with Infrared Radiation Heating. LWT-Food Sci. Technol. 2008, 41(10), 1962–1972. DOI: 10.1016/j.lwt.2008.01.003.
  • Li, X.; Pan, Z.; Atungulu, G. G.; Zheng, X.; Wood, D.; Delwiche, M. Peeling of Tomatoes Using Novel Infrared Radiation Heating Technology. Innovative Food Sci. Emerg. Technol. 2014, 21(4), 123–130. DOI: 10.1016/j.ifset.2013.10.011.
  • Zhu, Y.; Pan, Z.; McHugh, T. H.; Barrett, D. M. Processing and Quality Characteristics of Apple Slices under Simultaneous Infrared Dry-Blanching and Dehydration with Continuous Heating. J. Food Eng. 2010, 97(1), 8–16. DOI: 10.1016/j.jfoodeng.2009.07.021.
  • Brandl, M. T.; Pan, Z.; Huynh, S.; Zhu, Y.; Mchugh, T. H. Reduction of Salmonella Enteritidis Population Sizes on Almond Kernels with Infrared Heat. J. Food Prot. 2008, 71(5), 897. DOI: 10.4315/0362-028X-71.5.897.
  • Nowak, D.; Lewicki, P. P. Infrared Drying of Apple Slices. Innovative Food Sci. Emerg. Technol. 2004, 5(3), 353–360. DOI: 10.1016/j.ifset.2004.03.003.
  • Chen, Q.; Bi, J.; Wu, X.; Yi, J.; Zhou, L.; Zhou, Y. Drying Kinetics and Quality Attributes of Jujube (Zizyphus Jujuba Miller) Slices Dried by Hot-Air and Short- and Medium-Wave Infrared Radiation. LWT-Food Sci. Technol. 2015, 64(2), 759–766. DOI: 10.1016/j.lwt.2015.06.071.
  • Xu, B.; Zhang, M.; Bhandari, B. Temperature and Quality Characteristics of Infrared Radiation-Dried Kelp at Different Peak Wavelengths. Drying Technol. 2014, 32(4), 437–446. DOI: 10.1080/07373937.2013.835318.
  • Wanyo, P.; Siriamornpun, S.; Meeso, N. Improvement of Quality and Antioxidant Properties of Dried Mulberry Leaves with Combined Far-Infrared Radiation and Air Convection in Thai Tea Process. Food Bioprod. Process. 2011, 89(1), 22–30. DOI: 10.1016/j.fbp.2010.03.005.
  • Lee, S. H.; Jeon, Y. J. Effects of Far Infrared Radiation Drying on Antioxidant and Anticoagulant Activities of Ecklonia Cava Extracts. J. Korean Soc. Appl. Biol. Chem. 2010, 53(2), 175–183. DOI: 10.3839/jksabc.2010.029.
  • Erdoğdu, S. B.; Ekiz, H. İ. Far Infrared and Ultraviolet Radiation as a Combined Method for Surface Pasteurization of Black Pepper Seeds. J. Food Eng. 2013, 116(2), 310–314. DOI: 10.1016/j.jfoodeng.2012.12.026.
  • Dondee, S.; Meeso, N.; Soponronnarit, S.; Siriamornpun, S. Reducing Cracking and Breakage of Soybean Grains under Combined Near-Infrared Radiation and Fluidized-Bed Drying. J. Food Eng. 2011, 104(1), 6–13. DOI: 10.1016/j.jfoodeng.2010.11.018.
  • Kocabiyik, H.; Yilmaz, N.; Tuncel, N. B.; Sumer, S. K.; Buyukcan, M. B.; Kocabiyik, H. The Effects of Middle Infrared Radiation Intensity on the Quality of Dried Tomato Products. Int. J. Food Sci. Technol. 2014, 49(3), 703–710. DOI: 10.1111/ijfs.12353.
  • Wang, B.; Venkitasamy, C.; Zhang, F.; Zhao, L.; Khir, R.; Pan, Z. Feasibility of Jujube Peeling Using Novel Infrared Radiation Heating Technology. LWT-Food Sci. Technol. 2016, 69, 458–467. DOI: 10.1016/j.lwt.2016.01.077.
  • Mihindukulasuriya, S. D.; Jayasuriya, H. P. Drying of Chilli in a Combined Infrared and Hot Air Rotary Dryer. J. Food Sci. Technol. 2015, 52(8), 4895. DOI: 10.1007/s13197-014-1546-9.
  • Hebbar, U. H.; Ramesh, M. N. Optimisation of Processing Conditions for Infrared Drying of Cashew Kernels with Testa. J. Sci. Food Agric. 2005, 85(5), 865–871. DOI: 10.1002/jsfa.2045.
  • Erdogdu, S. B.; Eliasson, L.; Erdogdu, F.; Isaksson, S.; Ahrné, L. Experimental Determination of Penetration Depths of Various Spice Commodities (Black Pepper Seeds, Paprika Powder and Oregano Leaves) under Infrared Radiation. J. Food Eng. 2015, 161, 75–81. DOI: 10.1016/j.jfoodeng.2015.03.036.
  • Staack, N.; Ahrne, L.; Borch, E.; Knorr, D. Effect of Infrared Heating on Quality and Microbial Decontamination in Paprika Powder. J. Food Eng. 2008, 86(1), 17–24. DOI: 10.1016/j.jfoodeng.2007.09.004.
  • Fellows, P. J.;. Dielectric, Ohmic and Infrared Heating. In Food Processing Technology, 3rd ed.; Fellows, P.J., Ed.; Woodhead Publishing: England, 2009; pp 581–609.
  • Yang, J.; Gokhan, B.; Pan, Z.; Mariat, B.; Tarah, M. H.; Hua, W. Infrared Heating for Dry-Roasting and Pasteurization of Almonds. J. Food Eng. 2010, 101(3), 273–280. DOI: 10.1016/j.jfoodeng.2010.07.007.
  • Nattriya, S.; Noomhorm, A. Influence of Combined Hot Air Impingement and Infrared Drying on Drying Kinetics and Physical Properties of Potato Chips. Drying Technol. 2013, 31(1), 24–31. DOI: 10.1080/07373937.2012.711792.
  • Łechtańska, J. M.; Szadzińska, J.; Kowalski, S. J. Microwave- and Infrared-Assisted Convective Drying of Green Pepper: Quality and Energy Considerations. Chem. Eng. Process. Process. Intensif. 2015, 98, 155–164. DOI: 10.1016/j.cep.2015.10.001.
  • Song, X.; Hu, H.; Zhang, B. Drying Characteristics of Chinese Yam (Dioscorea Opposita Thunb.) by Far-Infrared Radiation and Heat Pump. J. Saudi Soc. Agric. Sci. in press. DOI: 10.1016/j.jssas.2016.05.008.
  • Nimmol, C.; Devahastin, S.; Swasdisevi, T.; Soponronnarit, S. Drying of Banana Slices using Combined Low-Pressure Superheated Steam and Far-Infrared Radiation. J. Food Eng. 2007, 81(3), 624–633. DOI: 10.1016/j.jfoodeng.2006.12.022.
  • Huang, J.; Zhang, M. Effect of Three Drying Methods on the Drying Characteristics and Quality of Okra. Drying Technol. 2016, 34(8), 900–911. DOI: 10.1080/07373937.2015.1086367.
  • Pan, Z.; Shih, C.; Mchugh, T. H.; Hirschberg, E. Study of Banana Dehydration using Sequential Infrared Radiation Heating and Freeze-Drying. LWT-Food Sci. Technol. 2008, 41(10), 1944–1951. DOI: 10.1016/j.lwt.2008.01.019.
  • Wang, H. C.; Zhang, M.; Adhikari, B. Drying of Shiitake Mushroom by Combining Freeze-Drying and Mid-Infrared Radiation. Food Bioprod. Process. 2014, 94(8), 507–517. DOI: 10.1016/J.FBP.2014.07.008.
  • Shih, C.; Pan, Z.; Mchugh, T.; Wood, D.; Hirschberg, E. Sequential Infrared Radiation and Freeze-Drying Method for Producing Crispy Strawberries. Trans. ASABE. 2008, 51(1), 205–216. DOI: 10.13031/2013.24205.
  • Wang, L.; Xu, B.; Wei, B.; Zeng, R. Low Frequency Ultrasound Pretreatment of Carrot Slices: Effect on the Moisture Migration and Quality Attributes by Intermediate-Wave Infrared Radiation Drying. Ultrason. Sonochem. 2018, 40(8), 619–628. DOI: 10.1016/j.ultsonch.2017.08.005.
  • Harishchandra, V. K.; Umesh, H. H.; Mallikarjuna, R. K. S. Hot Air Assisted Infrared Drying of Vegetables and its Quality. Food Sci. Technol. Res. 2010, 16(5), 381–388. DOI: 10.3136/fstr.16.381.
  • Gao, Y.; Xie, T.; Li, Z.; Hong, B.; Lu, S. Advance on Applications and Development of Infrared Heating Technology in Food Processing. Food Mach. 2013, 29(2), 218–222. DOI: 10.3969/j.issn.1003-5788.2013.02.053.
  • Zhang, M.; Chen, H.; Mujumdar, A. S.; Zhong, Q.; Sun, J. Recent Developments in High-Quality Drying with Energy-Saving Characteristic for Fresh Foods. Drying Technol. 2015, 33(13), 1590–1600. DOI: 10.1080/07373937.2015.1012267.
  • Wu, B.; Pan, Z.; Qu, W.; Wang, B.; Wang, J.; Ma, H. Effect of Simultaneous Infrared Dry-Blanching and Dehydration on Quality Characteristics of Carrot Slices. LWT-Food Sci. Technol. 2014, 57(1), 90–98. DOI: 10.1016/j.lwt.2013.11.035.
  • Lyu, J.; Chen, Q.; Bi, J.; Zeng, M.; Wu, X. Drying Characteristics and Quality of Kiwifruit Slices With/Without Osmotic Dehydration under Short- and Medium-Wave Infrared Radiation Drying. Int. J. Food Eng. 2017, 13(8), 1–15. DOI: 10.1515/ijfe-2016-0391.
  • El-Mesery, H. S.; Mwithiga, G. Performance of a Convective, Infrared and Combined Infrared- Convective Heated Conveyor-Belt Dryer. J. Food Sci. Technol. 2015, 52(5), 2721–2730. DOI: 10.1007/s13197-014-1347-1.
  • Doymaz, I.;. Infrared Drying of Sweet Potato (Ipomoea Batatas L.) Slices. J. Food Sci. Technol. 2012, 49(6), 760–766. DOI: 10.1007/s13197-010-0217-8.
  • Öztürk, S.; Şakıyan, Ö.; Özlem, A. Y. Dielectric Properties and Microwave and Infrared-Microwave Combination Drying Characteristics of Banana and Kiwifruit. J. Food Process. Eng. 2017, 40(3), 1–8. DOI: 10.1111/jfpe.12502.
  • Wang, J.; Yang, X. H.; Mujumdar, A. S.; Wang, D.; Zhao, J. H.; Fang, X. M.; Zhang, Q.; Xie, L.; Gao, Z. J.; Xiao, H. W. Effects of Various Blanching Methods on Weight Loss, Enzymes Inactivation, Phytochemical Contents, Antioxidant Capacity, Ultrastructure and Drying Kinetics of Red Bell Pepper (Capsicum Annuum L.). LWT-Food Sci. Technol. 2017, 77, 337–347. DOI: 10.1016/j.lwt.2016.11.070.
  • Xie, L.; Mujumdar, A. S.; Zhang, Q.; Wang, J.; Liu, S.; Deng, L.; Wang, D.; Xiao, H. W.; Liu, Y. H.; Gao, Z. J. Pulsed Vacuum Drying of Wolfberry: Effects of Infrared Radiation Heating and Electronic Panel Contact Heating Methods on Drying Kinetics, Color Profile, and Volatile Compounds. Drying Technol. 2017, 35(11), 1312–1326. DOI: 10.1080/07373937.2017.1319854.
  • Léonard, A.; Blacher, S.; Nimmol, C.; Devahastin, S. Effect of Far-Infrared Radiation Assisted Drying on Microstructure of Banana Slices: An Illustrative Use of X-Ray Microtomography in Microstructural Evaluation of a Food Product. J. Food Eng. 2008, 85(1), 154–162. DOI: 10.1016/j.jfoodeng.2007.07.017.
  • Wang, H.; Zhang, M.; Mujumdar, A. S. Comparison of Three New Drying Methods for Drying Characteristics and Quality of Shiitake Mushroom (Lentinus Edodes). Drying Technol. 2014, 32(15), 1791–1802. DOI: 10.1080/07373937.2014.947426.
  • Huang, L. L.; Zhang, M. Trends in Development of Dried Vegetable Products as Snacks. Drying Technol. 2012, 30(5), 448–461. DOI: 10.1080/07373937.2011.644648.
  • Mothibe, K. J.; Zhang, M.; Nsor-Atindana, J.; Wang, Y. C. Use of Ultrasound Pretreatment in Drying of Fruits: Drying Rates, Quality Attributes, and Shelf Life Extension. Drying Technol. 2011, 29(14), 1611–1621. DOI: 10.1080/07373937.2011.602576.
  • Gong, Z.; Zhang, M.; Mujumdar, A. S.; Sun, J. Spray Drying and Agglomeration of Instant Bayberry Powder. Drying Technol. 2007, 26(1), 116–121. DOI: 10.1080/07373930701781751.
  • Song, X.; Zhang, M.; Mujumdar, A. S.; Fan, L. Drying Characteristics and Kinetics of Vacuum Microwave–Dried Potato Slices. Drying Technol. 2009, 27(9), 969–974. DOI: 10.1080/07373930902902099.
  • Wang, R.; Zhang, M.; Mujumdar, A. S.; Sun, J. C. Microwave Freeze–Drying Characteristics and Sensory Quality of Instant Vegetable Soup. Drying Technol. 2009, 27(9), 962–968. DOI: 10.1080/07373930902902040.
  • Law, C. L.; Chen, H. H. H.; Mujumdar, A. S. Food Technologies: Drying. Encycl. Food Saf. 2014, 3, 156–167. DOI: 10.1016/B978-0-12-378612-8.00268-7.
  • Aktaş, M.; Şevik, S.; Aktekeli, B. Development of Heat Pump and Infrared-Convective Dryer and Performance Analysis for Stale Bread Drying. Energy Convers. Manage. 2016, 113, 82–94. DOI: 10.1016/j.enconman.2016.01.028.
  • Roknul, A. S. M.; Zhang, M.; Mujumdar, A. S.; Wang, Y. A Comparative Study of Four Drying Methods on Drying Time and Quality Characteristics of Stem Lettuce Slices (Lactuca Sativa L.). Drying Technol. 2014, 32(6), 657–666. DOI: 10.1080/07373937.2013.850435.
  • Younis, M.; Abdelkarim, D.; El-Abdein, A. Z. Kinetics and Mathematical Modeling of Infrared Thin-Layer Drying of Garlic Slices. Saudi J. Biol. Sci. 2018, 25(2), 332–338. DOI: 10.1016/j.sjbs.2017.06.011.
  • Mortaza, A.; Mohammadhossien, K.; Akbar, A. Performance Analysis of Drying of Carrot Slices in a Semi-Industrial Continuous Band Dryer. J. Food Eng. 2009, 91(1), 99–108. DOI: 10.1016/j.jfoodeng.2008.08.020.
  • Celma, A. R.; Cuadros, F.; López-Rodríguez, F. Characterisation of Industrial Tomato By-Products from Infrared Drying Process. Food Bioprod. Process. 2009, 87(4), 282–291. DOI: 10.1016/j.fbp.2008.12.003.
  • Celma, A. R.; Rojas, S.; Lopez-Rodríguez, F. Mathematical Modelling of Thin-Layer Infrared Drying of Wet Olive Husk. Chem. Eng. Process. Process. Intensif.. 2008, 47(9–10), 1810–1818. DOI: 10.1016/j.cep.2007.10.003.
  • Torki-Harchegani, M.; Ghanbarian, D.; Maghsoodi, V.; Moheb, A. Infrared Thin Layer Drying of Saffron (Crocus Sativus L.) Stigmas: Mass Transfer Parameters and Quality Assessment. Chin. J. Chem. Eng. 2017, 25(4), 426–432. DOI: 10.1016/j.cjche.2016.09.005.
  • Ashtiani, S. H. M.; Salarikia, A.; Golzarian, M. R. Analyzing Drying Characteristics and Modeling of Thin Layers of Peppermint Leaves under Hot-Air and Infrared Treatments. Information Process. Agric. 2017, 4(2), 128–139. DOI: 10.1016/j.inpa.2017.03.001.
  • Liu, Z.; Zhang, M.; Fang, Z.; Bhandari, B.; Yang, Z. Dehydration of Asparagus Cookies by Combined Vacuum Infrared Radiation and Pulse-Spouted Microwave Vacuum Drying. Drying Technol. 2017, 35(14), 1291–1301. DOI: 10.1080/07373937.2017.1330755.
  • Duan, X.; Zhang, M.; Mujumdar, A. S. Study on a Combination Drying Technique of Sea Cucumber. Drying Technol. 2007, 25(12), 2011–2019. DOI: 10.1080/07373930701728497.
  • Wojdyło, A.; Figiel, A.; Oszmiański, J. Effect of Drying Methods with the Application of Vacuum Microwaves on the Bioactive Compounds, Color, and Antioxidant Activity of Strawberry Fruits. J. Agric. Food Chem. 2009, 57(4), 1337–1343. DOI: 10.1021/jf802507j.
  • Adak, N.; Heybeli, N.; Ertekin, C. Infrared Drying of Strawberry. Food Chem. 2017, 219, 109–116. DOI: 10.1016/j.foodchem.2016.09.103.
  • Özdemir, M. B.; Aktaş, M.; Şevik, S.; Khanlari, A. Modeling of a Convective-Infrared Kiwifruit Drying Process. Int. J. Hydrogen Energy. 2017, 42(28), 18005–18013. DOI: 10.1016/j.ijhydene.2017.01.012.
  • Ling, B.; Lyng, J. G.; Wang, S. Effects of Hot Air-Assisted Radio Frequency Heating on Enzyme Inactivation, Lipid Stability and Product Quality of Rice Bran. LWT-Food Sci. Technol. 2018, 91, 453–459. DOI: 10.1016/j.lwt.2018.01.084.
  • Wang, T.; Khir, R.; Pan, Z.; Yuan, Q. Simultaneous Rough Rice Drying and Rice Bran Stabilization using Infrared Radiation Heating. LWT-Food Sci. Technol. 2017, 78, 281–288. DOI: 10.1016/j.lwt.2016.12.041.
  • Yılmaz, F.; Yılmaz, N. T.; Tuncel, N. B. Stabilization of Immature Rice Grain using Infrared Radiation. Food Chem. 2018, 253, 269–276. DOI: 10.1016/j.foodchem.2018.01.172.
  • Xie, L.; Mujumdar, A. S.; Fang, X. M.; Wang, J.; Dai, J. W.; Du, Z. L.; Xiao, H. W.; Liu, Y.; Gao, Z. J. Far-Infrared Radiation Heating Assisted Pulsed Vacuum Drying (FIR-PVD) of Wolfberry (Lycium Barbarum L.): Effects on Drying Kinetics and Quality Attributes. Food Bioprod. Process. 2017, 102, 320–331. DOI: 10.1016/j.fbp.2017.01.012.
  • Nathakaranakule, A.; Jaiboon, P.; Soponronnarit, S. Far-Infrared Radiation Assisted Drying of Longan Fruit. J. Food Eng. 2010, 99(4), 662–668. DOI: 10.1016/j.jfoodeng.2010.05.016.
  • Pan, Z.; Atungulu, G. G. The the Potential of Novel Infrared Food Processing Technologies: Case Studies of those Developed at the USDA-ARS Western Region Research Center and the University of California-Davis. In Case Studies in Novel Food Processing Technologies, 1st ed.; Doona, C.J., Ed.; Woodhead Publishing: England, 2010; pp 139–208.
  • Guiamba, I. R.; Svanberg, U.; Ahrné, L. Effect of Infrared Blanching on Enzyme Activity and Retention of β-carotene and Vitamin C in Dried Mango. J. Food Sci. 2015, 80(6), E1235–E1242. DOI: 10.1111/1750-3841.12866.
  • Jeevitha, G. C.; Hebbar, H. U.; Raghavarao, K. S. M. S. Modeling of Peroxidase Inactivation and Temperature Profile during Infrared Blanching of Red Bell Pepper. J. Food Process. Preserv. 2016, 40(1), 83–93. DOI: 10.1111/jfpp.12586.
  • Vishwanathan, K. H.; Giwari, G. K.; Hebbar, H. U. Infrared Assisted Dry-Blanching and Hybrid Drying of Carrot. Food Bioprod. Process. 2013, 91(2), 89–94. DOI: 10.1016/j.fbp.2012.11.004.
  • Gomez, G. F.; Toledo, R. T.; Sjoholm, I. Tissue Damage in Heated Carrot Slices. Comparing Mild Hot Water Blanching and Infrared Heating. J. Food Eng. 2005, 67(4), 381–385. DOI: 10.1016/j.jfoodeng.2004.05.004.
  • Zhu, Y. I.; Pan, Z.; Mchugh, T. H. Effect of Dipping Treatments on Color Stabilization and Texture of Apple Cubes for Infrared Dry-Blanching Process. J. Food Process. Preserv. 2007, 31(5), 632–648. DOI: 10.1111/j.1745-4549.2007.00154.x.
  • Bingol, G.; Zhang, A.; Panab, Z. Producing Lower-Calorie Deep Fat Fried French Fries using Infrared Dry-Blanching as Pretreatment. Food Chem. 2012, 132(2), 686–692. DOI: 10.1016/j.foodchem.2011.10.055.
  • Bingol, G.; Wang, B.; Zhang, A.; Pan, Z.; Mchugh, T. H. Comparison of Water and Infrared Blanching Methods for Processing Performance and Final Product Quality of French Fries. J. Food Eng. 2014, 121(1), 135–142. DOI: 10.1016/j.jfoodeng.2013.08.001.
  • Rastogi, N. K. Infrared Heating of Fluid Foods. In Novel Thermal and Non-Thermal Technologies for Fluid Foods, 13th ed.; Cullen, P.J., Tiwari, B.K., Valdramidis, V.P., Eds.; American Academic Press: Salt Lake City, U.T, 2012; pp 411–432.
  • Venkitasamy, C.; Brandl, M. T.; Wang, B.; Mchugh, T. H.; Zhang, R.; Pan, Z. Drying and Decontamination of Raw Pistachios with Sequential Infrared Drying, Tempering and Hot Air Drying. Int. J. Food Microbiol. 2017, 246, 85–91. DOI: 10.1016/j.ijfoodmicro.2017.02.005.
  • Siciliano, I.; Dal, B. B.; Zeppa, G.; Spadaro, D.; Gullino, M. L. Static Hot Air and Infrared Rays Roasting are Efficient Methods for Aflatoxin Decontamination on Hazelnuts. Toxins. 2017, 9(2), 72. DOI: 10.3390/toxins9020072.
  • Hamanaka, D.; Norimura, N.; Baba, N.; Mano, K.; Kakiuchi, M.; Tanaka, F. Surface Decontamination of Fig Fruit by Combination of Infrared Radiation Heating with Ultraviolet Irradiation. Food Control. 2011, 22(3–4), 375–380. DOI: 10.1016/j.foodcont.2010.09.005.
  • Trivittayasil, V.; Tanaka, F.; Hamanaka, D.; Uchino, T. Prediction of Surface Temperature of Figs during Infrared Heating and its Effect on the Quality. Biosyst. Eng. 2014, 122, 16–22. DOI: 10.1016/j.biosystemseng.2014.03.007.
  • Eliasson, L.; Isaksson, S.; Lövenklev, M.; Ahrné, L. A Comparative Study of Infrared and Microwave Heating for Microbial Decontamination of Paprika Powder. Front. Microbiol. 2015, 6, 1071. DOI: 10.3389/fmicb.2015.01071.
  • Eliasson, L.; Libander, P.; Lövenklev, M.; Isaksson, S.; Ahrné, L. Infrared Decontamination of Oregano: Effects on Bacillus Cereus Spores, Water Activity, Color, and Volatile Compounds. J. Food Sci. 2014, 79(12), E2447–E2455. DOI: 10.1111/1750-3841.12694.
  • Erdoğdu, S. B.; Ekiz, H. İ. Effect of Ultraviolet and Far Infrared Radiation on Microbial Decontamination and Quality of Cumin Seeds. J. Food Sci. 2011, 76(5), M284. DOI: 10.1111/j.1750-3841.2011.02192.x.
  • Pan, Z.; Khir, R.; Godfrey, L. D.; Lewis, R.; Thompson, J. F.; Salim, A. Feasibility of Simultaneous Rough Rice Drying and Disinfestations by Infrared Radiation Heating and Rice Milling Quality. J. Food Eng. 2008, 84(3), 469–479. DOI: 10.1016/j.jfoodeng.2007.06.005.
  • Li, X.; Pan, Z.; Atungulu, G. G.; Wood, D.; Mchugh, T. Peeling Mechanism of Tomato under Infrared Heating: Peel Loosening and Cracking. J. Food Eng. 2014, 128(1), 79–87. DOI: 10.1016/j.jfoodeng.2013.12.020.
  • Li, X.; Zhang, A.; Atungulu, G. G.; Delwiche, M.; Milczarek, R.; Wood, D. Effects of Infrared Radiation Heating on Peeling Performance and Quality Attributes of Clingstone Peaches. LWT-Food Sci. Technol. 2014, 55(1), 34–42. DOI: 10.1016/j.lwt.2013.08.020.
  • Wang, Y.; Li, X.; Sun, G.; Li, D.; Pan, Z. A Comparison of Dynamic Mechanical Properties of Processing-Tomato Peel as Affected by Hot Lye and Infrared Radiation Heating for Peeling. J. Food Eng. 2014, 126, 27–34. DOI: 10.1016/j.jfoodeng.2013.10.032.
  • Eskandari, J.; Kermani, A. M.; Kouravand, S.; Zarafshan, P. Design, Fabrication, and Evaluation a Laboratory Dry-Peeling System for Hazelnut using Infrared Radiation. LWT-Food Sci. Technol. 2018, 90, 570–576. DOI: 10.1016/j.lwt.2018.01.004.
  • Bagheri, H.; Kashaninejad, M.; Ziaiifar, A. M.; Aalami, M. Novel Hybridized Infrared-Hot Air Method for Roasting of Peanut Kernels. Innovative Food Sci. Emerg. Technol. 2016, 37, 106–114. DOI: 10.1016/j.ifset.2016.08.014.
  • Uysal, N.; Sumnu, G.; Sahi̇N, S. Optimization of Microwave-Infrared Roasting of Hazelnut. J. Food Eng. 2009, 90(2), 255–261. DOI: 10.1016/j.jfoodeng.2008.06.029.
  • Lee, S. C.; Yuk, H. G. Effect of Far-Infrared Irradiation on Catechin Contents of Green Tea. In Tea in Health and Disease Prevention, 1st ed.; Preedy, V.R., Ed.; American Academic Press: Salt Lake City, U.T., 2013; pp 213–221.
  • Mao, W.; Oshima, Y.; Yamanaka, Y.; Fukuoka, M.; Sakai, N. Mathematical Simulation of Liquid Food Pasteurization Using Far Infrared Radiation Heating Equipment. J. Food Eng. 2011, 107(1), 127–133. DOI: 10.1016/j.jfoodeng.2011.05.024.
  • Hashimoto, A.; Igarashi, H.; Shimizu, M. Far-Infrared Irradiation Effect on Pasteurization of Bacteria on or within Wet-Solid Medium. J. Chem. Eng. Jpn. 2005, 25(6), 666–671. DOI: 10.1252/jcej.25.666.
  • Senevirathne, M.; Kim, S. H.; Kim, Y. D.; Oh, C. K.; Oh, M. C.; Ahn, C. B.; Je, J. Y.; Lee, W. W.; Jeon, Y. J. Effect of Far-Infrared Radiation Drying of Citrus Press-Cakes on Free Radical Scavenging and Antioxidant Activities. J. Food Eng. 2010, 97(2), 168–176. DOI: 10.1016/j.jfoodeng.2009.10.006.
  • Umesh, H. H.; Erananjappa, N. K.; Chakrapani, L. M.; Subramanian, R. Microwave and Infrared Heat Processing of Honey and its Quality. Food Sci. Technol. Res. 2003, 9(1), 49–53. DOI: 10.3136/fstr.9.49.
  • Krishnamurthy, K.; Jun, S.; Irudayaraj, J.; Demirci, A. Efficacy of Infrared Heat Treatment for Inactivation of Staphylococcus Aureus in Milk. J. Food Process. Eng. 2008, 31(6), 798–816. DOI: 10.1111/j.1745-4530.2007.00191.x.
  • Hong, G. P.; Shim, K. B.; Choi, M. J.; Min, S. G. Effects of Air Blast Thawing Combined with Infrared Radiation on Physical Properties of Pork. Korean J. Food Sci. Animal Resour. 2009, 29(3), 302–309. DOI: 10.5851/kosfa.2009.29.3.302.
  • Braeckman, L.; Ronsse, F.; Hidalgo, P. C.; Pieters, J. Influence of Combined Ir-Grilling and Hot Air Cooking Conditions on Moisture and Fat Content, Texture and Colour Attributes of Meat Patties. J. Food Eng. 2009, 93(4), 437–443. DOI: 10.1016/j.jfoodeng.2009.02.009.
  • Huang, L.; Sites, J. Elimination of Listeria Monocytogenes on Cooked Chicken Breast Meat Surfaces by Near‐Infrared Surface Pasteurization Prior to Final Packaging. J. Food Process. Eng. 2012, 35(1), 1–15. DOI: 10.1111/j.1745-4530.2009.00551.x.
  • Chen, H.; Zhang, M.; Fang, Z.; Wang, Y. Effects of Different Drying Methods on the Quality of Squid Cubes. Drying Technol. 2013, 31(16), 1911–1918. DOI: 10.1080/07373937.2013.783592.
  • Deng, Y.; Wang, Y.; Yue, J.; Liu, Z.; Zheng, Y.; Qian, B.; Zhong, Y.; Zhao, Y. Thermal Behavior, Microstructure and Protein Quality of Squid Fillets Dried by Far-Infrared Assisted Heat Pump Drying. Food Control. 2014, 36(1), 102–110. DOI: 10.1016/j.foodcont.2013.08.006.
  • Fu, W. R.; Lien, W. R. Optimization of Far Infrared Heat Dehydration of Shrimp using RSM. J. Food Sci. 1998, 63(1), 80–83. DOI: 10.1111/j.1365-2621.1998.tb15680.x.
  • Swasdisevi, T.; Devahastin, S.; Sa-Adchom, P.; Soponronnarit, S. Mathematical Modeling of Combined Far-Infrared and Vacuum Drying Banana Slice. J. Food Eng. 2009, 92(1), 100–106. DOI: 10.1016/j.jfoodeng.2008.10.030.
  • Jun, S.; Irudayaraj, J. A Dynamic Fungal Inactivation Approach using Selective Infrared Heating. Trans. ASABE. 2003, 46(5), 1407–1412. DOI: 10.13031/2013.15435.
  • Wang, J.; Luechapattanaporn, K.; Wang, Y.; Tang, J. Radio-Frequency Heating of Heterogeneous Food-Meat Lasagna. J. Food Eng. 2011, 108(1), 183–193. DOI: 10.1016/j.jfoodeng.2011.05.031.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.