1,074
Views
24
CrossRef citations to date
0
Altmetric
Review

Okra in Food Field: Nutritional Value, Health Benefits and Effects of Processing Methods on Quality

, , , , , , , , , , & show all

References

  • Camciuc, M.; Deplagne, M.; Vilarem, G.; Gaset, A. Okra—Abelmoschus Esculentus L. (Moench.) A Crop with Economic Potential for Set Aside Acreage in France. Ind. Crop Prod. 1998, 7(2–3), 257–264. DOI: 10.1016/S0926-6690(97)00056-3.
  • Kang, B. K.; Jyot, G.; Sharma, R. K.; Battu, R. S.; Singh, B. Persistence of Propargite on Okra under Subtropical Conditions at Ludhiana, Punjab, India. B. Environ. Contam Tox. 2010, 85(4), 414–418. DOI: 10.1007/s00128-010-0098-6.
  • Al-Wandawi, H.;. Chemical Composition of Seeds of Two Okra Cultivars. J. Agric. Food Chem. 1983, 31(6), 1355. DOI: 10.1021/jf00120a051.
  • Adetuyi, F.; Osagie, A. Nutrient, Antinutrient, Mineral and Zinc Bioavailability of Okra Abelmoschus Esculentus (L) Moench Variety. Am. J. Food Nutr. 2011, 1(2), 49–54. DOI: 10.5251/ajfn.2011.1.2.49.54.
  • Ndangui, C. B.; Kimbonguila, A.; Nzikou, J. M.; Matos, L.; Pamboutobi, N. P. G.; Abena, A. A.; Silou, T.; Scher, J.; Desobry, S. Nutritive Composition and Properties Physico-chemical of Gumbo (Abelmoschus Esculentus L.) Seed and Oil. Res. J. Environ. Earth Sci. 2010, 2(1), 49–54.
  • Sami, R.; Lianzhou, J.; Yang, L.; Ma, Y.; Jing, J. Evaluation of Fatty Acid and Amino Acid Compositions in Okra (Abelmoschus esculentus) Grown in Different Geographical Locations. Biomed Res. Int. 2013, 2013, 574283. DOI: 10.1155/2013/574283.
  • Noorlaila, A.; Siti Aziah, A.; Asmeda, R.; Norizzah, A. R. Emulsifying Properties of Extracted Okra (Abelmoschus Esculentus L.) Mucilage of Different Maturity Index and Its Application in Coconut Milk Emulsion. Int. Food Res. J. 2015, 22(2), 782–787.
  • Çalışır, S.; Özcan, M.; Hacıseferoğulları, H.; Yıldız, M. U. A Study on Some Physico-chemical Properties of Turkey Okra (Hibiscus Esculenta L.) Seeds. J. Food Eng. 2005, 68(1), 73–78. DOI: 10.1016/j.jfoodeng.2004.05.023.
  • Ghori, M. U.; Alba, K.; Smith, A. M.; Conway, B. R.; Kontogiorgos, V. Okra Extracts in Pharmaceutical and Food Applications. Food Hydrocolloid. 2014, 42, 342–347. DOI: 10.1016/j.foodhyd.2014.04.024.
  • Liu, I. M.; Tzeng, T. F.; Liou, S. S. Abelmoschus Moschatus (Malvaceae), an Aromatic Plant, Suitable for Medical or Food Uses to Improve Insulin Sensitivity. Phytother Res. 2010, 24(2), 233–239. DOI: 10.1002/ptr.2918.
  • Kumar, S.; Dagnoko, S.; Haougui, A.; Ratnadass, A.; Pasternak, D.; Kouame, C. Okra (Abelmoschus spp.) In West and Central Africa: Potential and Progress on Its Improvement. Afr. J. Agr. Res. 2011, 525(25), 3590–3598. DOI: 10.1017/S1742170510000463.
  • Petropoulos, S.; Fernandes, A.; Barros, L.; Ferreira, I. Chemical Composition, Nutritional Value and Antioxidant Properties of Mediterranean Okra Genotypes in Relation to Harvest Stage. Food Chem. 2018, 242, 466–474. DOI: 10.1016/j.foodchem.2017.09.082.
  • Gemede, H. F.; Haki, G. D.; Beyene, F.; Woldegiorgis, A. Z.; Rakshit, S. K. Proximate, Mineral, and Antinutrient Compositions of Indigenous Okra (Abelmoschus esculentus) Pod Accessions: Implications for Mineral Bioavailability. Food Sci. Nutr. 2016, 4(2), 223–233. DOI: 10.1002/fsn3.282.
  • Rao, P. U.;. Chemical Composition and Biological Evaluation of Okra (Hibiscus esculentus) Seeds and Their Kernels. Plant Food Hum. Nutr. 1985, 35(4), 389–396. DOI: 10.1007/BF01091784.
  • Cook, J. A.; VanderJagt, D. J.; Pastuszyn, A.; Mounkaila, G.; Glew, R. S.; Millson, M.; Glew, R. H. Nutrient and Chemical Composition of 13 Wild Plant Foods of Niger. J Food Compos. Anal. 2000, 13(1), 83–92. DOI: 10.1006/jfca.1999.0843.
  • Kendall, C. W.; Jenkins, D. J. A Dietary Portfolio: Maximal Reduction of Low-density Lipoprotein Cholesterol with Diet. Curr. Atheroscleros. Rep. 2004, 6(6), 492–498. DOI: 10.1007/s11883-004-0091-9.
  • Santini, A.; Novellino, E. Nutraceuticals - Shedding Light on the Grey Area between Pharmaceuticals and Food. Expert Rev. Clin. Pharmacol. 2018, 11(6), 545–547. DOI: 10.1080/17512433.2018.1464911.
  • Santini, A.; Cammarata, S. M.; Capone, G.; Ianaro, A.; Tenore, G. C.; Pani, L.; Novellino, E. Nutraceuticals: Opening the Debate for a Regulatory Framework. Br. J. Clin. Pharmacol. 2018, 84(4), 659–672. DOI: 10.1111/bcp.13496.
  • Santini, A.; Novellino, E.; Armini, V.; Ritieni, A. State of the Art of Ready-To-Use Therapeutic Food: A Tool for Nutraceuticals Addition to Foodstuff. Food Chem. 2013, 140(4), 843–849. DOI: 10.1016/j.foodchem.2012.10.098.
  • Daliu, P.; Santini, A.; Novellino, E. A Decade of Nutraceutical Patents: Where are We Now in 2018? Expert Opin. Ther. Pat. 2018, 28(12), 875–882. DOI: 10.1080/13543776.2018.1552260.
  • Durazzo, A.; D’Addezio, L.; Camilli, E.; Piccinelli, R.; Turrini, A.; Marletta, L.; Marconi, S.; Lucarini, M.; Lisciani, S.; Gabrielli, P.; et al. From Plant Compounds to Botanicals and Back A Current Snapshot. Molecules. 2018, 23(8), 1844. DOI: 10.3390/molecules23071844.
  • Scalbert, A.; Manach, C.; Morand, C.; Remesy, C.; Jimenez, L. Dietary Polyphenols and the Prevention of Diseases. Crit. Rev. Food Sci. Nutr. 2005, 45(4), 287–306. DOI: 10.1080/1040869059096.
  • Pfaltzgraff, L. A.; De Bruyn, M.; Cooper, E. C.; Budarin, V.; Clark, J. H. Food Waste Biomass: A Resource for High-value Chemicals. Green Chem. 2013, 15(2), 307. DOI: 10.1039/c2gc36978h.
  • Wang, K.; Li, M.; Wen, X.; Chen, X.; He, Z.; Ni, Y. Optimization of Ultrasound-assisted Extraction of Okra (Abelmoschus Esculentus (L.) moench) Polysaccharides Based on Response Surface Methodology and Antioxidant Activity. Int. J. Biol. Macromol. 2018, 114, 1056–1063. DOI: 10.1016/j.ijbiomac.2018.03.145.
  • Liu, J.; Zhao, Y.; Wu, Q.; John, A.; Jiang, Y.; Yang, J.; Liu, H.; Yang, B. Structure Characterisation of Polysaccharides in Vegetable “Okra” and Evaluation of Hypoglycemic Activity. Food Chem. 2018, 242, 211–216. DOI: 10.1016/j.foodchem.2017.09.051.
  • Zheng, W.; Zhao, T.; Feng, W.; Wang, W.; Zou, Y.; Zheng, D.; Takase, M.; Li, Q.; Wu, H.; Yang, L.; et al. Purification, Characterization and Immunomodulating Activity of a Polysaccharide from Flowers of Abelmoschus Esculentus. Carbohydr. Polym. 2014, 106, 335–342. DOI: 10.1016/j.carbpol.2014.02.079.
  • Sengkhamparn, N.; Verhoef, R.; Schols, H. A.; Sajjaanantakul, T.; Voragen, A. G. Characterisation of Cell Wall Polysaccharides from Okra (Abelmoschus Esculentus (L.) moench). Carbohydr. Res. 2009, 344(14), 1824–1832. DOI: 10.1016/j.carres.2008.10.012.
  • Nie, X. R.; Li, H. Y.; Du, G.; Lin, S.; Hu, R.; Li, H. Y.; Zhao, L.; Zhang, Q.; Chen, H.; Wu, D. T.; et al. Structural Characteristics, Rheological Properties, and Biological Activities of Polysaccharides from Different Cultivars of Okra (Abelmoschus esculentus) Collected in China. Int. J. Biol. Macromol. 2019, 139, 459–467. DOI: 10.1016/j.ijbiomac.2019.08.016.
  • Liu, S.; Ji, H.; Li, M.; Cheng, Z.; Zhu, J.; Zhao, Y. K.; Guo, X.; Ye, J. Study on the Flavonoids and Pectin Contents in Different Okra (Abelmoschusescullentus L.) Accessions. J. Agric. Sci. Bot. 2017, 1(1), 12–16.
  • Zhang, T.; Xiang, J.; Zheng, G.; Yan, R.; Min, X. Preliminary Characterization and Anti-hyperglycemic Activity of a Pectic Polysaccharide from Okra (Abelmoschus Esculentus (L.) moench). J. Funct. Food. 2018, 41, 19–24. DOI: 10.1016/j.jff.2017.12.028.
  • Sengkhamparn, N.; Bakx, E. J.; Verhoef, R.; Schols, H. A.; Sajjaanantakul, T.; Voragen, A. G. Okra Pectin Contains an Unusual Substitution of Its Rhamnosyl Residues with Acetyl and Alpha-linked Galactosyl Groups. Carbohydr. Res. 2009, 344(14), 1842–1851. DOI: 10.1016/j.carres.2008.11.022.
  • Sengkhamparn, N.; Sagis, L. M. C.; de Vries, R.; Schols, H. A.; Sajjaanantakul, T.; Voragen, A. G. J. Physicochemical Properties of Pectins from Okra (Abelmoschus Esculentus (L.) moench). Food Hydrocolloid. 2010, 24(1), 35–41. DOI: 10.1016/j.foodhyd.2009.07.007.
  • Alba, K.; Laws, A. P.; Kontogiorgos, V. Isolation and Characterization of Acetylated LM-pectins Extracted from Okra Pods. Food Hydrocolloid. 2015, 43, 726–735. DOI: 10.1016/j.foodhyd.2014.08.003.
  • Balasundram, N.; Sundram, K.; Samman, S. Phenolic Compounds in Plants and Agri-industrial By-products: Antioxidant Activity, Occurrence, and Potential Uses. Food Chem. 2006, 99(1), 191–203. DOI: 10.1016/j.foodchem.2005.07.042.
  • Cook, N. C.; Samman, S. Flavonoids—Chemistry, Metabolism, Cardioprotective Effects, and Dietary Sources. J. Nutr. Biochem. 1996, 7(2), 66–76. DOI: 10.1016/S0955-2863(95)00168-9.
  • Arapitsas, P.;. Identification and Quantification of Polyphenolic Compounds from Okra Seeds and Skins. Food Chem. 2008, 110(4), 1041–1045. DOI: 10.1016/j.foodchem.2008.03.014.
  • Mahugo Santana, C.; Sosa Ferrera, Z.; Torres Padron, M. E.; Santana Rodriguez, J. J. Methodologies for the Extraction of Phenolic Compounds from Environmental Samples: New Approaches. Molecules. 2009, 14(1), 298–320. DOI: 10.3390/molecules14010298.
  • Chen, L. Y.; Cheng, C. W.; Liang, J. Y. Effect of Esterification Condensation on the Folin-Ciocalteu Method for the Quantitative Measurement of Total Phenols. Food Chem. 2015, 170, 10–15. DOI: 10.1016/j.foodchem.2014.08.038.
  • Khomsug, P.; Thongjaroenbuangam, W.; Pakdeenarong, N.; Suttajit, M.; Chantiratikul, P. Antioxidative Activities and Phenolic Content of Extracts from Okra (Abelmoschus Esculentus L.). Res. J. Biol. Sci. 2012, 5(4), 310–313. DOI: 10.3923/rjbsci.2010.310.313.
  • Jarret, R. L.; Wang, M. L.; Levy, I. J. Seed Oil and Fatty Acid Content in Okra (Abelmoschus esculentus) and Related Species. J. Agric. Food Chem. 2011, 59(8), 4019–4024. DOI: 10.1021/jf104590u.
  • Clopton, J. R.; Roberts, A.; Jeskey, H. A. Chemical Studies on Oil Bearing Seeds. I. Okra Seed. J. Ame. Oil Chem. Soci. 1948, 25(11), 401–404. DOI: 10.1007/BF02593290.
  • Crossley, A.; Hilditch, T. P. The Fatty Acids and Glycerides of Okra Seed Oil. J. Sci. Food Agr. 1951, 2(6), 251–255. DOI: 10.1002/jsfa.2740020604.
  • Ogungbenle, H. N.; Omosola, S. M. The Comparative Assessment of Nutritive Values of Dry Nigerian Okra (Abelmoschus esculentus) Fruit and Oil. Int. J. Food Sci. Nutr. Eng. 2015, 5(1), 8–14.
  • András, C. D.; Simándi, B.; Örsi, F.; Lambrou, C.; Missopolinou-Tatala, D.; Panayiotou, C.; Domokos, J.; Doleschall, F. Supercritical Carbon Dioxide Extraction of Okra (Hibiscus Esculentus L) Seeds. J. Sci. Food Agr. 2005, 85(8), 1415–1419. DOI: 10.1002/jsfa.2130.
  • Yuan, Q.; Lin, S.; Fu, Y.; Nie, X. R.; Liu, W.; Su, Y.; Han, Q. H.; Zhao, L.; Zhang, Q.; Lin, D. R.; et al. Effects of Extraction Methods on the Physicochemical Characteristics and Biological Activities of Polysaccharides from Okra (Abelmoschus esculentus). Int. J. Biol. Macromol. 2019, 127, 178–186. DOI: 10.1016/j.ijbiomac.2019.01.042.
  • Jin, Y.; Zhang, Y.; Ke, Y. In the Study on Antioxidant Activity and Content of Total Flavonoidsand Total Phenolic in Different Parts of Abelmoschus Esculentus L. Int. Sym. Med. Edu. 2011. DOI: 10.1109/ITiME.2011.6130809.
  • Liao, H.; Dong, W.; Shi, X.; Liu, H.; Yuan, K. Analysis and Comparison of the Active Components and Antioxidant Activities of Extracts from Abelmoschus Esculentus L. Pharmacogn. Mag. 2012, 8(30), 156–161. DOI: 10.4103/0973-1296.96570.
  • Hu, L.; Yu, W.; Li, Y.; Prasad, N.; Tang, Z. Antioxidant Activity of Extract and Its Major Constituents from Okra Seed on Rat Hepatocytes Injured by Carbon Tetrachloride. Biomed Res. Int. 2015, 2014(350), 341291. DOI: 10.1155/2014/341291.
  • Gao, H.; Zhang, W.; Wang, B.; Hui, A.; Du, B.; Wang, T.; Meng, L.; Bian, H.; Wu, Z. Purification, Characterization and Anti-fatigue Activity of Polysaccharide Fractions from Okra (Abelmoschus Esculentus (L.) moench). Food Funct. 2018, 9(2), 1088–1101. DOI: 10.1039/c7fo01821e.
  • Xia, F.; Zhong, Y.; Li, M.; Chang, Q.; Liao, Y.; Liu, X.; Pan, R. Antioxidant and Anti-fatigue Constituents of Okra. Nutrients. 2015, 7(10), 8846–8858. DOI: 10.3390/nu7105435.
  • Sheu, S. C.; Lai, M. H. Composition Analysis and Immuno-modulatory Effect of Okra (Abelmoschus Esculentus L.) Extract. Food Chem. 2012, 134(4), 1906–1911. DOI: 10.1016/j.foodchem.2012.03.110.
  • Chen, H.; Jiao, H.; Cheng, Y.; Xu, K.; Jia, X.; Shi, Q.; Guo, S.; Wang, M.; Du, L.; Wang, F. In Vitro and in Vivo Immunomodulatory Activity of Okra (Abelmoschus Esculentus L.) Polysaccharides. J. Med. Food. 2016, 19(3), 253–265. DOI: 10.1089/jmf.2015.3513.
  • Mairuae, N.; Cheepsunthorn, P.; Cheepsunthorn, C. L.; Tongjaroenbuangam, W. Okra (Abelmoschus Esculentus linn) Inhibits Lipopolysaccharide-induced Inflammatory Mediators in BV2 Microglial Cells. Trop. J. Pharm. Res. 2017, 16(6), 1285. DOI: 10.4314/tjpr.v16i6.11.
  • Vayssade, M.; Sengkhamparn, N.; Verhoef, R.; Delaigue, C.; Goundiam, O.; Vigneron, P.; Voragen, A. G.; Schols, H. A.; Nagel, M. D. Antiproliferative and Proapoptotic Actions of Okra Pectin on B16F10 Melanoma Cells. Phytotherpy Res. 2010, 24(7), 982–989. DOI: 10.1002/ptr.3040.
  • Monte, L. G.; Santi-Gadelha, T.; Reis, L. B.; Braganhol, E.; Prietsch, R. F.; Dellagostin, O. A.; Lacerda, R. R. E.; Gadelha, C. A. A.; Conceição, F. R.; Pinto, L. S. Lectin of Abelmoschus Esculentus (Okra) Promotes Selective Antitumor Effects in Human Breast Cancer Cells. Biotechnol. Lett. 2014, 36(3), 461–469. DOI: 10.1007/s10529-013-1382-4.
  • Sharififar, F.; Moshafi, M. H.; Mansouri, S. H.; Khodashenas, M.; Khoshnoodi, M. In Vitro Evaluation of Antibacterial and Antioxidant Activities of the Essential Oil and Methanol Extract of Endemic Zataria Multiflora Boiss. Food Control. 2007, 18(7), 800–805. DOI: 10.1016/j.foodcont.2006.04.002.
  • Kovatcheva, E. G.; Koleva, I. I.; Ilieva, M.; Pavlov, A.; Mincheva, M.; Konushlieva, M. Antioxidant Activity of Extracts from Lavandula Vera MM Cell Cultures. Food Chem. 2001, 72(3), 295–300. DOI: 10.1016/s0308-8146(00)00229-6.
  • Majd, N.; Azizian, H.; Tabandeh, M.; Shahriari, A. Effect of Abelmoschus Esculentus Powder on Ovarian Histology, Expression of Apoptotic Genes and Oxidative Stress in Diabetic Rats Fed with High Fat Diet. Iran. J. Pharm. Res. 2019, 18(1), 369–382.
  • Ardestani, A.; Yazdanparast, R. Antioxidant and Free Radical Scavenging Potential of Achillea Santolina Extracts. Food Chem. 2007, 104(1), 21–29. DOI: 10.1016/j.foodchem.2006.10.066.
  • Singh, R.; Singh, S.; Kumar, S.; Arora, S. Evaluation of Antioxidant Potential of Ethyl Acetate extract/fractions of Acacia Auriculiformis A. Cunn. Food Chem. Toxicol. 2007, 45(7), 1216–1223. DOI: 10.1016/j.fct.2007.01.002.
  • Guo, H. J.;. Antioxidation of Polysaccharide from Rhodiola Sachalinensis. J. South. Agric. 2013, 44(3), 493–496.
  • Wang, J.; Hu, S.; Nie, S.; Yu, Q.; Xie, M. Reviews on Mechanisms of in Vitro Antioxidant Activity of Polysaccharides. Oxid. Med. Cell. Longev. 2016, 2016, 5692852. DOI: 10.1155/2016/5692852.
  • Mzoughi, Z.; Abdelhamid, A.; Rihouey, C.; Le Cerf, D.; Bouraoui, A.; Majdoub, H. Optimized Extraction of Pectin-like Polysaccharide from Suaeda Fruticosa Leaves: Characterization, Antioxidant, Anti-inflammatory and Analgesic Activities. Carbohydr. Polym. 2018, 185, 127–137. DOI: 10.1016/j.carbpol.2018.01.022.
  • Urias-Orona, V.; Huerta-Oros, J.; Carvajal-Millan, E.; Lizardi-Mendoza, J.; Rascon-Chu, A.; Gardea, A. A. Component Analysis and Free Radicals Scavenging Activity of Cicer Arietinum L. Husk Pectin. Molecules. 2010, 15(10), 6948–6955. DOI: 10.3390/molecules15106948.
  • Kelishomi, Z. H.; Goliaei, B.; Mahdavi, H.; Nikoofar, A.; Rahimi, M.; Moosavi-Movahedi, A. A.; Mamashli, F.; Bigdeli, B. Antioxidant Activity of Low Molecular Weight Alginate Produced by Thermal Treatment. Food Chem. 2016, 196, 897–902. DOI: 10.1016/j.foodchem.2015.09.091.
  • Liu, J.; Wang, X.; Yong, H.; Kan, J.; Jin, C. Recent Advances in Flavonoid-grafted Polysaccharides: Synthesis, Structural Characterization, Bioactivities and Potential Applications. Int. J. Biol. Macromol. 2018, 116, 1011–1025. DOI: 10.1016/j.ijbiomac.2018.05.149.
  • Liu, J.; Wang, X.; Yong, H.; Kan, J.; Zhang, N.; Jin, C. Preparation, Characterization, Digestibility and Antioxidant Activity of Quercetin Grafted Cynanchum Auriculatum Starch. Int. J. Biol. Macromol. 2018, 114, 130–136. DOI: 10.1016/j.ijbiomac.2018.03.101.
  • Han, Q. H.; Liu, W.; Li, H. Y.; He, J. L.; Guo, H.; Lin, S.; Zhao, L.; Chen, H.; Liu, Y. W.; Wu, D. T.; et al. Extraction Optimization, Physicochemical Characteristics, and Antioxidant Activities of Polysaccharides from Kiwifruit (Actinidia Chinensis planch.). Molecules. 2019, 24(3), 461. DOI: 10.3390/molecules24030461.
  • Liao, Z.; Zhang, J.; Liu, B.; Yan, T.; Xu, F.; Xiao, F.; Wu, B.; Bi, K.; Jia, Y. Polysaccharide from Okra (Abelmoschus Esculentus (L.) moench) Improves Antioxidant Capacity via PI3K/AKT Pathways and Nrf2 Translocation in a Type 2 Diabetes Model. Molecules. 2019, 24(10), 1906. DOI: 10.3390/molecules24101906.
  • Dangles, O.;. Antioxidant Activity of Plant Phenols: Chemical Mechanisms and Biological Significance. Curr. Org. Chem. 2012, 16(6), 692–714. DOI: 10.2174/138527212799957995.
  • Geng, S.; Liu, Y.; Ma, H.; Chen, C. Extraction and Antioxidant Activity of Phenolic Compounds from Okra Flowers. Trop. J. Pharm. Res. 2015, 14(5), 807. DOI: 10.4314/tjpr.v14i5.10.
  • Shen, D. D.; Li, X.; Qin, Y. L.; Li, M. T.; Han, Q. H.; Zhou, J.; Lin, S.; Zhao, L.; Zhang, Q.; Qin, W.; et al. Physicochemical Properties, Phenolic Profiles, Antioxidant Capacities, and Inhibitory Effects on Digestive Enzymes of Okra (Abelmoschus esculentus) Fruit at Different Maturation Stages. J. Food Sci. Technol. 2019, 56(3), 1275–1286. DOI: 10.1007/s13197-019-03592-1.
  • Glaister, M.;. Multiple Sprint Work: Physiological Responses, Mechanisms of Fatigue and the Influence of Aerobic Fitness. Sports Med. 2005, 35(9), 757–777. DOI: 10.2165/00007256-200535090-00003.
  • Lin, Y.; Liu, H. L.; Fang, J.; Yu, C. H.; Xiong, Y. K.; Yuan, K. Anti-fatigue and Vasoprotective Effects of quercetin-3-O-gentiobiose on Oxidative Stress and Vascular Endothelial Dysfunction Induced by Endurance Swimming in Rats. Food Chem. Toxicol. 2014, 68, 290–296. DOI: 10.1016/j.fct.2014.03.026.
  • Edwards, R. H.;. Human Muscle Function and Fatigue. Ciba Found. Symp. 1981, 82, 1–18. DOI: 10.1002/9780470715420.ch1.
  • Wu, C. Y.; Rong, C.; Xin Sheng, W.; Bei, S.; Wei, Y.; Qinan, W. Antioxidant and Anti-fatigue Activities of Phenolic Extract from the Seed Coat of Euryale Ferox Salisb. And Identification of Three Phenolic Compounds by LC-ESI-MS/MS. Molecules. 2013, 18(9), 11003–11021. DOI: 10.3390/molecules180911003.
  • Jiang, D. Q.; Guo, Y.; Xu, D. H.; Huang, Y. S.; Yuan, K.; Lv, Z. Q. Antioxidant and Anti-fatigue Effects of Anthocyanins of Mulberry Juice Purification (MJP) and Mulberry Marc Purification (MMP) from Different Varieties Mulberry Fruit in China. Food Chem. Toxicol. 2013, 59(9), 1–7. DOI: 10.1016/j.fct.2013.05.023.
  • Durazzo, A.; Lucarini, M.; Novellino, E.; Souto, E. B.; Daliu, P.; Santini, A. Abelmoschus Esculentus (L.): Bioactive Components’ Beneficial Properties-Focused on Antidiabetic Role-For Sustainable Health Applications. Molecules. 2018, 24(1), 38. DOI: 10.3390/molecules24010038.
  • Sabitha, V.; Ramachandran, S.; Naveen, K. R.; Panneerselvam, K. Antidiabetic and Antihyperlipidemic Potential of Abelmoschus Esculentus (L.) Moench. In Streptozotocin-induced Diabetic Rats. J. Pharm. Bio. Sci. 2011, 3(3), 397–402. DOI: 10.4103/0975-7406.84447.
  • Erfani Majd, N.; Tabandeh, M. R.; Shahriari, A.; Soleimani, Z. Okra (Abelmoscus esculentus) Improved Islets Structure, and Down-Regulated PPARs Gene Expression in Pancreas of High-Fat Diet and Streptozotocin-Induced Diabetic Rats. Cell J. 2018, 20(1), 31–40. DOI: 10.22074/cellj.2018.4819.
  • Nguekouo, P. T.; Kuate, D.; Kengne, A. P. N.; Woumbo, C. Y.; Tekou, F. A.; Oben, J. E. Effect of Boiling and Roasting on the Antidiabetic Activity of Abelmoschus Esculentus (Okra) Fruits and Seeds in Type 2 Diabetic Rats. J. Food Biochem. 2018, 42(6), e12669. DOI: 10.1111/jfbc.12669.
  • Khatun, H.; Rahman, A.; Biswas, M.; Islam, A. U. Water-soluble Fraction of Abelmoschus Esculentus L Interacts with Glucose and Metformin Hydrochloride and Alters Their Absorption Kinetics after Coadministration in Rats. ISRN Pharm. 2011, 2011, 260537. DOI: 10.5402/2011/260537.
  • Anna, P.; Iwona, M.; MalGorzata, R.; Dorota, S.; Maria, K. In Vitro Inhibitory Effect on Digestive Enzymes and Antioxidant Potential of Commonly Consumed Fruits. J. Agr. Food Chem. 2014, 62(20), 4610–4617. DOI: 10.1021/jf5008264.
  • Sabitha, V.; Panneerselvam, K.; Ramachandran, S. In Vitro α-glucosidase and α-amylase Enzyme Inhibitory Effects in Aqueous Extracts of Abelmoscus Esculentus (L.) Moench. Asian Pac. J. Trop. Biomed. 2012, 2(1), 162–164. DOI: 10.1016/s2221-1691(12)60150-6.
  • Lu, Y.; Demleitner, M. F.; Song, L.; Rychlik, M.; Huang, D. Oligomeric Proanthocyanidins are the Active Compounds in Abelmoschus Esculentus Moench for Its α-amylase and α-glucosidase Inhibition Activity. J. Funct. Food. 2016, 20, 463–471. DOI: 10.1016/j.jff.2015.10.037.
  • Mcclements, D. J.; Li, Y. Review of in Vitro Digestion Models for Rapid Screening of Emulsion-based Systems. Food Funct. 2010, 1(1), 32–59. DOI: 10.1039/C0FO00111B.
  • Yan, J. K.; Wu, L. X.; Qiao, Z. R.; Cai, W. D.; Ma, H. Effect of Different Drying Methods on the Product Quality and Bioactive Polysaccharides of Bitter Gourd (Momordica Charantia L.) Slices. Food Chem. 2019, 271, 588–596. DOI: 10.1016/j.foodchem.2018.08.012.
  • Liu, Y.; Chen, D.; You, Y.; Zeng, S.; Hu, Y.; Duan, X.; Liu, A.; Chen, H.; Hu, X.; Chen, S. Structural Characterization and Antidiabetic Activity of a Glucopyranose-rich Heteropolysaccharide from Catathelasma Ventricosum. Carbohydr. Polym. 2016, 149, 399–407. DOI: 10.1016/j.carbpol.2016.04.106.
  • Fan, S.; Zhang, Y.; Sun, Q.; Yu, L.; Li, M.; Zheng, B.; Wu, X.; Yang, B.; Li, Y.; Huang, C. Extract of Okra Lowers Blood Glucose and Serum Lipids in High-fat Diet-induced Obese C57BL/6 Mice. J. Nutr. Biochem. 2014, 25(7), 702–709. DOI: 10.1016/j.jnutbio.2014.02.010.
  • Daliu, P.; Annunziata, G.; Tenore, G. C.; Santini, A. Abscisic Acid Identification in Okra, Abelmoschus Esculentus L. (Moench): Perspective Nutraceutical Use for the Treatment of Diabetes. Nat. Prod. Res. 2019, 1–7. DOI: 10.1080/14786419.2019.1637874.
  • Bruzzone, S.; Ameri, P.; Briatore, L.; Mannino, E.; Basile, G.; Andraghetti, G.; Grozio, A.; Magnone, M.; Guida, L.; Scarfi, S. The Plant Hormone Abscisic Acid Increases in Human Plasma after Hyperglycemia and Stimulates Glucose Consumption by Adipocytes and Myoblasts. Faseb J. 2012, 26(3), 1251–1260. DOI: 10.1096/fj.11-190140.
  • Ong, K. W.; Hsu, A.; Song, L.; Huang, D.; Tan, B. K. Polyphenols-rich Vernonia Amygdalina Shows Anti-Diabetic Effects in Streptozotocin-induced Diabetic Rats. J. Ethnopharmacol. 2011, 133(2), 598–607. DOI: 10.1016/j.jep.2010.10.046.
  • Liu, L.; Tang, D.; Zhao, H.; Xin, X.; Aisa, H. A. Hypoglycemic Effect of the Polyphenols Rich Extract from Rose Rugosa Thunb on High Fat Diet and STZ Induced Diabetic Rats. J. Ethnopharmacol. 2017, 200, 174–181. DOI: 10.1016/j.jep.2017.02.022.
  • Liu, I. M.; Liou, S. S.; Lan, T. W.; Hsu, F. L.; Cheng, J. T. Myricetin as the Active Principle of Abelmoschus Moschatus to Lower Plasma Glucose in Streptozotocin-induced Diabetic Rats. Planta Med. 2005, 71(07), 617–621. DOI: 10.1055/s-2005-871266.
  • Consoli, A.; Nurjhan, N.; Capani, F.; Gerich, J. Predominant Role of Gluconeogenesis in Increased Hepatic Glucose Production in NIDDM. Diabetes. 1989, 38(5), 550–557. DOI: 10.2337/diabetes.38.5.550.
  • Liu, I. M.; Tzeng, T. F.; Lan, T. W.; Liou, S. S. Improvement of Insulin Sensitivity in Obese Zucker Rats by Myricetin Extracted from Abelmoschus Moschatus. Planta Med. 2007, 73(10), 1054–1060. DOI: 10.1055/s-2007-981577.
  • Kahlon, T. S.; Chapman, M. H.; Smith, G. E. In Vitro Binding of Bile Acids by Okra, Beets, Asparagus, Eggplant, Turnips, Green Beans, Carrots, and Cauliflower. Food Chem. 2007, 103(2), 676–680. DOI: 10.1016/j.foodchem.2006.07.056.
  • Lee, S. H.; Jang, G. Y.; Kim, M. Y.; Hwang, I. G.; Kim, H. Y.; Woo, K. S.; Lee, M. J.; Kim, T. J.; Lee, J.; Jeong, H. S. Physicochemical and in Vitro Binding Properties of Barley Beta-glucan Treated with Hydrogen Peroxide. Food Chem. 2016, 192, 729–735. DOI: 10.1016/j.foodchem.2015.07.063.
  • Lin, S.; Guo, H.; Lu, M.; Lu, M. Y.; Gong, J. D. B.; Wang, L.; Zhang, Q.; Qin, W.; Wu, D. T. Correlations of Molecular Weights of beta-Glucans from Qingke (Tibetan Hulless barley) to Their Multiple Bioactivities. Molecules. 2018, 23(7). DOI: 10.3390/molecules23071710.
  • Masuko, K.; Saeko, M.; Yukari, A.; Hideaki, O. Chronic Dietary Intake of Quercetin Alleviates Hepatic Fat Accumulation Associated with Consumption of a Western-style Diet in C57/BL6J Mice. Mol. Nutr. Food Res. 2011, 55(4), 530–540. DOI: 10.1002/mnfr.201000392.
  • Gnoni, G. V.; Paglialonga, G.; Siculella, L. Quercetin Inhibits Fatty Acid and Triacylglycerol Synthesis in Rat-liver Cells. Eur. J. Clin. Invest. 2010, 39(9), 761–768. DOI: 10.1111/j.1365-2362.2009.02167.x.
  • Patel, R. P.; Barnes, S. Isoflavones and PPAR Signaling: A Critical Target in Cardiovascular, Metastatic, and Metabolic Disease. PPAR Res. 2010, 2010. DOI: 10.1155/2010/153252.
  • Wang, Y. X.;. PPARs: Diverse Regulators in Energy Metabolism and Metabolic Diseases. Cell Res. 2010, 20(2), 124–137. DOI: 10.1038/cr.2010.13.
  • Petropoulos, S.; Fernandes, A.; Barros, L.; Ciric, A.; Sokovic, M.; Ferreira, I. The Chemical Composition, Nutritional Value and Antimicrobial Properties of Abelmoschus Esculentus Seeds. Food Funct. 2017, 8(12), 4733–4743. DOI: 10.1039/c7fo01446e.
  • Carla, C. C. R.; Carvalho, D.; Cruz, P. A.; da Fonseca, M. M. R.; Xavier-Filho, L. Antibacterial Properties of the Extract of Abelmoschus Esculentus. Biotechnol. Bioprocess Eng. 2011, 16(5), 971–977. DOI: 10.1007/s12257-011-0050-6.
  • Chang, J. Z.; Yoo, J. S.; Lee, T. G.; Cho, H. Y.; Kim, Y. H.; Kim, W. G. Fatty Acid Synthesis Is a Target for Antibacterial Activity of Unsaturated Fatty Acids. FEBS Lett. 2005, 579(23), 5157–5162. DOI: 10.1016/j.febslet.2005.08.028.
  • Solomon, S.; Muruganantham, N.; Senthamilselvi, M. M. Antimicrobial Activity of Abelmoschus Esculentus (Flowers). Int. J. Herb. Med. 2016, 4(6), 46–49.
  • Cushnie, T. P. T.; Lamb, A. J. Antimicrobial Activity of Flavonoids. Int. J. Antimicrob. Ag. 2005, 26(5), 343–356. DOI: 10.1016/j.ijantimicag.2005.09.002.
  • Rogers, J.; Mastroeni, D.; Leonard, B.; Joyce, J.; Grover, A. Neuroinflammation in Alzheimer’s Disease and Parkinson’s Disease: Are Microglia Pathogenic in either Disorder? Int. Rev. Neurobiol. 2007, 82, 235–246.
  • Boje, K. M.; Arora, P. K. Microglial-produced Nitric Oxide and Reactive Nitrogen Oxides Mediate Neuronal Cell Death. Brain Res. 1992, 587(2), 250. DOI: 10.1016/0006-8993(92)91004-X.
  • Chao, C. C.; Hu, S.; Peterson, P. K. Glia, Cytokines, and Neurotoxicity. Crit. Rev. Neurobiol. 1995, 9(2–3), 189–205.
  • Tak, P. P.; Firestein, G. S. NF-kappaB: A Key Role in Inflammatory Diseases. J. Clin. Invest. 2001, 107(1), 7–11. DOI: 10.1172/JCI11830.
  • Saponaro, C.; Cianciulli, A.; Calvello, R.; Dragone, T.; Iacobazzi, F.; Panaro, M. A. The PI3K/Akt Pathway Is Required for LPS Activation of Microglial Cells. Immunopharmacol. Immunotoxicol. 2012, 34(5), 858–865. DOI: 10.3109/08923973.2012.665461.
  • Banchereau, J.; Briere, F.; Caux, C.; Davoust, J.; Lebecque, S.; YJ, L.; Pulendran, B.; Palucka, K. Immunobiology of Dendritic Cells. Annu. Rev. Immuol. 2000, 18, 767–811. DOI: 10.1146/annurev.immunol.18.1.767.
  • Klimp, A. H.; De Vries, E. G. E.; Scherphof, G. L.; Daemen, T. A Potential Role of Macrophage Activation in the Treatment of Cancer. Crit. Rev. Oncol. Hematol. 2002, 44(2), 143–161. DOI: 10.1016/s1040-8428(01)00203-7.
  • Schepetkin, I. A.; Quinn, M. T. Botanical Polysaccharides: Macrophage Immunomodulation and Therapeutic Potential. Int. Immunopharmacol. 2006, 6(3), 317–333. DOI: 10.1016/j.intimp.2005.10.005.
  • Schepetkin, I. A.; Faulkner, C. L.; Nelson-Overton, L. K.; Wiley, J. A.; Quinn, M. T. Macrophage Immunomodulatory Activity of Polysaccharides Isolated from Juniperus Scopolorum. Int. Immunopharmacol. 2005, 5(13), 1783–1799. DOI: 10.1016/j.intimp.2005.05.009.
  • Beinke, S.; Ley, S. C. Functions of NF-kappaB1 and NF-kappaB2 in Immune Cell Biology. Biochem. J. 2004, 382(2), 393–409. DOI: 10.1021/ja808025m.
  • Havsteen, B. H.;. The Biochemistry and Medical Significance of the Flavonoids. Pharmacol. Ther. 2002, 96(2), 67–202. DOI: 10.1016/s0163-7258(02)00298-x.
  • Uhiara, N. S.; Onwuka, G. Suitability of Protein-Rich Extract from Okra Seed for Formulation of Ready to Use Therapeutic Foods (RUTF). Niger. Food J. 2014, 32(1), 105–109. DOI: 10.1016/s0189-7241(15)30102-8.
  • Pendre, N. K.; Nema, P. K.; Sharma, H. P.; Rathore, S. S.; Kushwah, S. S. Effect of Drying Temperature and Slice Size on Quality of Dried Okra (Abelmoschus Esculentus (L.) moench). J. Food Sci. Technol. 2012, 49(3), 378–381. DOI: 10.1007/s13197-011-0427-8.
  • Chen, Y.; Zhang, B. C.; Sun, Y. H.; Zhang, J. G.; Sun, H. J.; Wei, Z. J. Physicochemical Properties and Adsorption of Cholesterol by Okra (Abelmoschus esculentus) Powder. Food Funct. 2015, 6(12), 3728–3736. DOI: 10.1039/c5fo00600g.
  • Adetuyi, F. O.; Ibrahim, T. A. Effect of Fermentation Time on the Phenolic, Flavonoid and Vitamin C Contents and Antioxidant Activities of Okra (Abelmoschus esculentus) Seeds. Niger. Food J. 2014, 32(2), 128–137. DOI: 10.1016/s0189-7241(15)30128-4.
  • Adelakun, O. E.; Ade-Omowaye, B. I. O.; Adeyemi, I. A.; Van de Venter, M. Mineral Composition and the Functional Attributes of Nigerian Okra Seed (Abelmoschus Esculentus moench) Flour. Food Res. Int. 2012, 47(2), 348–352. DOI: 10.1016/j.foodres.2011.08.003.
  • Adelakun, O. E.; Oyelade, O. J.; Ade-Omowaye, B. I. O.; Adeyemi, I. A.; Van de Venter, M. Chemical Composition and the Antioxidative Properties of Nigerian Okra Seed (Abelmoschus Esculentus moench) Flour. Food Chem. Toxicol. 2009, 47(6), 1123–1126. DOI: 10.1016/j.fct.2009.01.036.
  • Adelakun, O. E.; Oyelade, O. J.; Koekemoer, T. C.; Ade-Omowaye, B. I.; Adeyemi, I. A.; Van de Venter, M. Influence of Pre-treatment on Yield Chemical and Antioxidant Properties of a Nigerian Okra Seed (Abelmoschus Esculentus moench) Flour. Food Chem. Toxicol. 2009, 47(3), 657–661. DOI: 10.1016/j.fct.2008.12.023.
  • Adelakun, O. E.; Ade-Omowaye, B. I. O.; Adeyemi, I. A.; Van de Venter, M. Functional Properties and Mineral Contents of a Nigerian Okra Seed (Abelmoschus Esculentus moench) Flour as Influenced by Pretreatments. J. Food Technol. 2010, 8(2), 39–45. DOI: 10.3923/jftech.2010.39.45.
  • Falade, K. O.; Omojola, B. S. Effect of Processing Methods on Physical, Chemical, Rheological, and Sensory Properties of Okra (Abelmoschus esculentus). Food Bioprocess Technol. 2008, 3(3), 387–394. DOI: 10.1007/s11947-008-0126-2.
  • Adepoju, O. T.; Adefila, S. A. Effects of Processing Methods on Nutrient Retention of Processed Okro (Abelmoschus esculentus) Fruit. J. Food Res. 2015, 4(6), 62. DOI: 10.5539/jfr.v4n6p62.
  • Ademiluyi, A. O.; Oboh, G. Antioxidant Properties of Condiment Produced from Fermented Bambara Groundnut. J. Food Biochem. 2011, 35(4), 1145–1160. DOI: 10.1111/j.1745-4514.2010.00441.x.
  • Watanabe, N.; Fujimoto, K.; Aoki, H. Antioxidant Activities of the Water-soluble Fraction in Tempeh-like Fermented Soybean (Gaba-tempeh). Int. J. Food Sci. Nutr. 2007, 58(8), 577–587. DOI: 10.1080/09637480701343846.
  • Wells, G. H.;. The Dry Side of Corn Milling. Cereal Foods World. 1979, 24(8), 333.
  • Fang, T. T.; Footrakul, P.; Luh, B. S. Effects of Blanching Chemical Treatments and Freezing Methods on Quality of Freeze-dried Mushrooms. J. Food Sci. 2010, 36(7), 1044–1048. DOI: 10.1111/j.1365-2621.1971.tb03342.x.
  • Akingbala, J. O.; Akinwande, B. A.; Uzopeters, P. I. Effects of Color and Flavor Changes on Acceptability of Ogi Supplemented with Okra Seed Meals. Plant Food Hum. Nutr. 2003, 58(3), 1–9.
  • Adeparusi, E. O.;. Effect of Processing on the Nutrients and Anti-nutrients of Lima Bean (Phaseolus Lunatus L.) Flour. Mol. Nutr. Food Res. 2001, 45(2), 94–96. DOI: 10.1002/1521-3803(20010401)45:23.0.CO;2-E.
  • Nicoli, M. C.; Anese, M.; Parpinel, M. Influence of Processing on the Antioxidant Properties of Fruit and Vegetables. Trends Food Sci. Technol. 1999, 10(3), 94–100. DOI: 10.1016/S0924-2244(99)00023-0.
  • Xu, B.; Chang, S. K. C. Effect of Soaking, Boiling, and Steaming on Total Phenolic Content and Antioxidant Activities of Cool Season Food Legumes. Food Chem. 2008, 110(1), 1–13. DOI: 10.1016/j.foodchem.2008.01.045.
  • Santos, I. F. D.; Santos, A. M. P. D.; Barbosa, U. A.; Lima, J. S.; Santos, D. C. D.; Matos, G. D. Multivariate Analysis of the Mineral Content of Raw and Cooked Okra (Abelmoschus Esculentus L.). Microchem. J. 2013, 110(9), 439–443. DOI: 10.1016/j.microc.2013.05.008.
  • Karim, M. R.; Islam, M. S.; Sarkar, S. M.; Murugan, A. C.; Makky, E. A.; Rashid, S. S.; Yusoff, M. M. Anti-amylolytic Activity of Fresh and Cooked Okra (Hibiscus Esculentus L.) Pod Extract. Biocatal. Agr. Bio. 2014, 3(4), 373–377. DOI: 10.1016/j.bcab.2014.07.006.
  • Xu, K.; Guo, M.; Du, J. Molecular Characteristics and Rheological Properties of Water-extractable Polysaccharides Derived from Okra (Abelmoschus Esculentus L.). Int. J. Food Prop. 2017, 20(sup1), 899–909. DOI: 10.1080/10942912.2017.1315594.
  • Chen, Y.; Zhang, J. G.; Sun, H. J.; Wei, Z. J. Pectin from Abelmoschus Esculentus: Optimization of Extraction and Rheological Properties. Int. J. Biol. Macromol. 2014, 70, 498–505. DOI: 10.1016/j.ijbiomac.2014.07.024.
  • Alamri, M. S.; Mohamed, A. A.; Hussain, S. Effect of Okra Gum on the Pasting, Thermal, and Viscous Properties of Rice and Sorghum Starches. Carbohydr. Polym. 2012, 89(1), 199–207. DOI: 10.1016/j.carbpol.2012.02.071.
  • Alamri, M. S.; Mohamed, A. A.; Hussain, S. Effects of Alkaline-soluble Okra Gum on Rheological and Thermal Properties of Systems with Wheat or Corn Starch. Food Hydrocolloid. 2013, 30(2), 541–551. DOI: 10.1016/j.foodhyd.2012.07.003.
  • Romanchik-Cerpovicz, J. E.; Costantino, A. C.; Gunn, L. H. Sensory Evaluation Ratings and Melting Characteristics Show that Okra Gum Is an Acceptable Milk-fat Ingredient Substitute in Chocolate Frozen Dairy Dessert. J. Am. Diet. Assoc. 2006, 106(4), 594–597. DOI: 10.1016/j.jada.2006.01.009.
  • Romanchik-Cerpovicz, J. E.; Tilmon, R. W.; Baldree, K. A. Moisture Retention and Consumer Acceptability of Chocolate Bar Cookies Prepared with Okra Gum as a Fat Ingredient Substitute. J. Am. Diet. Assoc. 2002, 102(9), 1301–1303. DOI: 10.1016/s0002-8223(02)90287-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.