927
Views
28
CrossRef citations to date
0
Altmetric
Reviews

Gas Chromatographic Fingerprinting Coupled to Chemometrics for Food Authentication

, & ORCID Icon

References

  • Xu, W.; Cater, M.; Gaitan, A.; Drewery, M.; Gravois, R.; Lammi-Keefe, C. J. Awareness of Listeria and High-Risk Food Consumption Behavior among Pregnant Women in Louisiana. Food Control. 2017, 76, 62–65. DOI: 10.1016/j.foodcont.2017.01.009.
  • Danezis, G. P.; Tsagkaris, A. S.; Camin, F.; Brusic, V.; Georgiou, C. A. Food Authentication: Techniques, Trends & Emerging Approaches. TrAC Trends Anal. Chem. 2016, 85, 123–132. DOI: 10.1016/j.trac.2016.02.026.
  • Kamruzzaman, M. Food Adulteration and Authenticity. In Food Safety; Selamat, J., Iqbal, S. Z., Eds.; Springer International Publishing: Cham, 2016; pp 127–148. DOI: 10.1007/978-3-319-39253-0_7.
  • Lohumi, S.; Lee, S.; Lee, H.; Cho, B. K. A Review of Vibrational Spectroscopic Techniques for the Detection of Food Authenticity and Adulteration. Trends Food Sci. Technol. 2015, 46(1), 85–98. DOI: 10.1016/j.tifs.2015.08.003.
  • Cordella, C.; Moussa, I.; Martel, A. C.; Sbirrazzouli, N.; Lizzani-Cuvelier, L. Recent Developments in Food Characterization and Adulteration Detection: Technique-Oriented Perspectives. J. Agric. Food Chem. 2002, 50(7), 1751–1764. DOI: 10.1021/jf011096z.
  • Opitz, I.; Specht, K.; Piorr, A.; Siebert, R.; Zasada, I. Effects of Consumer-Producer Interactions in Alternative Food Networks on Consumers’ Learning about Food and Agriculture. Morav. Geogr. Reports. 2017, 25(3), 181–191. DOI: 10.1515/mgr-2017-0016.
  • Bansal, S.; Singh, A.; Mangal, M.; Mangal, A. K.; Kumar, S. Food Adulteration: Sources, Health Risks, and Detection Methods. Crit. Rev. Food Sci. Nutr. 2017, 57(6), 1174–1189. DOI: 10.1080/10408398.2014.967834.
  • Charlebois, S.; Schwab, A.; Henn, R.; Huck, C. W. Food Fraud: an Exploratory Study for Measuring Consumer Perception Towards Mislabeled Food Products and Influence on Self-Authentication Intentions. Trends Food Sci. Technol. 2016, 50, 211–218. DOI: 10.1016/j.tifs.2016.02.003.
  • Fernandes, T. J. R.; Costa, J.; Oliveira, M. B. P. P.; Mafra, I. DNA Barcoding Coupled to HRM Analysis as a New and Simple Tool for the Authentication of Gadidae Fish Species. Food Chem. 2017, 230, 49–57. DOI: 10.1016/j.foodchem.2017.03.015.
  • Moon, B. C.; Ji, Y.; Lee, Y. M.; Kang, Y. M.; Kim, H. K. Authentication of Akebia Quinata DECNE.from Its Common Adulterant Medicinal Plant Species Based on the RAPD-Derived SCAR Markers and Multiplex-PCR. Genes Genomics. 2015, 37(1), 23–32. DOI: 10.1007/s13258-014-0225-6.
  • Vaillant, F.; Pérez, A. M.; Acosta, O.; Dornier, M. Turbidity of Pulpy Fruit Juice: A Key Factor for Predicting Cross-Flow Microfiltration Performance. J. Memb. Sci. 2008, 325(1), 404–412. DOI: 10.1016/j.memsci.2008.08.003.
  • Jha, S. N.; Matsuoka, T. Dvelopment of Freshness Index of Eggplant. Appl. Eng. Agric. 2002, 18(5), 555. DOI: 10.13031/2013.10142.
  • Knolhoff, A. M.; Croley, T. R. Non-Targeted Screening Approaches for Contaminants and Adulterants in Food Using Liquid Chromatography Hyphenated to High Resolution Mass Spectrometry. J. Chromatogr. A. 2016, 1428, 86–96. DOI: 10.1016/j.chroma.2015.08.059.
  • Kamal, M.; Karoui, R. Analytical Methods Coupled with Chemometric Tools for Determining the Authenticity and Detecting the Adulteration of Dairy Products: A Review. Trends Food Sci. Technol. 2015, 46(1), 1–22. DOI: 10.1016/j.tifs.2015.07.007.
  • Wielogorska, E.; Chevallier, O.; Black, C.; Galvin-King, P.; Delêtre, M.; Kelleher, C. T.; Haughey, S. A.; Elliott, C. T. Development of a Comprehensive Analytical Platform for the Detection and Quantitation of Food Fraud Using a Biomarker Approach. The Oregano Adulteration Case Study. Food Chem. 2018, 239, 32–39. DOI: 10.1016/j.foodchem.2017.06.083.
  • Moore, J. C.; Spink, J.; Lipp, M. Development and Application of a Database of Food Ingredient Fraud and Economically Motivated Adulteration from 1980 to 2010. J. Food Sci. 2012, 77(4), R118–R126. DOI: 10.1111/j.1750-3841.2012.02657.x.
  • Zhao, M.; Downey, G.; Science, C. O. -M. Detection of Adulteration in Fresh and Frozen Beefburger Products by Beef Offal Using Mid-Infrared ATR Spectroscopy and Multivariate Data Analysis. Meat Sci. 2014, 96, 1003–1011. 2013. DOI: 10.1016/j.meatsci.2013.10.015.
  • Borková, M.; Snášelová, J. Possibilities of Different Animal Milk Detection in Milk and Dairy Products - A Review. Czech J. Food Sci. 2005, 23(2), 41–50. DOI: 10.17221/3371-CJFS.
  • Spink, J.; Moyer, D. C. Defining Food Fraud and the Chemistry of the Crime: an Overview. Food Eng. Ingredients. 2010, 35(October), 26–28. DOI: 10.1002/9781118464298.ch9.
  • Spink, J.; Moyer, D. C. Defining the Public Health Threat of Food Fraud. J. Food Sci. 2011, 76(9), R157–R163. DOI: 10.1111/j.1750-3841.2011.02417.x.
  • Zhao, M.; Downey, G.; O’Donnell, C. P. Detection of Adulteration in Fresh and Frozen Beefburger Products by Beef Offal Using Mid-Infrared ATR Spectroscopy and Multivariate Data Analysis. Meat Sci. 2014, 96(1), 1003–1011. DOI: 10.1016/j.meatsci.2013.10.015.
  • Zhang, J.; Zhang, X.; Dediu, L.; Victor, C. Review of the Current Application of Fingerprinting Allowing Detection of Food Adulteration and Fraud in China. Food Control. 2011, 22(8), 1126–1135. DOI: 10.1016/j.foodcont.2011.01.019.
  • Casale, M.; Oliveri, P.; Armanino, C.; Lanteri, S.; Forina, M. NIR and UV-Vis Spectroscopy, Artificial Nose and Tongue: Comparison of Four Fingerprinting Techniques for the Characterisation of Italian Red Wines. Anal. Chim. Acta. 2010, 668(2), 143–148. DOI: 10.1016/j.aca.2010.04.021.
  • Zarkadas, C. G.; Gagnon, C.; Poysa, V.; Khanizadeh, S.; Cober, E. R.; Chang, V.; Gleddie, S. Protein Quality and Identification of the Storage Protein Subunits of Tofu and Null Soybean Genotypes, Using Amino Acid Analysis, One- and Two-Dimensional Gel Electrophoresis, and Tandem Mass Spectrometry. Food Res. Int. 2007, 40(1), 111–128. DOI: 10.1016/j.foodres.2006.08.005.
  • Kelly, J. F. D.; Downey, G. Detection of Sugar Adulterants in Apple Juice Using Fourier Transform Infrared Spectroscopy and Chemometrics. J. Agric. Food Chem. 2005, 53(9), 3281–3286. DOI: 10.1021/jf048000w.
  • Rodriguez-Saona, L. E.; Allendorf, M. E. Use of FTIR for Rapid Authentication and Detection of Adulteration of Food. Annu. Rev. Food Sci. Technol. 2011, 2(1), 467–483. DOI: 10.1146/annurev-food-022510-133750.
  • Teixeira Dos Santos, C. A.; Lopo, M.; Páscoa, R. N. M. J.; Lopes, J. A. A. Review on the Applications of Portable Near-Infrared Spectrometers in the Agro-Food Industry. Appl. Spectrosc. 2013, 67(11), 1215–1233. DOI: 10.1366/13-07228.
  • Dhanya, K.; Sasikumar, B. Molecular Marker Based Adulteration Detection in Traded Food and Agricultural Commodities of Plant Origin with Special Reference to Spices. Curr. Trends Biotechnol. Pharm. 2010, 4(1), 454–489.
  • Martinez, I.; Aursand, M.; Erikson, U.; Singstad, T. E.; Veliyulin, E.; Van Der Zwaag, C. Destructive and Non-Destructive Analytical Techniques for Authentication and Composition Analyses of Foodstuffs. Trends Food Sci. Technol. 2003, 14(12), 489–498. DOI: 10.1016/j.tifs.2003.07.005.
  • Lavine, B. K.; Workman, J. Chemometrics. Anal. Chem. 2002, 74(12), 2763–2769. DOI: 10.1021/ac020224v.
  • Gemperline, P. Practical Guide to Chemometrics; CRC Press: Boca Raton,  2006. DOI: 10.1201/9781420018301.
  • Brown, S. D.; Sarabia, L. A.; Trygg, J. Comprehensive Chemometrics: Chemical and Biochemical Data Analysis; Elsevier: Amsterdam, 2009.
  • Bertacchini, L.; Cocchi, M.; Li Vigni, M.; Marchetti, A.; Salvatore, E.; Sighinolfi, S.; Silvestri, M.; Durante, C. The Impact of Chemometrics on Food Traceability. Data Handl. Sci. Technol. 2013, 28, 371–410. DOI: 10.1016/B978-0-444-59528-7.00010-7.
  • Brereton, R. G.;. Chemometrics: Data Analysis for the Laboratory and Chemical Plant; Wiley: Chichester, 2003; Vol. 8. DOI: 10.1002/0470863242.
  • Bosque-Sendra, J. M.; Cuadros-Rodríguez, L.; Ruiz-Samblás, C.; de la Mata, A. P. Combining Chromatography and Chemometrics for the Characterization and Authentication of Fats and Oils from Triacylglycerol Compositional Data-A Review. Anal. Chim. Acta. 2012, 724, 1–11. DOI: 10.1016/j.aca.2012.02.041.
  • Arvanitoyannis, I. S.; Tzouros, N. E. Implementation of Quality Control Methods in Conjunction with Chemometrics toward Authentication of Dairy Products. Crit. Rev. Food Sci. Nutr. 2005, 45(4), 231–249. DOI: 10.1080/10408690490478073.
  • Gajjar, S.; Palazoglu, A. A Data-Driven Multidimensional Visualization Technique for Process Fault Detection and Diagnosis. Chemom. Intell. Lab. Syst. 2016, 154, 122–136. DOI: 10.1016/j.chemolab.2016.03.027.
  • Linko, S.;. Expert Systems—What Can They Do for the Food Industry? Trends Food Sci. Technol. 1998, 9(1), 3–12. DOI: 10.1016/S0924-2244(97)00002-2.
  • Liu, Z.; Nersessian, N.; Stasko, J. Distributed Cognition as a Theoretical Framework for Information Visualization. IEEE Trans. Vis. Comput. Graph. 2008, 14(6), 1173–1180. DOI: 10.1109/TVCG.2008.121.
  • Berrueta, L. A.; Alonso-Salces, R. M.; Héberger, K. Supervised Pattern Recognition in Food Analysis. J. Chromatogr. A. 2007, 1158(1–2), 196–214. DOI: 10.1016/j.chroma.2007.05.024.
  • Parsons, L.; Haque, E.; Liu, H. Subspace Clustering for High Dimensional Data. ACM SIGKDD Explor. Newsl. 2004, 6(1), 90–105. DOI: 10.1145/1007730.1007731.
  • Gaspar, H. A.; Baskin, I. I.; Marcou, G.; Horvath, D.; Varnek, A. Chemical Data Visualization and Analysis with Incremental Generative Topographic Mapping: Big Data Challenge. J. Chem. Inf. Model. 2015, 55(1), 84–94. DOI: 10.1021/ci500575y.
  • Qin, S. J.;. Statistical Process Monitoring: Basics and Beyond. J. Chemom. 2003, 17(8–9), 480–502. DOI: 10.1002/cem.800.
  • Martinez, W. L.; Martinez, A. R. Exploratory Data Analysis with MATLAB; CRC Press: Boca Raton, 2004; Vol. 4. DOI: 10.1201/9780203483374.
  • Fayyad, U. M.; Grinstein, G. G.; Wierse, A. Information Visualization in Data Mining and Knowledge Discovery; Academic Press: San Diego, 2002. DOI: 10.1109/2945.981847.
  • MacQueen, J. Some Methods for Classification and Analysis of Multivariate Observations. In 5th Berkeley Symposium on Mathematical Statistics and Probability1967; Berkely, 1967; Vol. 1, pp 281–297. https://doi.org/citeulike-article-id:6083430.
  • Fraley, C.; Raftery, A. E. Model-Based Clustering, Discriminant Analysis, and Density Estimation. J. Am. Stat. Assoc. 2002, 97, 611–631. DOI: 10.1198/016214502760047131.
  • Peel, D.; McLachlan, G. J. Robust Mixture Modelling Using the T Distribution. Stat. Comput. 2000, 10(4), 339–348. DOI: 10.1023/A:1008981510081.
  • Geladi, P.;. Chemometrics in Spectroscopy. Part 1. Classical Chemometrics. Spectrochim. Acta - Part B At. Spectrosc. 2003, 58(5), 767–782. DOI: 10.1016/S0584-8547(03)00037-5.
  • Oliveri, P.; Casale, M.; Casolino, M. C.; Baldo, M. A.; Nizzi Grifi, F.; Forina, M. Comparison between Classical and Innovative Class-Modelling Techniques for the Characterisation of a PDO Olive Oil. Anal. Bioanal. Chem. 2011, 399(6), 2105–2113. DOI: 10.1007/s00216-010-4377-1.
  • Vinay Kumar, K.; Ravi, V.; Carr, M.; Raj Kiran, N. Software Development Cost Estimation Using Wavelet Neural Networks. J. Syst. Softw. 2008, 81(11), 1853–1867. DOI: 10.1016/j.jss.2007.12.793.
  • Dheeba, J.; Albert Singh, N.; Tamil Selvi, S. Computer-Aided Detection of Breast Cancer on Mammograms: A Swarm Intelligence Optimized Wavelet Neural Network Approach. J. Biomed. Inform. 2014, 49, 45–52. DOI: 10.1016/j.jbi.2014.01.010.
  • Meng, A.; Ge, J.; Yin, H.; Chen, S. Wind Speed Forecasting Based on Wavelet Packet Decomposition and Artificial Neural Networks Trained by Crisscross Optimization Algorithm. Energy Convers. Manag. 2016, 114, 75–88. DOI: 10.1016/j.enconman.2016.02.013.
  • Joachims, T. Text Categorization with Support Vector Machines: Learning with Many Relevant Features. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Berlin, 1998; Vol. 1398, pp 137–142. DOI: 10.1007/s13928716.
  • Hsu, C. W.; Lin, C. J. A Comparison of Methods for Multiclass Support Vector Machines. IEEE Trans. Neural Networks. 2002, 13(2), 415–425. DOI: 10.1109/72.991427.
  • Dabrowski, J. M.; Schulz, R. Predicted and Measured Levels of Azinphosmethyl in the Lourens River, South Africa: Comparison of Runoff and Spray Drift. Environ. Toxicol. Chem. 2003, 22(3), 494–500. DOI: 10.1897/1551-5028(2003)022<0494:PAMLOA>2.0.CO;2.
  • Kvalheim, O. M. Interpretation of Partial Least Squares Regression Models by Means of Target Projection and Selectivity Ratio Plots. J. Chemom. 2010, 24(7–8), 496–504. DOI: 10.1002/cem.1289.
  • Pérez-Marín, D.; Garrido-Varo, A.; Guerrero, J. E. Non-Linear Regression Methods in NIRS Quantitative Analysis. Talanta. 2007, 72(1), 28–42. DOI: 10.1016/j.talanta.2006.10.036.
  • Esslinger, S.; Riedl, J.; Fauhl-Hassek, C. Potential and Limitations of Non-Targeted Fingerprinting for Authentication of Food in Official Control. Food Res. Int. 2014, 60, 189–204. DOI: 10.1016/j.foodres.2013.10.015.
  • Antignac, J. P.; Courant, F.; Pinel, G.; Bichon, E.; Monteau, F.; Elliott, C.; Le Bizec, B. Mass Spectrometry-Based Metabolomics Applied to the Chemical Safety of Food. TrAC - Trends Anal. Chem. 2011, 30(2), 292–301. DOI: 10.1016/j.trac.2010.11.003.
  • Alewijn, M.; van der Voet, H.; van Ruth, S. Validation of Multivariate Classification Methods Using Analytical Fingerprints – Concept and Case Study on Organic Feed for Laying Hens. J. Food Compos. Anal. 2016, 51, 15–23. DOI: 10.1016/j.jfca.2016.06.003.
  • Santonico, M.; Pittia, P.; Pennazza, G.; Martinelli, E.; Bernabei, M.; Paolesse, R.; D’Amico, A.; Compagnone, D.; Di Natale, C. Study of the Aroma of Artificially Flavoured Custards by Chemical Sensor Array Fingerprinting. Sens. Actuators B Chem. 2008, 133(1), 345–351. DOI: 10.1016/j.snb.2008.02.053.
  • Terzi, V.; Morcia, C.; Gorrini, A.; Stanca, A. M.; Shewry, P. R.; Faccioli, P. DNA-Based Methods for Identification and Quantification of Small Grain Cereal Mixtures and Fingerprinting of Varieties. J. Cereal Sci. 2005, 41(3), 213–220. DOI: 10.1016/j.jcs.2004.08.003.
  • Rezzi, S.; Giani, I.; Héberger, K.; Axelson, D. E.; Moretti, V. M.; Reniero, F.; Guillou, C. Classification of Gilthead Sea Bream (sparus Aurata) from 1H NMR Lipid Profiling Combined with Principal Component and Linear Discriminant Analysis. J. Agric. Food Chem. 2007, 55(24), 9963–9968. DOI: 10.1021/jf070736g.
  • Guihua, F. Development of Fingerprinting Approach for Identification and Detection of Adulteration in Food. 2012, No. 2013, 1–278. http://scholarbank.nus.edu.sg/handle/10635/37833.
  • Gwénaëlle Le, G.; Colquhoun, I. J.; Defernez, M. Metabolite Profiling Using 1H NMR Spectroscopy for Quality Assessment of Green Tea, Camellia Sinensis (L.). J. Agric. Food Chem. 2004, 52(4), 692–700. DOI: 10.1021/JF034828R.
  • Zhao, Y.; Chen, P.; Lin, L.; Harnly, J. M.; Yu, L.; Li, Z. Tentative Identification, Quantitation, and Principal Component Analysis of Green Pu-Erh, Green, and White Teas Using UPLC/DAD/MS. Food Chem. 2011, 126(3), 1269–1277. DOI: 10.1016/j.foodchem.2010.11.055.
  • Cseháti, T.; Forgács, E.; Deyl, Z.; Miksik, I. Chromatography in Authenticity and Traceability Tests of Vegetable Oils and Dairy Products: A Review. Biomed. Chromatogr. 2005, 19(3), 183–190. DOI: 10.1002/bmc.486.
  • Cuadros-Rodríguez, L.; Ruiz-Samblás, C.; Valverde-Som, L.; Pérez-Castaño, E.; González-Casado, A. Chromatographic Fingerprinting: an Innovative Approach for Food “identitation” and Food Authentication – A Tutorial. Anal. Chim. Acta. 2016, 909, 9–23. DOI: 10.1016/j.aca.2015.12.042.
  • Smillie, T. J.; Khan, I. A. A Comprehensive Approach to Identifying and Authenticating Botanical Products. Clin. Pharmacol. Ther. 2010, 87(2), 175–186. DOI: 10.1038/clpt.2009.287.
  • Applequist, W. L.; Miller, J. S. Selection and Authentication of Botanical Materials for the Development of Analytical Methods. Anal. Bioanal. Chem. 2013, 405(13), 4419–4428. DOI: 10.1007/s00216-012-6595-1.
  • Gong, F.; Wang, B. T.; Chau, F. T.; Liang, Y. Z. Data Preprocessing for Chromatographic Fingerprint of Herbal Medicine with Chemometric Approaches. Anal. Lett. 2005, 38(14), 2475–2492. DOI: 10.1080/00032710500318338.
  • Hu, Y.; Meng, Q.; Liu, Y.; Jiang, S. Methods for Quality Control of Fingerprint Chromatograms in Traditional Chinese Medicines. Se Pu = Chin. J. Chromatogr. 2004, 22(4), 361–365.
  • Pongsuwan, W.; Fukusaki, E.; Bamba, T.; Yonetani, T.; Yamahara, T.; Kobayashi, A. Prediction of Japanese Green Tea Ranking by Gas Chromatography/Mass Spectrometry-Based Hydrophilic Metabolite Fingerprinting. J. Agric. Food Chem. 2007, 55(2), 231–236. DOI: 10.1021/jf062330u.
  • Le Gall, G.; Colquhoun, I. J.; Defernez, M. Metabolite Profiling Using 1H NMR Spectroscopy for Quality Assessment of Green Tea, Camellia Sinensis (L.). J. Agric. Food Chem. 2004, 52(4), 692–700. DOI: 10.1021/jf034828r.
  • Di Stefano, V.; Avellone, G.; Bongiorno, D.; Cunsolo, V.; Muccilli, V.; Sforza, S.; Dossena, A.; Drahos, L.; Vékey, K. Applications of Liquid Chromatography-Mass Spectrometry for Food Analysis. J. Chromatogr. A. 2012, 1259, 74–85. DOI: 10.1016/j.chroma.2012.04.023.
  • Hussain, S. Z.; Maqbool, K. GC-MS : Principle, Technique and Its Application in Food Science. Int. J. Curr. Sci. 2014, 13, 116–126.
  • Karoui, R.; De Baerdemaeker, J. A Review of the Analytical Methods Coupled with Chemometric Tools for the Determination of the Quality and Identity of Dairy Products. Food Chem. 2007, 102(3), 621–640. DOI: 10.1016/j.foodchem.2006.05.042.
  • Brien, R. D. O. Oils and Fats: Formulating and Processing for Applications, 3rd ed.; CRC Press: Boca Raton, 2008.
  • Nunes, C. A.;. Vibrational Spectroscopy and Chemometrics to Assess Authenticity, Adulteration and Intrinsic Quality Parameters of Edible Oils and Fats. Food Res. Int. 2014, 60, 255–261. DOI: 10.1016/j.foodres.2013.08.041.
  • Zahir, E.; Saeed, R.; Hameed, M. A.; Yousuf, A. Study of Physicochemical Properties of Edible Oil and Evaluation of Frying Oil Quality by Fourier Transform-Infrared (FT-IR) Spectroscopy. Arab. J. Chem. 2017, 10, S3870–S3876. DOI: 10.1016/j.arabjc.2014.05.025.
  • Cubero-Leon, E.; Peñalver, R.; Maquet, A. Review on Metabolomics for Food Authentication. Food Res. Int. 2014, 60, 95–107. DOI: 10.1016/j.foodres.2013.11.041.
  • Amarowicz, R.;. Natural Phenolic Compounds Protect LDL against Oxidation. Eur. J. Lipid Sci. Technol. 2016, 118, 677–679. DOI: 10.1002/ejlt.201600077.
  • Ogrinc, N.; Košir, I. J.; Spangenberg, J. E.; Kidrič, J. The Application of NMR and MS Methods for Detection of Adulteration of Wine, Fruit Juices, and Olive Oil. A Review. Anal. Bioanal. Chem. 2003, 376(4), 424–430. DOI: 10.1007/s00216-003-1804-6.
  • Fang, G.; Goh, J. Y.; Tay, M.; Lau, H. F.; Li, S. F. Y. Characterization of Oils and Fats by 1H NMR and GC/MS Fingerprinting: Classification, Prediction and Detection of Adulteration. Food Chem. 2013, 138(2–3), 1461–1469. DOI: 10.1016/j.foodchem.2012.09.136.
  • Pizarro, C.; Rodríguez-Tecedor, S.; Pérez-del-Notario, N.; González-Sáiz, J. M. Recognition of Volatile Compounds as Markers in Geographical Discrimination of Spanish Extra Virgin Olive Oils by Chemometric Analysis of Non-Specific Chromatography Volatile Profiles. J. Chromatogr. A. 2011, 1218(3), 518–523. DOI: 10.1016/j.chroma.2010.11.045.
  • Faria-Machado, A. F.; Tres, A.; Van Ruth, S. M.; Antoniassi, R.; Junqueira, N. T. V.; Lopes, P. S. N.; Bizzo, H. R. Discrimination of Pulp Oil and Kernel Oil from Pequi (caryocar Brasiliense) by Fatty Acid Methyl Esters Fingerprinting, Using GC-FID and Multivariate Analysis. J. Agric. Food Chem. 2015, 63(45), 10064–10069. DOI: 10.1021/acs.jafc.5b03699.
  • Pérez-Castaño, E.; Sánchez-Viñas, M.; Gázquez-Evangelista, D.; Bagur-González, M. G. Quantification of Extra Virgin Olive Oil in Dressing and Edible Oil Blends Using the Representative TMS-4,4′-Desmethylsterols Gas-Chromatographic-Normalized Fingerprint. Food Chem. 2018, 239, 1192–1199. DOI: 10.1016/j.foodchem.2017.07.069.
  • Tian, H.; Zhan, P.; Zhang, H. Development of a Fatty Acid Fingerprint of White Apricot Almond Oil by Gas Chromatography and Gas Chromatography-Mass Spectrometry. Eur. J. Lipid Sci. Technol. 2014, 116(2), 126–133. DOI: 10.1002/ejlt.201300170.
  • Jabeur, H.; Zribi, A.; Makni, J.; Rebai, A.; Abdelhedi, R.; Bouaziz, M. Detection of Chemlali Extra-Virgin Olive Oil Adulteration Mixed with Soybean Oil, Corn Oil, and Sunflower Oil by Using GC and HPLC. J. Agric. Food Chem. 2014, 62(21), 4893–4904. DOI: 10.1021/jf500571n.
  • Jabeur, H.; Zribi, A.; Bouaziz, M. Extra-Virgin Olive Oil and Cheap Vegetable Oils: Distinction and Detection of Adulteration as Determined by GC and Chemometrics. Food Anal. Methods. 2016, 9(3), 712–723. DOI: 10.1007/s12161-015-0249-9.
  • Ruiz-Samblás, C.; Cuadros-Rodríguez, L.; González-Casado, A.; De Paula Rodríguez García, F.; De La Mata-Espinosa, P.; Bosque-Sendra, J. M. Multivariate Analysis of HT/GC-(IT)MS Chromatographic Profiles of Triacylglycerol for Classification of Olive Oil Varieties. Anal. Bioanal. Chem. 2011, 399(6), 2093–2103. DOI: 10.1007/s00216-010-4423-z.
  • Gerhardt, N.; Birkenmeier, M.; Sanders, D.; Rohn, S.; Weller, P. Resolution-Optimized Headspace Gas Chromatography-Ion Mobility Spectrometry (HS-GC-IMS) for Non-Targeted Olive Oil Profiling. Anal. Bioanal. Chem. 2017, 409(16), 3933–3942. DOI: 10.1007/s00216-017-0338-2.
  • Jabeur, H.; Drira, M.; Rebai, A.; Bouaziz, M. Putative Markers of Adulteration of Higher-Grade Olive Oil with Less Expensive Pomace Olive Oil Identified by Gas Chromatography Combined with Chemometrics. J. Agric. Food Chem. 2017, 65(26), 5375–5383. DOI: 10.1021/acs.jafc.7b00687.
  • Ruiz-Samblás, C.; Marini, F.; Cuadros-Rodríguez, L.; González-Casado, A. Quantification of Blending of Olive Oils and Edible Vegetable Oils by Triacylglycerol Fingerprint Gas Chromatography and Chemometric Tools. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2012, 910, 71–77. DOI: 10.1016/j.jchromb.2012.01.026.
  • Ruiz-Samblás, C.; Cadenas, J. M.; Pelta, D. A.; Cuadros-Rodríguez, L. Application of Data Mining Methods for Classification and Prediction of Olive Oil Blends with Other Vegetable Oils. Anal. Bioanal. Chem. 2014, 406(11), 2591–2601. DOI: 10.1007/s00216-014-7677-z.
  • Li, X.; Kong, W.; Shi, W.; Shen, Q. A Combination of Chemometrics Methods and GC-MS for the Classification of Edible Vegetable Oils. Chemom. Intell. Lab. Syst. 2016, 155, 145–150. DOI: 10.1016/j.chemolab.2016.03.028.
  • Mildner-Szkudlarz, S.; Jeleń, H. H.; Zawirska-Wojtasiak, R. The Use of Electronic and Human Nose for Monitoring Rapeseed Oil Autoxidation. Eur. J. Lipid Sci. Technol. 2008, 110(1), 61–72. DOI: 10.1002/ejlt.200700009.
  • Hsouna, A. B.; Trigui, M.; Mansour, R. B.; Jarraya, R. M.; Damak, M.; Jaoua, S. Chemical Composition, Cytotoxicity Effect and Antimicrobial Activity of Ceratonia Siliqua Essential Oil with Preservative Effects against Listeria Inoculated in Minced Beef Meat. Int. J. Food Microbiol. 2011, 148(1), 66–72. DOI: 10.1016/j.ijfoodmicro.2011.04.028.
  • Sun, X.; Zhang, L.; Li, P.; Xu, B.; Ma, F.; Zhang, Q.; Zhang, W. Fatty Acid Profiles Based Adulteration Detection for Flaxseed Oil by Gas Chromatography Mass Spectrometry. LWT - Food Sci. Technol. 2015, 63(1), 430–436. DOI: 10.1016/j.lwt.2015.02.023.
  • Peng, D.; Bi, Y.; Ren, X.; Yang, G.; Sun, S.; Wang, X. Detection and Quantification of Adulteration of Sesame Oils with Vegetable Oils Using Gas Chromatography and Multivariate Data Analysis. Food Chem. 2015, 188, 415–421. DOI: 10.1016/j.foodchem.2015.05.001.
  • Molkentin, J.;. Detection of Foreign Fat in Milk Fat from Different Continents by Triacylglycerol Analysis. Eur. J. Lipid Sci. Technol. 2007, 109(5), 505–510. DOI: 10.1002/ejlt.200600286.
  • Cossignani, L.; Blasi, F.; Bosi, A.; D’Arco, G.; Maurelli, S.; Simonetti, M. S.; Damiani, P. Detection of Cow Milk in Donkey Milk by Chemometric Procedures on Triacylglycerol Stereospecific Analysis Results. J. Dairy Res. 2011, 78, 335–342. DOI: 10.1017/S0022029911000495.
  • Fenaille, F.; Parisod, V.; Visani, P.; Populaire, S.; Tabet, J. C.; Guy, P. A. Modifications of Milk Constituents during Processing: A Preliminary Benchmarking Study. Int. Dairy J. 2006, 16(7), 728–739. DOI: 10.1016/j.idairyj.2005.08.003.
  • Marsili, R. T.;. Shelf-Life Prediction of Processed Milk by Solid-Phase Microextraction, Mass Spectrometry, and Multivariate Analysis. J. Agric. Food Chem. 2000, 48(8), 3470–3475. DOI: 10.1021/jf000177c.
  • Rodríguez-Bermúdez, R.; López-Alonso, M.; Miranda, M.; Fouz, R.; Orjales, I.; Herrero-Latorre, C. Chemometric Authentication of the Organic Status of Milk on the Basis of Trace Element Content. Food Chem. 2018, 240, 686–693. DOI: 10.1016/j.foodchem.2017.08.011.
  • Gutiérrez, R.; Vega, S.; Díaz, G.; Sánchez, J.; Coronado, M.; Ramírez, A.; Pérez, J.; González, M.; Schettino, B. Detection of Non-Milk Fat in Milk Fat by Gas Chromatography and Linear Discriminant Analysis. J. Dairy Sci. 2009, 92(5), 1846–1855. DOI: 10.3168/jds.2008-1624.
  • Delgado, F. J.; González-Crespo, J.; Cava, R.; Ramírez, R. Formation of the Aroma of a Raw Goat Milk Cheese during Maturation Analysed by SPME-GC-MS. Food Chem. 2011, 129(3), 1156–1163. DOI: 10.1016/j.foodchem.2011.05.096.
  • Kim, N. S.; Lee, J. H.; Han, K. M.; Kim, J. W.; Cho, S.; Kim, J. Discrimination of Commercial Cheeses from Fatty Acid Profiles and Phytosterol Contents Obtained by Gc and Pca. Food Chem. 2014, 143, 40–47. DOI: 10.1016/j.foodchem.2013.07.083.
  • Ochi, H.; Bamba, T.; Naito, H.; Iwatsuki, K.; Fukusaki, E. Metabolic Fingerprinting of Hard and Semi-Hard Natural Cheeses Using Gas Chromatography with Flame Ionization Detector for Practical Sensory Prediction Modeling. J. Biosci. Bioeng. 2012, 114(5), 506–511. DOI: 10.1016/j.jbiosc.2012.06.002.
  • Condurso, C.; Verzera, A.; Romeo, V.; Ziino, M.; Conte, F. Solid-Phase Microextraction and Gas Chromatography Mass Spectrometry Analysis of Dairy Product Volatiles for the Determination of Shelf Life. Int. Dairy J. 2008, 18, 819–825. DOI: 10.1016/j.idairyj.2007.12.005.
  • Contarini, G.; Povolo, M.; Leardi, R.; Toppino, P. M. Influence of Heat Treatment on the Volatile Compounds of Milk. J. Agric. Food Chem. 1997, 45(8), 3171–3177. DOI: 10.1021/jf960849s.
  • Jiang, Z.; Liu, Y.; Zhu, Y.; Yang, J.; Sun, L.; Chai, X.; Wang, Y. Characteristic Chromatographic Fingerprint Study of Short-Chain Fatty Acids in Human Milk, Infant Formula, Pure Milk and Fermented Milk by Gas Chromatography–Mass Spectrometry. Int. J. Food Sci. Nutr. 2016, 67(6), 632–640. DOI: 10.1080/09637486.2016.1195798.
  • Li, N.; Sun, B. G.; Zheng, F. P.; Chen, H. T.; Liu, S. Y.; Gu, C.; Song, Z. Y. Identification of Volatile Components in Yak Butter Using SAFE, SDE and HS-SPME-GC/MS. Nat. Prod. Res. 2012, 26(8), 778–784. DOI: 10.1080/14786419.2011.561492.
  • Vallejo-Cordoba, B.; Nakai, S. Keeping-Quality Assessment of Pasteurized Milk by Multivariate-Analysis of Dynamic Headspace Gas-Chromatographic Data .1. Shelf-Life Prediction by Principal Component Regression. J. Agric. Food Chem. 1994, 42(4), 989–993. DOI: 10.1021/jf00040a029.
  • Stanimirova, I.; Üstün, B.; Cajka, T.; Riddelova, K.; Hajslova, J.; Buydens, L. M. C.; Walczak, B. Tracing the Geographical Origin of Honeys Based on Volatile Compounds Profiles Assessment Using Pattern Recognition Techniques. Food Chem. 2010, 118(1), 171–176. DOI: 10.1016/j.foodchem.2009.04.079.
  • Beitlich, N.; Koelling-Speer, I.; Oelschlaegel, S.; Speer, K. Differentiation of Manuka Honey from Kanuka Honey and from Jelly Bush Honey Using HS-SPME-GC/MS and UHPLC-PDA-MS/MS. J. Agric. Food Chem. 2014, 62(27), 6435–6444. DOI: 10.1021/jf501818f.
  • Aliferis, K.; Tarantilis, P.; Harizanis, P.; Alissandrakis, E. Botanical Discrimination and Classification of Honey Samples Applying Gas Chromatography/Mass Spectrometry Fingerprinting of Headspace Volatile Compounds. Food Chem. 2010, 121(3), 856–862. DOI: 10.1016/j.foodchem.2009.12.098.
  • Cotte, J. F.; Casabianca, H.; Chardon, S.; Lheritier, J.; Grenier-Loustalot, M. F. Application of Carbohydrate Analysis to Verify Honey Authenticity. J. Chromatogr. A. 2003, 1021(1–2), 145–155. DOI: 10.1016/j.chroma.2003.09.005.
  • Cotte, J. F.; Casabianca, H.; Chardon, S.; Lheritier, J.; Grenier-Loustalot, M. F. Chromatographic Analysis of Sugars Applied to the Characterisation of Monofloral Honey. Anal. Bioanal. Chem. 2004, 380(4), 698–705. DOI: 10.1007/s00216-004-2764-1.
  • Cuevas-Glory, L.; Ortiz-Vázquez, E.; Pino, J. A.; Sauri-Duch, E. Floral Classification of Yucatan Peninsula Honeys by PCA & HS-SPME/GC-MS of Volatile Compounds. Int. J. Food Sci. Technol. 2012, 47(7), 1378–1383. DOI: 10.1111/j.1365-2621.2012.02983.x.
  • Lammertyn, J.; Veraverbeke, E. A.; Irudayaraj, J. ZNoseTM Technology for the Classification of Honey Based on Rapid Aroma Profiling. Sens. Actuators B Chem. 2004, 98(1), 54–62. DOI: 10.1016/j.snb.2003.09.012.
  • Sanz, M. L.; Gonzalez, M.; De Lorenzo, C.; Sanz, J.; Martínez-Castro, I. A Contribution to the Differentiation between Nectar Honey and Honeydew Honey. Food Chem. 2005, 91(2), 313–317. DOI: 10.1016/j.foodchem.2004.06.013.
  • Soria, A. C.; González, M.; De Lorenzo, C.; Martínez-Castro, I.; Sanz, J. Estimation of the Honeydew Ratio in Honey Samples from Their Physicochemical Data and from Their Volatile Composition Obtained by SPME and GC-MS. J. Sci. Food Agric. 2005, 85(5), 817–824. DOI: 10.1002/jsfa.1890.
  • Soria, A. C.; Martínez-Castro, I.; Sanz, J. Study of the Precision in the Purge-and-Trap-Gas Chromatography-Mass Spectrometry Analysis of Volatile Compounds in Honey. J. Chromatogr. A. 2009, 1216(15), 3300–3304. DOI: 10.1016/j.chroma.2009.01.065.
  • Guo, J.; Yue, T.; Yuan, Y. Feature Selection and Recognition from Nonspecific Volatile Profiles for Discrimination of Apple Juices according to Variety and Geographical Origin. J. Food Sci. 2012, 77, 10. DOI: 10.1111/j.1750-3841.2012.02914.x.
  • Malheiro, R.; Guedes de Pinho, P.; Soares, S.; César Da Silva Ferreira, A.; Baptista, P. Volatile Biomarkers for Wild Mushrooms Species Discrimination. Food Res. Int. 2013, 54(1), 186–194. DOI: 10.1016/j.foodres.2013.06.010.
  • Shepherd, L. V. T.; Hackett, C. A.; Alexander, C. J.; Sungurtas, J. A.; Pont, S. D. A.; Stewart, D.; McNicol, J. W.; Wilcockson, S. J.; Leifert, C.; Davies, H. V. Effect of Agricultural Production Systems on the Potato Metabolome. Metabolomics. 2014, 10(2), 212–224. DOI: 10.1007/s11306-013-0573-2.
  • Feudo, G. L.; Macchione, B.; Naccarato, A.; Sindona, G.; Tagarelli, A. The Volatile Fraction Profiling of Fresh Tomatoes and Triple Concentrate Tomato Pastes as Parameter for the Determination of Geographical Origin. Food Res. Int. 2011, 44(3), 781–788. DOI: 10.1016/j.foodres.2011.01.017.
  • Huang, L. F.; Wu, M. J.; Zhong, K. J.; Sun, X. J.; Liang, Y. Z.; Dai, Y. H.; Huang, K. L.; Guo, F. Q. Fingerprint Developing of Coffee Flavor by Gas Chromatography-Mass Spectrometry and Combined Chemometrics Methods. Anal. Chim. Acta. 2007, 588(2), 216–223. DOI: 10.1016/j.aca.2007.02.013.
  • Oliveira, R. C. S.; Oliveira, L. S.; Franca, A. S.; Augusti, R. Evaluation of the Potential of SPME-GC-MS and Chemometrics to Detect Adulteration of Ground Roasted Coffee with Roasted Barley. J. Food Compos. Anal. 2009, 22(3), 257–261. DOI: 10.1016/j.jfca.2008.10.015.
  • Hovell, A. M. C.; Pereira, E. J.; Arruda, N. P.; Rezende, C. M. Evaluation of Alignment Methods and Data Pretreatments on the Determination of the Most Important Peaks for the Discrimination of Coffee Varieties Arabica and Robusta Using Gas Chromatography-Mass Spectroscopy. Anal. Chim. Acta. 2010, 678(2), 160–168. DOI: 10.1016/j.aca.2010.08.029.
  • Ribeiro, J. S.; Augusto, F.; Salva, T. J. G.; Ferreira, M. M. C. Prediction Models for Arabica Coffee Beverage Quality Based on Aroma Analyses and Chemometrics. Talanta. 2012, 101, 253–260. DOI: 10.1016/j.talanta.2012.09.022.
  • Toledo, B. R.; Hantao, L. W.; Ho, T. D.; Augusto, F.; Anderson, J. L. A Chemometric Approach toward the Detection and Quantification of Coffee Adulteration by Solid-Phase Microextraction Using Polymeric Ionic Liquid Sorbent Coatings. J. Chromatogr. A. 2014, 1346, 1–7. DOI: 10.1016/j.chroma.2014.04.035.
  • Jumhawan, U.; Putri, S. P.; Yusianto, R.; Bamba, T.; Fukusaki, E. Quantification of Coffee Blends for Authentication of Asian Palm Civet Coffee (kopi Luwak) via Metabolomics: A Proof of Concept. J. Biosci. Bioeng. 2016, 122(1), 79–84. DOI: 10.1016/j.jbiosc.2015.12.008.
  • Pongsuwan, W.; Bamba, T.; Yonetani, T.; Kobayashi, A.; Fukusaki, E. Quality Prediction of Japanese Green Tea Using Pyrolyzer Coupled GC/MS Based Metabolic Fingerprinting. J. Agric. Food Chem. 2008, 56(3), 744–750. DOI: 10.1021/jf072791v.
  • Jumtee, K.; Komura, H.; Bamba, T.; Fukusaki, E. Predication of Japanese Green Tea (sen-cha) Ranking by Volatile Profiling Using Gas Chromatography Mass Spectrometry and Multivariate Analysis. J. Biosci. Bioeng. 2011, 112(3), 252–255. DOI: 10.1016/j.jbiosc.2011.05.008.
  • Jumtee, K.; Bamba, T.; Fukusaki, E. Fast GC-FID Based Metabolic Fingerprinting of Japanese Green Tea Leaf for Its Quality Ranking Prediction. J. Sep. Sci. 2009, 32(13), 2296–2304. DOI: 10.1002/jssc.200900096.
  • Ye, N.; Zhang, L.; Gu, X. Discrimination of Green Teas from Different Geographical Origins by Using HS-SPME/GC-MS and Pattern Recognition Methods. Food Anal. Methods. 2012, 5(4), 856–860. DOI: 10.1007/s12161-011-9319-9.
  • Tredoux, A.; de Villiers, A.; M Jek, P.; Lynen, F. D. R.; Crouch, A.; Sandra, P. Stir Bar Sorptive Extraction Combined with GC-MS Analysis and Chemometric Methods for the Classification of South African Wines according to the Volatile Composition. J. Agric. Food Chem. 2008, 56, 4286–4296. DOI: 10.1021/jf0734673.
  • Louw, L.; Roux, K.; Tredoux, A.; Tomic, O.; Naes, T.; Nieuwoudt, H. H.; Van Rensburg, P. Characterization of Selected South African Young Cultivar Wines Using FTMIR Spectroscopy, Gas Chromatography, and Multivariate Data Analysis. J. Agric. Food Chem. 2009, 57(7), 2623–2632. DOI: 10.1021/jf8037456.
  • Skogerson, K.; Runnebaum, R.; Wohlgemuth, G.; de Ropp, J.; Heymann, H.; Fiehn, O. Comparison of Gas Chromatography-Coupled Time-Of-Flight Mass Spectrometry and 1H Nuclear Magnetic Resonance Spectroscopy Metabolite Identification in White Wines from a Sensory Study Investigating Wine Body. J. Agric. Food Chem. 2009, 57(15), 6899–6907. DOI: 10.1021/jf9019322.
  • Kruzlicova, D.; Mocak, J.; Balla, B.; Petka, J.; Farkova, M.; Havel, J. Classification of Slovak White Wines Using Artificial Neural Networks and Discriminant Techniques. Food Chem. 2009, 112(4), 1046–1052. DOI: 10.1016/j.foodchem.2008.06.047.
  • Dall’Asta, C.; Cirlini, M.; Morini, E.; Galaverna, G. Brand-Dependent Volatile Fingerprinting of Italian Wines from Valpolicella. J. Chromatogr. A. 2011, 1218(42), 7557–7565. DOI: 10.1016/j.chroma.2011.08.042.
  • Salvatore, E.; Bevilacqua, M.; Bro, R.; Marini, F.; Cocchi, M. Classification Methods of Multiway Arrays as a Basic Tool for Food PDO Authentication. Compr. Anal. Chem. 2013, 60, 339–382. DOI: 10.1016/B978-0-444-59562-1.00014-1.
  • Springer, A. E.; Riedl, J.; Esslinger, S.; Roth, T.; Glomb, M. A.; Fauhl-Hassek, C. Validated Modeling for German White Wine Varietal Authentication Based on Headspace Solid-Phase Microextraction Online Coupled with Gas Chromatography Mass Spectrometry Fingerprinting. J. Agric. Food Chem. 2014, 62(28), 6844–6851. DOI: 10.1021/jf502042c.
  • Xiao, Z.; Liu, S.; Gu, Y.; Xu, N.; Shang, Y.; Zhu, J. Discrimination of Cherry Wines Based on Their Sensory Properties and Aromatic Fingerprinting Using HS-SPME-GC-MS and Multivariate Analysis. J. Food Sci. 2014, 79(3). DOI: 10.1111/1750-3841.12362.
  • Wang, M. F.; Lian, H. Z.; Mao, L.; Zhou, J. P.; Gong, H. J.; Qian, B. Y.; Fang, Y.; Li, J. Comparison of Various Extraction Methods for Policosanol from Rice Bran Wax and Establishment of Chromatographic Fingerprint of Policosanol. J. Agric. Food Chem. 2007, 55(14), 5552–5558. DOI: 10.1021/jf063623q.
  • Ačanski, M. M.; Vujić, D. N. Comparing Sugar Components of Cereal and Pseudocereal Flour by GC-MS Analysis. Food Chem. 2014, 145, 743–748. DOI: 10.1016/j.foodchem.2013.08.138.
  • Fărcaş, A. C.; Socaci, S. A.; Dulf, F. V.; Tofană, M.; Mudura, E.; Diaconeasa, Z. Volatile Profile, Fatty Acids Composition and Total Phenolics Content of Brewers’ Spent Grain by-Product with Potential Use in the Development of New Functional Foods. J. Cereal Sci. 2015, 64, 34–42. DOI: 10.1016/j.jcs.2015.04.003.
  • Balasubramanian, S.; Panigrahi, S.; Kottapalli, B.; Wolf-Hall, C. E. Evaluation of an Artificial Olfactory System for Grain Quality Discrimination. LWT - Food Sci. Technol. 2007, 40(10), 1815–1825. DOI: 10.1016/j.lwt.2006.12.016.
  • Tres, A.; Heenan, S. P.; van Ruth, S. Authentication of Dried Distilled Grain with Solubles (DDGS) by Fatty Acid and Volatile Profiling. LWT - Food Sci. Technol. 2014, 59(1), 215–221. DOI: 10.1016/j.lwt.2014.05.044.
  • Dziedzic, K.; Szwengiel, A.; Górecka, D.; Rudzińska, M.; Korczak, J.; Walkowiak, J. The Effect of Processing on the Phytosterol Content in Buckwheat Groats and By-Products. J. Cereal Sci. 2016, 69, 25–31. DOI: 10.1016/j.jcs.2016.02.003.
  • Bellato, S.; Ciccoritti, R.; Del Frate, V.; Sgrulletta, D.; Carbone, K. Influence of Genotype and Environment on the Content of 5-n Alkylresorcinols, Total Phenols and on the Antiradical Activity of Whole Durum Wheat Grains. J. Cereal Sci. 2013, 57(2), 162–169. DOI: 10.1016/j.jcs.2012.11.003.
  • Paolesse, R.; Alimelli, A.; Martinelli, E.; Di Natale, C.; D’Amico, A.; D’Egidio, M. G.; Aureli, G.; Ricelli, A.; Fanelli, C. Detection of Fungal Contamination of Cereal Grain Samples by an Electronic Nose. Sens. Actuators B Chem. 2006, 119(2), 425–430. DOI: 10.1016/j.snb.2005.12.047.
  • Nurmi, T.; Lampi, A. M.; Nyström, L.; Hemery, Y.; Rouau, X.; Piironen, V. Distribution and Composition of Phytosterols and Steryl Ferulates in Wheat Grain and Bran Fractions. J. Cereal Sci. 2012, 56(2), 379–388. DOI: 10.1016/j.jcs.2012.04.010.
  • Banach, U.; Tiebe, C.; Hübert, T. Multigas Sensors for the Quality Control of Spice Mixtures. Food Control. 2012, 26(1), 23–27. DOI: 10.1016/j.foodcont.2012.01.015.
  • Matsushita, T.; Zhao, J. J.; Igura, N.; Shimoda, M. Authentication of Commercial Spices Based on the Similarities between Gas Chromatographic Fingerprints. J. Sci. Food Agric. 2018, 98(8), 2989–3000. DOI: 10.1002/jsfa.8797.
  • Sgorbini, B.; Bicchi, C.; Cagliero, C.; Cordero, C.; Liberto, E.; Rubiolo, P. Herbs and Spices: Characterization and Quantitation of Biologically-Active Markers for Routine Quality Control by Multiple Headspace Solid-Phase Microextraction Combined with Separative or Non-Separative Analysis. J. Chromatogr. A. 2015, 1376, 9–17. DOI: 10.1016/j.chroma.2014.12.007.
  • Carmona, M.; Martínez, J.; Zalacain, A.; Rodríguez-Méndez, M. L.; De Saja, J. A.; Alonso, G. L. Analysis of Saffron Volatile Fraction by TD-GC-MS and e-Nose. Eur. Food Res. Technol. 2006, 223(1), 96–101. DOI: 10.1007/s00217-005-0144-5.
  • Piggott, J. R.; Othman, Z. Effect of Irradiation on Volatile Oils of Black Pepper. Food Chem. 1993, 46(2), 115–119. DOI: 10.1016/0308-8146(93)90022-8.
  • Surowiec, I.; Fraser, P. D.; Patel, R.; Halket, J.; Bramley, P. M. Metabolomic Approach for the Detection of Mechanically Recovered Meat in Food Products. Food Chem. 2011, 125(4), 1468–1475. DOI: 10.1016/j.foodchem.2010.10.064.
  • Górska-Horczyczak, E.; Horczyczak, M.; Guzek, D.; Wojtasik-Kalinowska, I.; Wierzbicka, A. Chromatographic Fingerprints Supported by Artificial Neural Network for Differentiation of Fresh and Frozen Pork. Food Control. 2017, 73, 237–244. DOI: 10.1016/j.foodcont.2016.08.010.
  • Coltro, W. K. T.; Ferreira, M. M. C.; MacEdo, F. A. F.; Oliveira, C. C.; Visentainer, J. V.; Souza, N. E.; Matsushita, M. Correlation of Animal Diet and Fatty Acid Content in Young Goat Meat by Gas Chromatography and Chemometrics. Meat Sci. 2005, 71(2), 358–363. DOI: 10.1016/j.meatsci.2005.04.016.
  • Mushi, D. E.; Thomassen, M. S.; Kifaro, G. C.; Eik, L. O. Fatty Acid Composition of Minced Meat, Longissimus Muscle and Omental Fat from Small East African Goats Finished on Different Levels of Concentrate Supplementation. Meat Sci. 2010, 86(2), 337–342. DOI: 10.1016/j.meatsci.2010.05.006.
  • Rajamäki, T.; Alakomi, H.-L.; Ritvanen, T.; Skyttä, E.; Smolander, M.; Ahvenainen, R. Application of an Electronic Nose for Quality Assessment of Modified Atmosphere Packaged Poultry Meat. Food Control. 2006, 17(1), 5–13. DOI: 10.1016/j.foodcont.2004.08.002.
  • Raes, K.; Balcaen, A.; Dirinck, P.; De Winne, A.; Claeys, E.; Demeyer, D.; De Smet, S. Meat Quality, Fatty Acid Composition and Flavour Analysis in Belgian Retail Beef. Meat Sci. 2003, 65(4), 1237–1246. DOI: 10.1016/S0309-1740(03)00031-7.
  • Nurjuliana, M.; Che Man, Y. B.; Mat Hashim, D.; Mohamed, A. K. S. Rapid Identification of Pork for Halal Authentication Using the Electronic Nose and Gas Chromatography Mass Spectrometer with Headspace Analyzer. Meat Sci. 2011, 88(4), 638–644. DOI: 10.1016/j.meatsci.2011.02.022.
  • Sivadier, G.; Ratel, J.; Bouvier, F.; Engel, E. Authentication of Meat Products: Determination of Animal Feeding by Parallel GC-MS Analysis of Three Adipose Tissues. J. Agric. Food Chem. 2008, 56(21), 9803–9812. DOI: 10.1021/jf801276b.
  • Sánchez-Peña, C. M.; Luna, G.; García-González, D. L.; Aparicio, R. Characterization of French and Spanish Dry-Cured Hams: Influence of the Volatiles from the Muscles and the Subcutaneous Fat Quantified by SPME-GC. Meat Sci. 2005, 69(4), 635–645. DOI: 10.1016/j.meatsci.2004.10.015.
  • Esteki, M.; Farajmand, B.; Amanifar, S.; Barkhordari, R.; Ahadiyan, Z.; Dashtaki, E.; Mohammadlou, M.; Vander Heyden, Y. Classification and Authentication of Iranian Walnuts according to Their Geographical Origin Based on Gas Chromatographic Fatty Acid Fingerprint Analysis Using Pattern Recognition Methods. Chemom. Intell. Lab. Syst. 2017, 171, 251–258. DOI: 10.1016/j.chemolab.2017.10.014.
  • Zunin, P.; Leardi, R.; Boggia, R. Application of Headspace Sorptive Extraction and Gas Chromatographic/Mass Spectrometric and Chemometric Methods to the Quantification of Pine Nuts and Pecorino in Pesto Genovese. J. AOAC Int. 2009, 92(5), 1526–1530.
  • Sinanoglou, V. J.; Strati, I. F.; Kokkotou, K.; Lantzouraki, D.; Makris, C.; Zoumpoulakis, P. GC-FID and NMR Spectroscopic Studies on Gamma Irradiated Walnut Lipids. J. Spectrosc. 2015, 2015, 1–10. DOI: 10.1155/2015/532762.
  • Pastorelli, S.; Torri, L.; Rodriguez, A.; Valzacchi, S.; Limbo, S.; Simoneau, C. Solid-Phase Micro-Extraction (SPME-GC) and Sensors as Rapid Methods for Monitoring Lipid Oxidation in Nuts. Food Addit. Contam. 2007, 24(11), 1219–1225. DOI: 10.1080/02652030701426987.
  • San Román, I.; Bartolomé, L.; Gee, W. S.; Alonso, R. M.; Beck, J. J. Comparison of Ex Situ Volatile Emissions from Intact and Mechanically Damaged Walnuts. Food Res. Int. 2015, 72, 198–207. DOI: 10.1016/j.foodres.2015.04.009.
  • Kendirci, P.; Onoǧur, T. A. Investigation of Volatile Compounds and Characterization of Flavor Profiles of Fresh Pistachio Nuts (pistacia Vera L.). Int. J. Food Prop. 2011, 14(2), 319–330. DOI: 10.1080/10942910903177830.
  • Park, M. K.; Cho, I. H.; Lee, S.; Choi, H. K.; Kwon, D. Y.; Kim, Y. S. Metabolite Profiling of Cheonggukjang, a Fermented Soybean Paste, during Fermentation by Gas Chromatography-Mass Spectrometry and Principal Component Analysis. Food Chem. 2010, 122(4), 1313–1319. DOI: 10.1016/j.foodchem.2010.03.095.
  • Taneva, S.; Momchilov, S.; Marekov, I.; Blagoeva, E.; Nikolova, M. Free and Esterified Sterols in Walnuts and Hazelnuts in Three Stages during Kernel Development. Tome. 2013, 66(12), 1681–1688.
  • Parastar, H.; Jalali-Heravi, M.; Sereshti, H.; Mani-Varnosfaderani, A. Chromatographic Fingerprint Analysis of Secondary Metabolites in Citrus Fruits Peels Using Gas Chromatography-Mass Spectrometry Combined with Advanced Chemometric Methods. J. Chromatogr. A. 2012, 1251, 176–187. DOI: 10.1016/j.chroma.2012.06.011.
  • Aprea, E.; Gika, H.; Carlin, S.; Theodoridis, G.; Vrhovsek, U.; Mattivi, F. Metabolite Profiling on Apple Volatile Content Based on Solid Phase Microextraction and Gas-Chromatography Time of Flight Mass Spectrometry. J. Chromatogr. A. 2011, 1218(28), 4517–4524. DOI: 10.1016/j.chroma.2011.05.019.
  • Steingass, C. B.; Langen, J.; Carle, R.; Schmarr, H. G. Authentication of Pineapple (ananas Comosus [L.] Merr.) Fruit Maturity Stages by Quantitative Analysis of γ- and δ-Lactones Using Headspace Solid-Phase Microextraction and Chirospecific Gas Chromatography-Selected Ion Monitoring Mass Spectrometry (HS-SPME). Food Chem. 2014, 168, 496–503. DOI: 10.1016/j.foodchem.2014.07.071.
  • Esteki, M.; Farajmand, B.; Kolahderazi, Y.; Simal-Gandara, J. Chromatographic Fingerprinting with Multivariate Data Analysis for Detection and Quantification of Apricot Kernel in Almond Powder. Food Anal. Methods. 2017, 10(10), 3312–3320. DOI: 10.1007/s12161-017-0903-5.
  • Song, S.; Zhang, X.; Hayat, K.; Xiao, Z.; Niu, Y.; Eric, K. Coordinating Fingerprint Determination of Solid-Phase Microextraction/Gas Chromatography-Mass Spectrometry and Chemometric Methods for Quality Control of Oxidized Tallow. J. Chromatogr. A. 2013, 1278, 145–152. DOI: 10.1016/j.chroma.2012.12.062.
  • Bhatia, A.; Bharti, S. K.; Tewari, S. K.; Sidhu, O. P.; Roy, R. Metabolic Profiling for Studying Chemotype Variations in Withania Somnifera (L.) Dunal Fruits Using GC-MS and NMR Spectroscopy. Phytochemistry. 2013, 93, 105–115. DOI: 10.1016/j.phytochem.2013.03.013.
  • Farag, M. A.; Mohsen, M.; Heinke, R.; Wessjohann, L. A. Metabolomic Fingerprints of 21 Date Palm Fruit Varieties from Egypt Using UPLC/PDA/ESI-QTOF-MS and GC-MS Analyzed by Chemometrics. Food Res. Int. 2014, 64, 218–226. DOI: 10.1016/j.foodres.2014.06.021.
  • Biais, B.; Allwood, J. W.; Deborde, C.; Xu, Y.; Maucourt, M.; Beauvoit, B.; Dunn, W. B.; Jacob, D.; Goodacre, R.; Rolin, D.;; et al. 1H NMR, GC-EI-TOFMS, and Data Set Correlation for Fruit Metabolomics: Application to Spatial Metabolite Analysis in Melon. Anal. Chem. 2009, 81(8), 2884–2894. DOI: 10.1021/ac9001996.
  • Luengwilai, K.; Saltveit, M.; Beckles, D. M. Metabolite Content of Harvested Micro-Tom Tomato (solanum Lycopersicum L.) Fruit Is Altered by Chilling and Protective Heat-Shock Treatments as Shown by GC-MS Metabolic Profiling. Postharvest Biol. Technol. 2012, 63(1), 116–122. DOI: 10.1016/j.postharvbio.2011.05.014.
  • Chaparro-Torres, L. A.; Bueso, M. C.; Fernández-Trujillo, J. P. Aroma Volatiles Obtained at Harvest by HS-SPME/GC-MS and INDEX/MS-E-Nose Fingerprint Discriminate Climacteric Behaviour in Melon Fruit. J. Sci. Food Agric. 2016, 96(7), 2352–2365. DOI: 10.1002/jsfa.7350.
  • Moalemiyan, M.; Vikram, A.; Kushalappa, A. C. Detection and Discrimination of Two Fungal Diseases of Mango (cv. Keitt) Fruits Based on Volatile Metabolite Profiles Using GC/MS. Postharvest Biol. Technol. 2007, 45(1), 117–125. DOI: 10.1016/j.postharvbio.2006.08.020.
  • Reid, L. M.; O’Donnell, C. P.; Downey, G. Potential of SPME-GC and Chemometrics to Detect Adulteration of Soft Fruit Purées. J. Agric. Food Chem. 2004, 52(3), 421–427. DOI: 10.1021/jf034962b.
  • Steingass, C. B.; Carle, R.; Schmarr, H.-G. Ripening-Dependent Metabolic Changes in the Volatiles of Pineapple (ananas Comosus (L.) Merr.) Fruit: I. Characterization of Pineapple Aroma Compounds by Comprehensive Two-Dimensional Gas Chromatography-Mass Spectrometry. Anal. Bioanal. Chem. 2015, 407(9). DOI: 10.1007/s00216-015-8474-z.
  • Supriyadi, A.; Shimizu, K.; Suzuki, M.; Yoshida, K.; Muto, T.; Fujita, A.; Tomita, N.; Watanabe, N. Maturity Discrimination of Snake Fruit (salacca Edulis Reinw.) Cv. Pondoh Based on Volatiles Analysis Using an Electronic Nose Device Equipped with a Sensor Array and Fingerprint Mass Spectrometry. Flavour Fragr. J. 2004, 19(1), 44–50. DOI: 10.1002/ffj.1272.
  • Tian, H.; Zhan, P.; Deng, Z.; Yan, H.; Zhu, X. Development of a Flavour Fingerprint by GC-MS and GC-O Combined with Chemometric Methods for the Quality Control of Korla Pear (pyrus Serotina Reld). Int. J. Food Sci. Technol. 2014, 49(12), 2546–2552. DOI: 10.1111/ijfs.12584.
  • Xue, S. Y.; Li, Z. Y.; Zhi, H. J.; Sun, H. F.; Zhang, L. Z.; Guo, X. Q.; Qin, X. M. Metabolic Fingerprinting Investigation of Tussilago Farfara L. By GC-MS and Multivariate Data Analysis. Biochem. Syst. Ecol. 2012, 41, 6–12. DOI: 10.1016/j.bse.2011.11.003.
  • Chun, M.-H.; Kim, E. K.; Lee, K. R.; Jung, J. H.; Hong, J. Quality Control of Schizonepeta Tenuifolia Briq by Solid-Phase Microextraction Gas Chromatography/Mass Spectrometry and Principal Component Analysis. Microchem. J. 2010, 95(1), 25–31. DOI: 10.1016/j.microc.2009.09.009.
  • Li, M.; Zhou, X.; Zhao, Y.; Wang, D.-P.; Hu, X.-N. Quality Assessment of Curcuma Longa L. By Gas Chromatography-Mass Spectrometry Fingerprint, Principle Components Analysis and Hierarchical Clustering Analysis. Bull. Korean Chem. Soc. 2009, 30(10). DOI: 10.5012/bkcs.2009.30.10.2287.
  • Farag, M. A.; Porzel, A.; Wessjohann, L. A. Comparative Metabolite Profiling and Fingerprinting of Medicinal Licorice Roots Using a Multiplex Approach of GC-MS, LC-MS and 1D NMR Techniques. Phytochemistry. 2012, 76, 60–72. DOI: 10.1016/j.phytochem.2011.12.010.
  • Qiu, Y.; Lu, X.; Pang, T.; Zhu, S.; Kong, H.; Xu, G. Study of Traditional Chinese Medicine Volatile Oils from Different Geographical Origins by Comprehensive Two-Dimensional Gas Chromatography-Time-Of-Flight Mass Spectrometry (GC × GC-TOFMS) in Combination with Multivariate Analysis. J. Pharm. Biomed. Anal. 2007, 43(5), 1721–1727. DOI: 10.1016/j.jpba.2007.01.013.
  • Rubiolo, P.; Belliardo, F.; Cordero, C.; Liberto, E.; Sgorbini, B.; Bicchi, C. Headspace - Solid-Phase Microextraction Fast GC in Combination with Principal Component Analysis as a Tool to Classify Different Chemotypes of Chamomile Flower-Heads (matricaria Recutita L.). Phytochem. Anal. 2006, 17(4), 217–225. DOI: 10.1002/pca.919.
  • Tianniam, S.; Tarachiwin, L.; Bamba, T.; Kobayashi, A.; Fukusaki, E. Metabolic Profiling of Angelica Acutiloba Roots Utilizing Gas Chromatography–Time-Of-Flight–Mass Spectrometry for Quality Assessment Based on Cultivation Area and Cultivar via Multivariate Pattern Recognition. J. Biosci. Bioeng. 2008, 105(6), 655–659. DOI: 10.1263/jbb.105.655.
  • Cocchi, M.; Durante, C.; Grandi, M.; Manzini, D.; Marchetti, A. Three-Way Principal Component Analysis of the Volatile Fraction by HS-SPME/GC of Aceto Balsamico Tradizionale of Modena. Talanta. 2008, 74(4), 547–554. DOI: 10.1016/j.talanta.2007.06.016.
  • Cocchi, M.; Durante, C.; Foca, G.; Manzini, D.; Marchetti, A.; Ulrici, A. Application of a Wavelet-Based Algorithm on HS-SPME/GC Signals for the Classification of Balsamic Vinegars. Chemom. Intell. Lab. Syst. 2004, 71(2), 129–140. DOI: 10.1016/j.chemolab.2004.01.004.
  • Durante, C.; Cocchi, M.; Grandi, M.; Marchetti, A.; Bro, R. Application of N-PLS to Gas Chromatographic and Sensory Data of Traditional Balsamic Vinegars of Modena. Chemom. Intell. Lab. Syst. 2006, 83(1), 54–65. DOI: 10.1016/j.chemolab.2006.01.004.
  • Pereira, P. C.;. Milk Nutritional Composition and Its Role in Human Health. Nutrition. 2014, 30(6), 619–627. DOI: 10.1016/j.nut.2013.10.011.
  • Filazi, A.; Sireli, U. T.; Ekici, H.; Can, H. Y.; Karagoz, A. Determination of Melamine in Milk and Dairy Products by High Performance Liquid Chromatography. J. Dairy Sci. 2012, 95(2), 602–608. DOI: 10.3168/jds.2011-4926.
  • Haasnoot, W.; Marchesini, G. R.; Koopal, K. Spreeta-Based Biosensor Immunoassays to Detect Fraudulent Adulteration in Milk and Milk Powder. J. AOAC Int. 2006, 89(3), 849–855.
  • Nirwal, S.; Pant, R.; Rai, N. Analysis of Milk Quality, Adulteration and Mastitis in Milk Samples Collected from Different Regions of Dehradun. Int. J. PharmTech Res. 2013, 5(2), 359–364.
  • Drivelos, S. A.; Georgiou, C. A. Multi-Element and Multi-Isotope-Ratio Analysis to Determine the Geographical Origin of Foods in the European Union. TrAC - Trends Anal. Chem. 2012, 40, 38–51. DOI: 10.1016/j.trac.2012.08.003.
  • Sato, T.; Kawano, S.; Iwamoto, M. Detection of Foreign Fat Adulteration of Milk Fat by near Infrared Spectroscopic Method. J. Dairy Sci. 1990, 73(12), 3408–3413. DOI: 10.3168/jds.S0022-0302(90)79037-6.
  • Frega, N.; Bocci, F.; Lercker, G. High Resolution Gas Chromatographic Method for Determination of Robusta Coffee in Commercial Blends. J. High Resolut. Chromatogr. 1994, 17(5), 303–307. DOI: 10.1002/jhrc.1240170504.
  • Downey, G.; Briandet, R.; Wilson, R. H.; Kemsley, E. K. Near- and Mid-Infrared Spectroscopies in Food Authentication: Coffee Varietal Identification. J. Agric. Food Chem. 1997, 45(11), 4357–4361. DOI: 10.1021/jf970337t.
  • Arana, V. A.; Medina, J.; Esseiva, P.; Pazos, D.; Wist, J. Classification of Coffee Beans by GC-C-IRMS, GC-MS, and 1H-NMR. J. Anal. Methods Chem. 2016, 2016. DOI: 10.1155/2016/8564584.
  • Lv, S.-D.; Wu, Y.-S.; Song, Y.-Z.; Zhou, J.-S.; Lian, M.; Wang, C.; Liu, L.; Meng, Q.-X. Multivariate Analysis Based on GC-MS Fingerprint and Volatile Composition for the Quality Evaluation of Pu-Erh Green Tea. Food Anal. Methods. 2014, 8(2), 321–333. DOI: 10.1007/s12161-014-9900-0.
  • Childs, B. C.; Bohlscheid, J. C.; Edwards, C. G. Impact of Available Nitrogen and Sugar Concentration in Musts on Alcoholic Fermentation and Subsequent Wine Spoilage by Brettanomyces Bruxellensis. Food Microbiol. 2015, 46, 604–609. DOI: 10.1016/j.fm.2014.10.006.
  • Fernandes, J. R.; Pereira, L.; Jorge, P.; Moreira, L.; Gonçalves, H.; Coelho, L.; Alexandre, D.; Eiras-Dias, J.; Brazão, J.; Clímaco, P.;; et al. Wine Fingerprinting Using a Bio-Geochemical Approach. BIO Web Conf. 2015, 5, 1–4. DOI: 10.1051/bioconf/20150502021.
  • Goiffon, J. P.; Mouly, P. P.; Gaydou, E. M. Anthocyanic Pigment Determination in Red Fruit Juices, Concentrated Juices and Syrups Using Liquid Chromatography. Anal. Chim. Acta. 1999, 382(1–2), 39–50. DOI: 10.1016/S0003-2670(98)00756-9.
  • Cuevas, F. J.; Pereira-Caro, G.; Moreno-Rojas, J. M.; Muñoz-Redondo, J. M.; Ruiz-Moreno, M. J. Assessment of Premium Organic Orange Juices Authenticity Using HPLC-HR-MS and HS-SPME-GC-MS Combining Data Fusion and Chemometrics. Food Control. 2017, 82, 203–211. DOI: 10.1016/j.foodcont.2017.06.031.
  • Arroyo-Manzanares, N.; Martín-Gómez, A.; Jurado-Campos, N.; Garrido-Delgado, R.; Arce, C.; Arce, L. Target Vs Spectral Fingerprint Data Analysis of Iberian Ham Samples for Avoiding Labelling Fraud Using Headspace – Gas Chromatography–Ion Mobility Spectrometry. Food Chem. 2018, 246, 65–73. DOI: 10.1016/j.foodchem.2017.11.008.
  • Cardeal, Z. L.; de Souza, P. P.; Da Silva, M. D. R. G.; Marriott, P. J. Comprehensive Two-Dimensional Gas Chromatography for Fingerprint Pattern Recognition in Cachaca Production. Talanta. 2008, 74(4), 793–799. DOI: 10.1016/j.talanta.2007.07.021.
  • Ajibola, A.; Chamunorwa, J. P.; Erlwanger, K. H. Nutraceutical Values of Natural Honey and Its Contribution to Human Health and Wealth. Nutr. Metab. 2012, 9(1), 61. DOI: 10.1186/1743-7075-9-61.
  • Solayman, M.; Islam, M. A.; Paul, S.; Ali, Y.; Khalil, M. I.; Alam, N.; Gan, S. H. Physicochemical Properties, Minerals, Trace Elements, and Heavy Metals in Honey of Different Origins: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2016, 15(1), 219–233. DOI: 10.1111/1541-4337.12182.
  • Siddiqui, A. J.; Musharraf, S. G.; Choudhary, M. I.; Rahman, A. Application of Analytical Methods in Authentication and Adulteration of Honey. Food Chem. 2017, 217, 687–698. DOI: 10.1016/j.foodchem.2016.09.001.
  • Gerhardt, N.; Birkenmeier, M.; Schwolow, S.; Rohn, S.; Weller, P. Volatile-Compound Fingerprinting by Headspace-Gas-Chromatography Ion-Mobility Spectrometry (HS-GC-IMS) as a Benchtop Alternative To1H NMR Profiling for Assessment of the Authenticity of Honey. Anal. Chem. 2018, 90(3), 1777–1785. DOI: 10.1021/acs.analchem.7b03748.
  • Aliferis, K. A.; Tarantilis, P. A.; Harizanis, P. C.; Alissandrakis, E. Botanical Discrimination and Classification of Honey Samples Applying Gas Chromatography/Mass Spectrometry Fingerprinting of Headspace Volatile Compounds. Food Chem. 2010, 121(3), 856–862. DOI: 10.1016/j.foodchem.2009.12.098.
  • Zhan, P.; Tian, H.; Sun, B.; Zhang, Y.; Chen, H. Quality Control of Mutton by Using Volatile Compound Fingerprinting Techniques and Chemometric Methods. J. Food Qual. 2017, 2017, 1–8. DOI: 10.1155/2017/9273929.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.