5,494
Views
40
CrossRef citations to date
0
Altmetric
Review

Enzyme Engineering: Current Trends and Future Perspectives

, , , ORCID Icon &

References

  • Kamini, N. R.; Hemchander, C.; Geraldine, J.; Mala, S.; Puvanakrishnan, R. Microbial Enzyme Technology as an Alternative to Conventional Chemical in Leather Industry. Curr. Sci. 1999, 76(1), 101.
  • Singh, R.; Kumar, M.; Mittal, A.; Mehta, P. K. Microbial Enzymes: Industrial Progress in 21st Century. 3 Biotech. 2016, 6, 174. DOI: 10.1007/s13205-016-0485-8.
  • Gurung, N.; Ray, S.; Bose, S.; Rai, V. A Broader View: Microbial Enzymes and Their Relevance in Industries, Medicine and Beyond. Biomed. Res. Int. 2013, 1, 18. DOI: 10.1155/2013/329121.
  • Choi, J. M.; Han, S. S.; Kim, H. S. Industrial Applications of Enzyme Biocatalysis: Current Status and Future Aspect. Biotechnol. Adv. 2015, 33, 1443–1454. DOI: 10.1016/j.biotechadv.2015.02.014.
  • Jemli, S.; Ayadi-Zouari, D.; Hlima, H. B.; Bejar, S. Biocatalysts: Application and Engineering for Industrial Purposes. Crit. Rev. Biotechnol. 2016, 36(2), 246–258. DOI: 10.3109/07388551.2014.950550.
  • Okafor, N. Biocatalysis: Immobilized Enzymes and Immobilized Cells. In Modern Industrial Microbiology and Biotechnology, Okeke, B. C., Ed., 2007; pp 398. CRC Press: Boca Raton, USA. ISBN978-1-57808-434-0 (HC)
  • Weckbecker, A.; Hummel, W. Cloning, Expression, and Characterization of an (R)- Specific Alcohol Dehydrogenase from Lactobacillus Kefir. Appl. Biochem. Biotechnol. 2006, 24(5), 380–389.
  • Qureshi, M. A.; Khare, A. K.; Pervez, A. Enzymes Used in Dairy Industries. Int. J. Appl. Res. 2015, 1(10), 523–527.
  • Masse, L.; Kennedy, K. J.; Chou, S. Testing of Alkaline and Enzymatic Pretreatment for Fat Particles in Slaughterhouses Wastewater. Bioresour. Technol. 2001, 77, 145–155. DOI: 10.1016/S0960-8524(00)00146-2.
  • Misal, S. A.; Gawai, K. R. Azoreductase: A Key Player of Xenobiotic Metabolism. Bioresour. Bioprocess. 2018, 5,17.
  • Husain, Q.;. Beta Galactosidases and Their Potential Applications: A Review. Crit. Rev. Biotechnol. 2010, 30(1), 41–62. DOI: 10.3109/07388550903330497.
  • Kuhad, R. C.; Gupta, R.; Singh, A. Microbial Cellulases and Their Industrial Applications. Enzym. Res. 2011, 2011, 1–10. DOI: 10.4061/2011/280696.
  • Araujo, R.; Casal, M.; Cavaco-Paulo, A. Application of Enzymes for Textiles Fibers Processing. Biocatal. Biotechnol. 2008, 26, 332–349. DOI: 10.1080/10242420802390457.
  • Leemhuis, H.; Kelly, R. M.; Dijkhuizen, L. Engineering of Cyclodextrin Glucanotransferases and the Impact for Biotechnological Applications. Appl. Microbiol. Biotechnol. 2010, 85, 823–835. DOI: 10.1007/s00253-009-2221-3.
  • Kobata, A.;. Exo- and Endoglycosidases Revisited. Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci. 2013, 89(3), 97–117. DOI: 10.2183/pjab.89.97.
  • Gerhartz, W. ed. Enzymes in Industry: Production and Applications; VCH: New York, 1990.
  • Cobucci-Ponzano, B.; Strazzulli, A.; Iacono, R.; Masturzo, G.; Giglio, R.; Rossi, M.; Moracci, M. Novel Thermophilic Hemicellulases for the Conversion of Lignocellulose for Second Generation Biorefineries. Enzyme Microb. Technol. 2015, 78, 63–73. DOI: 10.1016/j.enzmictec.2015.06.014.
  • Huisman, G. W.; Liang, J.; Krebber, A. Practical Chiral Alcohol Manufacture Using Ketoreductases. Curr. Opin. Chem. Biol. 2010, 14(2), 122–129. DOI: 10.1016/j.cbpa.2009.12.003.
  • Lang, G.; Cotteret, J. Composition for the Oxidation Dyeing of Keratinous Fibres Containing a Laccase and Dyeing Method Using This Composition. US2004255401 A1, 2004.
  • Holsbeeck, M. V.; Tsakali, E.; Syryn, E.; Aerts, G.; Impe, J. V.; Voorde, I. V. Overexpression of L-Arabinose Isomerase for Production of the Low-calorie Bulk Sweetener D-tagatose. Enzyme Eng. 2015, 4, 125. DOI: 10.4172/2329-6674.1000125.
  • Li, S.; Yang, X.; Yang, S.; Zhu, M.; Wang, X. Technology Prospecting on Enzymes: Application, Marketing and Engineering. Comput. Struct. Biotechnol. J. 2012, 2, 1–11. DOI: 10.5936/csbj.201209017.
  • Adrio, J. L.; Demain, A. L. Microbial Enzymes: Tools for Biotechnological Processes. Biomolecules. 2014, 4(1), 117–139. DOI: 10.3390/biom4010117.
  • Arora, P. K.; Kumar, M.; Chauhan, A.; Raghava, G. P.; Jain, R. K. OxDBase: A Database of Oxygenases Involved in Biodegradation. BMC Res. Notes. 2009, 2, 67. DOI: 10.1186/1756-0500-2-67.
  • Hotchkis, J. H.; Soares, N. F. F. 2000. The Use of Active Packaging to Improve Citrus Juice Quality. International Citrus Congress, 9th:2000: Orlando, Florida, pp. 202–1205.
  • Zaks, A.;. Industrial Biocatalysis. Curr. Opin. Chem. Biol. 2001, 5(2), 130–136. DOI: 10.1016/S1367-5931(00)00181-2.
  • Piontek, K.; Smith, A. T.; Blodig, W. Lignin Peroxidase Structure and Function. Biochem. Soc. Trans. 2001, 29(2), 111–116. DOI: 10.1042/bst0290111.
  • Frias, J.; Doblado, R.; Antezana, J. R.; Vidal-Valverde, C. Inositol Phosphate Degradation by the Action of Phytase Enzyme in Legume Seeds. Food Chem. 2003, 81(2), 233–239. DOI: 10.1016/S0308-8146(02)00417-X.
  • Gul, I.; Ahmad, M. S.; Naqvi, S. M. S.; Hussain, A.; Wali, R.; Farooqi, A. A.; Ahmed, I. Polyphenol Oxidase (PPO) Based Biosensors for Detection of Phenolic Compounds: A Review. J. Appl. Biol. Biotechnol. 2017, 5, 72–85.
  • Li, Q.; Yi, L.; Marek, P.; Iverson, B. L. Commercial Proteases: Present and Future. FEBS Lett. 2013, 587(8), 1155–1163. DOI: 10.1016/j.febslet.2012.12.019.
  • Chen, S.; Su, L.; Chen, J.; Wu, J. Cutinase: Characteristics, Preparation, and Application. Biotechnol. Adv. 2013, 31(8), 1754–1767. DOI: 10.1016/j.biotechadv.2013.09.005.
  • Manzanares, P.; Orejas, M.; Ibanez, E.; Valles, S.; Ramon, D. Purification and Characterization of an alpha-L-rhamnosidase from Aspergillus Nidulans. Lett. Appl. Microbiol. 2000, 31(3), 198–202. DOI: 10.1046/j.1365-2672.2000.00788.x.
  • Babizhayev, M. A.;. Biological Activities of the Natural Imidazole Containing Peptidomimetics N-acetylcarnosine, Carcinine and L- Carnosine in Ophthalmic and Skin Care Products. Life Sci. 2006, 78(20), 2343–2357. DOI: 10.1016/j.lfs.2005.09.054.
  • Jana, A.; Maity, C.; Halder, S. K.; Pati, B. R.; Mondal, K. C.; Kumar, P.; Mohapatra, D. Rapid Screening of Tannase Producing Microbes by Using Natural Tannin. Braz. J. Microbiol. 2012, 43(3), 1080–1083. DOI: 10.1590/S1517-83822012000300034.
  • Rudat, J.; Brucher, B. R.; Syldatk, C. Transaminases for the Synthesis of Enantiopure Beta-amino Acids. AMB Express. 2012, 2(1), 11. DOI: 10.1186/2191-0855-2-11.
  • Kieliszek, M.; Misiewicz, A. Microbial Transglutaminase and Its Application in the Food Industry. A Review. Folia Microbiol. 2014, 59, 241–250. DOI: 10.1007/s12223-013-0287-x.
  • Sujoy, B.; Aparna, A. Enzymology, Immobilization and Applications of Urease Enzyme. Int. Res. J. Biol. Sci. 2013, 2(6), 51–56.
  • Bhat, M. K.;. Cellulases and Related Enzymes in Biotechnology. Biotechnol. Adv. 2000, 18, 355–383. DOI: 10.1016/S0734-9750(00)00041-0.
  • Solano, F.;. Enzyme Engineering: Old and New Approaches. Enzyme Eng. 2015, 4, 1. DOI: 10.4172/2329-6674.1000e111.
  • Anbu, P.; Gopinath, S. C. B.; Cihan, A. C.; Chaulagain, B. P.Microbial Enzymes and Their Applications in Industries and Medicine 2014. Biomed. Res. Int. 2015, 1–3.
  • Illanes, A.; Cauerhff, A.; Wilson, L.; Castro, G. R. Recent Trends in Biocatalysis Engineering. Bioresour. Technol. 2012, 115, 48–57. DOI: 10.1016/j.biortech.2011.12.050.
  • Nigam, P. S.;. Microbial Enzymes with Special Characteristics for Biotechnological Applications. Biomolecules. 2013, 3, 597–611. DOI: 10.3390/biom3030597.
  • Liu, L.; Yang, H.; Shin, H. D. How to Achieve High-level Expression of Microbial Enzymes Strategies and Perspectives. Bioengineered. 2013, 4(4), 212–223. DOI: 10.4161/bioe.24761.
  • Neidleman, S. L.;. Applications of Biocatalysis to Biotechnology. Biotechnol. Gen. Eng. Rev. 1984, 1, 1–38. DOI: 10.1080/02648725.1984.10647779.
  • Bornscheuer, U. T.;. Enzymes in Lipid Modification. Annu. Rev. Food Sci. Technol. 2018, 25(9), 85–103. DOI: 10.1146/annurev-food-030117-012336.
  • Carvalho, F.; Fernandes, P. Enzymes in Sweeteners Production. In Green Bio-processes. Energy, Environment, and Sustainability; Parameswaran, B., Varjani, S., Raveendran, S., Eds.; Springer: Singapore, 2019, 151–179.
  • Bigelis, R.;. Carbohydrases. In Enzymes in Food Processing; Wagodawithena, T., Reed, G., Eds.; Academic Press: CA, USA, 1993; pp 130–135.
  • Sammartino, M.;. Enzymes in Brewing. Mbaa Tq. 2015, 52, 156–164.
  • van Donkelaar, L. H.; Mostert, J.; Zisopoulos, F. K.; Boom, R. M.; van der Goot, A. J. The Use of Enzymes for Beer Brewing: Thermodynamic Comparison on Resource Use. Energy. 2016, 115, 519–527. DOI: 10.1016/j.energy.2016.09.011.
  • Claus, H.; Mojsov, K. Enzymes for Wine Fermentation: Current and Perspective Applications. Fermentation. 2018, 4, 52. DOI: 10.3390/fermentation4030052.
  • Kashyap, D. R.; Vohra, P. K.; Chopra, S.; Tewari, R. Applications of Pectinases in the Commercial Sector: A Review. Bioresour. Technol. 2001, 77, 215–227. DOI: 10.1016/S0960-8524(00)00118-8.
  • Mojsov, K.; Andronikov, D.; Janevski, A.; Jordeva, S.; Zhezhova, S. Enzymes and Wine–The Enhanced Quality and Yield. Adv. Technol. 2015, 4, 94–100.
  • Uzuner, S.; Cekmecelioglu, D. Enzymes in the Beverage Industry. In Enzymes in Food Biotechnology, Production, Applications, and Future Prospects; Kuddus, M., Ed.; Academic Press, Elsevier publications: USA, 2019; pp 29–43.
  • Fernandes, P.;. Enzymes in Fish and Seafood Processing. Front. Bioeng. Biotechnol. 2016, 4, 59. DOI: 10.3389/fbioe.2016.00059.
  • Ray, L.; Pramanik, S.; Bera, D. Enzymes- an Existing and Promising Tool of Food Processing Industry. Recent Pat. Biotechnol. 2016, 10(1), 58–71. DOI: 10.2174/1872208310666160727150153.
  • Nagarajarao, R. C.;. Recent Advances in Processing and Packaging of Fishery Products: A Review. Aquat. Procedia. 2016, 7(1), 201–213. DOI: 10.1016/j.aqpro.2016.07.028.
  • Singh, P. K.; Shrivastava, N.; Ojha, B. K. Enzymes in the Meat Industry. In Enzymes in Food Biotechnology, Production, Applications, and Future Prospects; Kuddus, M., Ed.; Academic Press, Elsevier publications: USA, 2019; pp 111–128.
  • Miguel, A. S. M.; Martins-Meyer, T. S.; da Costa Figueiredo, É. V.; Lobo, B. W. P.; Dellamora-Ortiz, G. M. Enzymes in Bakery: Current and Future Trends. In Food Industry; Muzzalupo, I. Ed.; IntechOpen Publishers, London: UK, 2013; pp. 287–321.
  • Moore, M. M.; Heinbockel, M.; Dockery, P.; Ulmer, M. H.; Arendt, E. K. Network Formation in Gluten-free Bread with Application of Transglutaminase. Cereal Chem. 2006, 83, 28–36. DOI: 10.1094/CC-83-0028.
  • Kirk, O.; Borchert, T. V.; Fuglsang, C. C. Industrial Enzyme Applications. Curr. Opin. Biotechnol. 2002, 13, 345–351. DOI: 10.1016/S0958-1669(02)00328-2.
  • Fernandes, P.;. Enzymes in Food Processing: A Condensed Overview on Strategies for Better Biocatalysis. Enzyme Res. 2010, 2010, 1–19. DOI: 10.4061/2010/862537.
  • Karlund, A.; Moor, U.; Sandell, M.; Karjalainen, R. O. The Impact of Harvesting, Storage and Processing Factors on Health-promoting Phytochemicals in Berries and Fruits. Processes. 2014, 2(3), 596–624. DOI: 10.3390/pr2030596.
  • Kumar, S.;. Role of Enzymes in Fruit Juice Processing and Its Quality Enhancement. Adv. Appl. Sci. Res. 2015, 6(6), 114–124.
  • Garg, G.; Singh, A.; Kaur, A.; Singh, R.; Kaur, J.; Mahajan, R. Microbial Pectinases: An Ecofriendly Tool of Nature for Industries. Biotech. 2016, 6(1), 47–59.
  • Mojsov, K.;. Microbial Alpha-amylases and Their Industrial Applications: A Review. Int. J. Manage IT. Eng. 2012, 2(10), 583–609.
  • Rana, N.; Verma, N.; Vaidya, D.; Dipta, B. Application of Bacterial Amylase in Clarification of Juices and Bun Making. J Pharm. Phytochem. 2017, 6, 859–864.
  • Vaillant, F.; Millan, A.; Dornier, M.; Decloux, M.; Reynes, M. Strategy for Economical Optimization of the Clarification of Pulpy Fruit Juices Using Crossflow Microfiltration. J. Food Eng. 2001, 48, 83–90. DOI: 10.1016/S0260-8774(00)00152-7.
  • Sivaramakrishnan, S.; Gangadharan, D.; Nampoothiri, K. M.; Soccol, C. R.; Pandey, A. a-Amylases from Microbial Sources—An Overview on Recent Developments. Food Technol. Biotechnol. 2006, 44(2), 173–184.
  • Pai, J. S.;. Application of Microorganisms in Food Biotechnology. Ind. J. Biotechnol. 2003, 2, 382–386.
  • Sharma, R.; Chisti, Y.; Banerjee, U. C. Production, Purification, Characterization and Applications of Lipases. Biotechnol. Adv. 2001, 19, 627–662. DOI: 10.1016/S0734-9750(01)00086-6.
  • Huang, X. L.; Catignani, G. L.; Swaisgood, H. E. Immobilization of Biotinylated Transglutaminase by Bioselective Adsorption to Immobilized Avidin and Characterization of the Immobilized Activity. J. Agr. Food Chem. 1995, 43, 895–901. DOI: 10.1021/jf00052a009.
  • Sorensen, E. S.; Ramsussen, L. K.; Petersen, T. E. Component PP3 from Bovine Milk Is a Substrate for Transglutaminase. Sequence Location of Putative Crosslinking Sites. J. Dairy Res. 1999, 66, 145–150. DOI: 10.1017/S0022029998003215.
  • Ozrenk, E.;. The Use of Transglutaminase in Dairy Products. Int. J. Dairy Technol. 2006, 59, 1–7. DOI: 10.1111/idt.2006.59.issue-1.
  • Soares, I.; Tavora, Z.; Barcelos, R. P.; Baroni, S. Microorganism-produced Enzymes in the Food Industry. In Food Industry, Scientific, Health and Social Aspects of the Food Industry, Ed., Valdez, D.B., 2012; pp. 83–94. IntechOpen Publishers: London, UK. DOI: 10.5772/31256.
  • Dekker, P. J.; Koenders, D.; Bruins, M. J. Lactose-free Dairy Products: Market Developments, Production, Nutrition and Health Benefits. Nutrients. 2019, 11, 551. DOI: 10.3390/nu11030551.
  • Choct, M.;. Enzymes for the Feed Industry: Past, Present and Future. Worlds Poult. Sci. J. 2006, 62, 5–15. DOI: 10.1079/WPS200480.
  • Lei, X. G.; Stahl, C. H. Nutritional Benefits of Phytase and Dietary Determinants of Its Efficacy. J. Appl. Anim. Res. 2000, 17, 97–112. DOI: 10.1080/09712119.2000.9706294.
  • Munyaka, P. M.; Nandha, N. K.; Kiarie, E.; Nyachoti, C. M.; Khafipour, E. Impact of Combined β-glucanase and Xylanase Enzymes on Growth Performance, Nutrients Utilization and Gut Microbiota in Broiler Chickens Fed Corn or Wheat-based Diets. Poult. Sci. 2016, 95(3), 528–540. DOI: 10.3382/ps/pev333.
  • Zarghi, H.;. Application of Xylanas and β-Glucanase to Improve Nutrient Utilization in Poultry Fed Cereal Base Diets: Used of Enzymes in Poultry Diet. Insights Enzyme Res. 2018, 1(11), 1–7.
  • Lei, X. G.; Stahl, C. H. Biotechnological Development of Effective Phytases for Mineral Nutrition and Environmental Protection. Appl. Microbiol. Biotechnol. 2001, 257, 474–481.
  • Binod, P.; Palkhiwala, P.; Gaikaiwari, R.; Nampoothiri, K. M.; Duggal, A.; Dey, K.; Pandey, K. Industrial Enzymes- Present Status and Future Perspectives for India. J. Sci. Indus.t Res. 2013, 72, 271–286.
  • Vaishnav, P.; Demain, A. L. Industrial Biotechnology Overview. In Encyclopedia of Microbiology, 3rd ed.; Schaechter, M., Lederberg, J., Eds.; Elsevier: Oxford, 2009; pp 335–348.
  • Hida, K.; Hanes, J.; Ostermeier, M. Directed Evolution for Drug and Nucleic Acid Delivery. Adv. Drug Deliv. Rev. 2007, 59, 1562–1578. DOI: 10.1016/j.addr.2007.08.022.
  • Basheer, S. M.; Chellappan, S. Enzyme Engineering. In Bioresources and Bioprocess in Biotechnology; Sugathan, S., Pradeep, N., Abdulhameed, S., Eds.; Springer: Singapore, 2017; Vol. 2, pp 151–168.
  • Adrio, J. L.; Demain, A. L. Recombinant Organisms for Production of Industrial Products. Bioeng.Bugs. 2010, 1(2), 116–131. DOI: 10.4161/bbug.1.2.10484.
  • Busto, M. D.; Meza, V.; Ortega, N.; Perez-Mateos, M. Immobilization of Naringinase from Aspergillus Niger CECT 2088 in poly(vinyl alcohol) Cryogels for the Debittering of Juices. Food Chem. 2007, 104, 1177–1182. DOI: 10.1016/j.foodchem.2007.01.033.
  • Cobb, R. E.; Ning, S.; Zhao, H. M. Directed Evolution as a Powerful Synthetic Biology Tool. Methods. 2013, 60, 81–90. DOI: 10.1016/j.ymeth.2012.03.009.
  • Palackal, N.; Brennan, Y.; Callen, W. N.; Dupree, P.; Frey, G.; Goubet, F.; Hazlewood, G. P.; Healey, S.; Kang, Y. E.; Kretz, K. A.; et al. An Evolutionary Route to Xylanase Process Fitness. Protein Sci. 2004, 13, 494–503. DOI: 10.1110/ps.03333504.
  • Zhao, H. M.; Zha, W. J. In Vitro ‘sexual Evolution through the PCR Based Staggered Extension Process (Step). Nat. Protoc. 2006, 1, 1865–1871. DOI: 10.1038/nprot.2006.309.
  • Dong, Y. P.; Yan, J.; Du, H. Q.; Chen, M.; Ma, T.; Feng, L. Engineering of LadA for Enhanced Hexadecane Oxidation Using Random- and Site-directed Mutagenesis. Appl. Microbiol. Biotechnol. 2012, 94, 1019–1029. DOI: 10.1007/s00253-012-4035-y.
  • Akbulut, N.; Ozturk, M. T.; Pijning, T.; Ozturk, S. I.; Gumusel, F. Improved Activity and Thermostability of Bacillus Pumilus Lipase by Directed Evolution. J. Biotechnol. 2013, 164, 123–129. DOI: 10.1016/j.jbiotec.2012.12.016.
  • Molloy, S.; Nikodinovic-Runic, J.; Martin, L. B.; Hartmann, H.; Solano, F.; Decker, H.; O’Connor, K. E. Engineering of a Bacterial Tyrosinase for Improved Catalytic Efficiency Towards D-tyrosine Using Random and Site Directed Mutagenesis Approaches. Biotechnol. Bioeng. 2013, 110, 1849–1857. DOI: 10.1002/bit.24859.
  • Wang, J. B.; Li, G.; Reetz, M. T. Enzymatic Site-selectivity Enabled by Structure-guided Directed Evolution. Chem. Commun. 2017, 53, 3916–3928. DOI: 10.1039/C7CC00368D.
  • Lancaster, L.; Abdallah, W.; Banta, S.; Wheeldon, I. Engineering Enzyme Microenvironments for Enhanced Biocatalysis. Chem. Soc. Rev. 2018, 47, 5177–5186. DOI: 10.1039/C8CS00085A.
  • Steffens, D. L.; Williams, J. G. Efficient Site-directed Saturation Mutagenesis Using Degenerate Oligonucleotides. J. Biomol. Tech. 2007, 18(3), 147–149.
  • Siloto, R. M. P.; Weselake, R. J. Site Saturation Mutagenesis: Methods and Applications in Protein Engineering. Biocatal Agric. Biotechnol. 2012, 1, 181–189. DOI: 10.1016/j.bcab.2012.03.010.
  • Brissos, V.; Eggert, T.; Cabral, J. M. S.; Jaeger, K. E. Improving Activity and Stability of Cutinase Towards the Anionic Detergent AOT by Complete Saturation Mutagenesis. Protein Eng. Des. Sel. 2008, 21, 387–393. DOI: 10.1093/protein/gzn014.
  • Wang, C. H.; Huang, R. B.; He, B. F.; Du, Q. S. Improving the Thermostability of Alpha-amylase by Combinatorial Coevolving-site Saturation Mutagenesis. BMC Bioinf. 2012, 13, 263. DOI: 10.1186/1471-2105-13-263.
  • Buettner, K.; Hertel, T. C.; Pietzsch, M. Increased Thermostability of Microbial Transglutaminase by Combination of Several Hot Spots Evolved by Random and Saturation Mutagenesis. Amino Acids. 2012, 42, 987–996. DOI: 10.1007/s00726-011-1015-y.
  • Gumulya, Y.; Sanchis, J. ;.; Reetz, M. T. Many Pathways in Laboratory Evolution Can Lead to Improved Enzymes: How to Escape from Local Minima. Chem. Biol. Chem. 2012, 13, 1060–1066. DOI: 10.1002/cbic.v13.7.
  • Yang, H. Q.; Lu, X. Y.; Liu, L.; Li, J. H.; Shin, H. D.; Chen, R. R.; Du, G. C.; Chen, J. Fusion of an Oligopeptide to the N Terminus of an Alkaline alpha-Amylase from Alkalimonas Amylolytica Simultaneously Improves the Enzyme’s Catalytic Efficiency, Thermal Stability, and Resistance to Oxidation. Appl. Environ. Microbiol. 2013, 79, 3049–3058. DOI: 10.1128/AEM.03785-12.
  • Han, R. Z.; Liu, L.; Hd, S.; Chen, R. R.; Li, J. H.; Du, G. C.; Chen, J. Systems Engineering of Tyrosine 195, Tyrosine 260, and Glutamine 265 in Cyclodextrin Glycosyltransferase from Paenibacillus Macerans to Enhance Maltodextrin Specificity for 2-o-d-glucopyranosyl-lascorbic Acid Synthesis. Appl. Environ. Microbiol. 2013, 79, 672–677. DOI: 10.1128/AEM.02883-12.
  • Kim, Y. M.; Shimizu, R.; Nakai, H.; Mori, H.; Okuyama, M.; Kang, M. S.; Fujimoto, Z.; Funane, K.; Kim, D.; Kimura, A. Truncation of N and C-terminal Regions of Streptococcus Mutans Dextranase Enhances Catalytic Activity. Appl. Microbiol. Biotechnol. 2011, 91, 329–339. DOI: 10.1007/s00253-011-3201-y.
  • Chen, K. K.; Liu, S.; Ma, J. L.; Zhang, D. X.; Shi, Z. P.; Du, G. C.; Chen, J. Deletion Combined with Saturation Mutagenesis of N-terminal Residues in Transglutaminase from Streptomyces Hygroscopicus Results in Enhanced Activity and Thermostability. Process Biochem. 2012, 47, 2329–2334. DOI: 10.1016/j.procbio.2012.09.013.
  • Chen, R.;. Enzyme Engineering: Rational Redesign versus Directed Evolution. Trends Biotechnol. 2001, 19(1), 13–14. DOI: 10.1016/S0167-7799(00)01522-5.
  • Steiner, K.; Schwab, H. Recent Advances in Rational Approaches for Enzyme Engineering. Comput. Struct. Biotechnol. J. 2012, 2, e201209010. DOI: 10.5936/csbj.201209010.
  • Park, H. S.; Hohn, M. J.; Umehara, T.; Guo, L. T.; Osborne, E. M.; Benner, J.; Noren, C. J.; Rinehart, J.; Soll, D. Expanding the Genetic Code of Escherichia Coli with Phosphoserine. Science. 2011, 333, 1151–1154. DOI: 10.1126/science.1207203.
  • Wan, W.; Tharp, J. M.; Liu, W. R. Pyrrolysyl-tRNA Synthetase: An Ordinary Enzyme but an Outstanding Genetic Code Expansion Tool. Biochim. Biophys. Acta. 2014, 1844, 1059–1070. DOI: 10.1016/j.bbapap.2014.03.002.
  • Bohlke, N.; Budisa, N. Sense Codon Emancipation for Proteome-wide Incorporation of Noncanonical Amino Acids: Rare Isoleucine Codon AUA as a Target for Genetic Code Expansion. FEMS Microbiol. Lett. 2014, 351, 133–144. DOI: 10.1111/1574-6968.12371.
  • Hsieh, P. C.; Vaisvila, R. Protein Engineering: Single or Multiple Sitedirected Mutagenesis. Methods Mol. Biol. 2013, 978, 173–186.
  • Holmberg, N.; Ryde, U.; Bulow, L. Redesign of the Coenzyme Specificity in L-lactate Dehydrogenase from Bacillus Stearothermophilus Using Site-directed Mutagenesis and Media Engineering. Protein Eng. 1999, 12, 851–856. DOI: 10.1093/protein/12.10.851.
  • Wang, Y.; Fuchs, E.; da Silva, R.; McDaniel, A.; Seibel, J.; Ford, C. Improvement of Aspergillus Niger Glucoamylase Thermostability by Directed Evolution. Starch/Starke. 2006, 58(10), 501–508. DOI: 10.1002/star.200600493.
  • Danielsen, S.; Lundqvist, H. Bacterial Alpha-amylase Variants. WO Patent 2008/000825, 2008.
  • Jo, H. J.; Lee, J. W.; Noh, J. S.; Kong, K. H. Site-directed Mutagenesis of Cysteine Residues in Phi-class Glutathione S-transferase F3 from Oryza Sativa. Bull. Korean Chem. Soc. 2012, 33, 4169–4172. DOI: 10.5012/bkcs.2012.33.12.4169.
  • Wieman, H.; Tondel, K.; Anderssen, E.; Drablos, F. Homology-Based Modelling of Targets for Rational Drug Design. Mini-Rev. Med. Chem. 2004, 4, 793–804.
  • Korendovych, I. V.;. Rational and Semirational Protein Design. Methods Mol. Biol. 2018, 1685, 15–23.
  • Chica, R. A.; Doucet, N.; Pelletier, J. N. Semi-Rational Approaches to Engineering Enzyme Activity: Combining the Benefits of Directed Evolution and Rational Design. Curr. Opin. Biotechnol. 2005, 16, 378–384. DOI: 10.1016/j.copbio.2005.06.004.
  • Tiwari, V.;. In Vitro Engineering of Novel Bioactivity in the Natural Enzymes. Front. Chem. 2016, 4, 39. DOI: 10.3389/fchem.2016.00039.
  • Kiss, G.; Celebi-Olcum, N.; Moretti, R.; Baker, D.; Houk, K. N. Computational Enzyme Design. Angew Chem. Int. Ed. 2013, 52, 5700–5725. DOI: 10.1002/anie.201204077.
  • Rothlisberger, D.; Khersonsky, O.; Wollacott, A. M.; Jiang, L.; DeChancie, J.; Betker, J.; Gallaher, J. L.; Althoff, E. A.; Zanghellini, A.; Dym, O. et al. Kemp Elimination Catalysts by Computational Enzyme Design. Nature. 2008, 453, 190–195. DOI: 10.1038/nature06879.
  • Jiang, L.; Althoff, E. A.; Clemente, F. R.; Doyle, L.; Rothlisberger, D.; Zanghellini, A.; Gallaher, J. L.; Betker, J. L.; Tanaka, F.; Barbas, C. F. et al. De Novo Computational Design of Retro-aldol Enzymes. Science. 2008, 319, 1387–1391. DOI: 10.1126/science.1152692.
  • Siegel, J. B.; Zanghellini, A.; Lovick, H. M.; Kiss, G.; Lambert, A. R.; St.Clair, J. L.; Gallaher, J. L.; Hilvert, D.; Gelb, M. H.; Stoddard, B. L. et al. Computational Design of an Enzyme Catalyst for a Stereoselective Bimolecular Diels-Alder Reaction. Science. 2010, 329, 309–313. DOI: 10.1126/science.1190239.
  • Blomberg, R.; Kries, H.; Pinkas, D. M.; Mittl, P. R. E.; Grütter, M. G.; Privett, H. K.; Mayo, S. L.; Hilvert, D. Precision Is Essential for Efficient Catalysis in an Evolved Kemp Eliminase. Nature. 2013, 503, 418–421. DOI: 10.1038/nature12623.
  • Wijma, H. J.; Floor, R. J.; Bjelic, S.; Marrink, S. J.; Baker, D.; Janssen, D. B. Enantioselective Enzymes by Computational Design and in Silico Screening. Angew Chem. Int. Ed. 2015, 54, 3726–3730. DOI: 10.1002/anie.201411415.
  • Korendovych, I. V.; DeGrado, W. F. Catalytic Efficiency of Designed Catalytic Proteins. Curr. Opin. Struc. Biol. 2014, 27, 113–121. DOI: 10.1016/j.sbi.2014.06.006.
  • Yildiz, B. T.; Alkim, C.; Cakar, P. Z. Protein Engineering Methods and Applications, Protein Engineering, Kaumaya, P. ed.; InTech: London, UK, 2012.
  • Singh, R. K.; Tiwari, M. K.; Singh, R.; Lee, J. K. From Protein Engineering to Immobilization: Promising Strategies for the Upgrade of Industrial Enzymes. Int. J. Mol. Sci. 2013, 14, 1232–1277. DOI: 10.3390/ijms14011232.
  • Wang, Y. J.; Yuan, H.; Wang, J.; Yu, Z. L. Truncation of the Cellulose Binding Domain Improved Thermal Stability of endo-β-1,4-glucanase from Bacillus Subtilis JA18. Bioresour. Technol. 2009, 100, 345–349. DOI: 10.1016/j.biortech.2008.06.001.
  • Tian, Y. S.; Peng, R. H.; Xu, J.; Zhao, W.; Gao, F.; Fu, X. Y.; Xiong, A. S.; Yao, Q. H. Mutations in Two Amino Acids in phyI1s from Aspergillus Niger 113 Improve Its Phytase Activity. World J. Microb. Biotechnol. 2010, 26(5), 903–907. DOI: 10.1007/s11274-009-0251-8.
  • Lu, X. Y.; Liu, S.; Zhang, D. X.; Zhou, X. M.; Wang, M.; Liu, Y.; Wu, J.; Du, G. C.; Chen, J. Enhanced Thermal Stability and Specific Activity of Pseudomonas Aeruginosa Lipoxygenase by Fusing with Self Assembling Amphipathic Peptides. Appl. Microbiol. Biotechnol. 2013, 97(21), 9419–9427. DOI: 10.1007/s00253-013-4751-y.
  • Jones, A.; Lamsa, M.; Frandsen, T. P.; Spendler, T.; Harris, P.; Sloma, A.; Xu, F.; Nielsen, J. B.; Cherry, J. R. Directed Evolution of a Maltogenic Alpha-amylase from Bacillus Sp. TS-25. J. Biotechnol. 2008, 134(3–4), 325–333. DOI: 10.1016/j.jbiotec.2008.01.016.
  • Yokoyama, K.; Utsumi, H.; Nakamura, T.; Ogaya, D.; Shimba, N.; Suzuki, E.; Taguchi, S. Screening for Improved Activity of a Transglutaminase from Streptomyces Mobaraensis Created by a Novel Rational Mutagenesis and Random Mutagenesis. Appl. Microbiol. Biotechnol. 2010, 87, 2087–2096. DOI: 10.1007/s00253-010-2656-6.
  • Reetz, M. T.; Prasad, S.; Carballeira, J. D.; Gumulya, Y.; Bocola, M. Iterative Saturation Mutagenesis Accelerates Laboratory Evolution of Enzyme Stereoselectivity: Rigorous Comparison with Traditional Methods. J. Am. Chem. Soc. 2010, 132, 9144–9152. DOI: 10.1021/ja1030479.
  • Guo, F.; Xu, H. M.; Xu, H. N.; Yu, H. W. Compensation of the Enantioselectivity–Activity Trade-off in the Directed Evolution of an Esterase from Rhodobacter Sphaeroides by Site-directed Saturation Mutagenesis. Appl. Microbiol. Biotechnol. 2013, 97, 3355–3362. DOI: 10.1007/s00253-012-4516-z.
  • Pokhrel, S.; Joo, J. C.; Kim, Y. H.; Yoo, Y. J. Rational Design of a Bacillus Circulans Xylanase by Introducing Charged Residue to Shift the pH Optimum. Process Biochem. 2012, 47, 2487–2493. DOI: 10.1016/j.procbio.2012.10.011.
  • Chin, I. S.; Murad, A. M. A.; Mahadi, N. M.; Nathan, S.; Bakar, F. D. A. Thermal Stability Engineering of Glomerella Cingulata Cutinase. Protein Eng. Des. Sel. 2013, 26, 369–375. DOI: 10.1093/protein/gzt007.
  • Fei, B.; Xu, H.; Cao, Y.; Ma, S.; Guo, H.; Song, T.; Qiao, D.; Cao, Y. A Multi-factors Rational Design Strategy for Enhancing the Thermostability of Escherichia Coli App A Phytase. J. Ind. Microbiol. Biotechnol. 2013, 40, 457–464. DOI: 10.1007/s10295-013-1260-z.
  • Rui, L.; Cao, L.; Chen, W.; Reardon, K. F.; Wood, T. K. Active Site Engineering of the Epoxide Hydrolase from Agrobacterium Radiobacter AD1 to Enhance Aerobic Mineralization of Cis-1,2 Dichloroethylene in Cells Expressing an Evolved Toluene Ortho-monooxygenase. J. Biol. Chem. 2004, 279(45), 46810–46817. DOI: 10.1074/jbc.M407466200.
  • Champion, E.; Guerin, F.; Moulis, C.; Barbe, S.; Tran, T. H.; Morel, S.; Descroix, K.; Monsan, P.; Mourey, L.; Mulard, L. A.; et al. Applying Pairwise Combinations of Amino Acid Mutations for Sorting Out Highly Efficient Glucosylation Tools for Chemo-enzymatic Synthesis of Bacterial Oligosaccharides. J. Am. Chem. Soc. 2012, 134(45), 18677–18688. DOI: 10.1021/ja306845b.
  • Shim, J. H.; Kim, Y. W.; Kim, T. J.; Chae, H. Y.; Park, J. H.; Cha, H.; Kim, J. W.; Kim, Y. R.; Schaefer, T.; Spendler, T.; et al. Improvement of Cyclodextrin Glucanotransferase as an Antistaling Enzyme by Error-prone PCR. Protein Eng. Des. Sel. 2004, 17(3), 205–211. DOI: 10.1093/protein/gzh035.
  • Palva, I.;. Molecular Cloning of α-amylase Gene from Bacillus Amyloliquefaciens and Its Expression in Bacillus Subtilis. Gene. 1982, 19, 81–87. DOI: 10.1016/0378-1119(82)90191-3.
  • O’Neill, G. P.; Kilburn, D. G.; Warren, R. A. J.; Miller, R. C. Overproduction from a Cellulase Gene with a High Guanosine-plus-cytosine Content in Escherichia Coli. Appl. Environ. Microbiol. 1986, 52, 737–743.
  • Mondou, F.; Shareck, F.; Morosoli, R.; Kleupfel, D. Cloning of the Xylanase Gene of Streptomyces Lividans. Gene. 1986, 49, 323–329. DOI: 10.1016/0378-1119(86)90368-9.
  • Elander, R. P.;. Genetic Engineering Applications in the Development of Selected Industrial Enzymes and Therapeutic Proteins. In Microbes for Better Living; Sankaran, R., Manja, K.S., Eds.; Defense Food Research Laboratory: Mysore, India, 1995; pp 619–628.
  • Wang, J. R.; Li, Y. Y.; Liu, D. N.; Liu, J. S.; Li, P.; Chen, L. Z.; Xu, S. D. Codon Optimization Significantly Improves the Expression Level of α-Amylase Gene from Bacillus Licheniformis in Pichia Pastoris. BioMed. Res. Int. 2015. DOI: 10.1155/2015/248680.
  • Dombkowski, A. A.; Sultana, K. Z.; Craig, D. B. Protein Disulfide Engineering. FEBS Lett. 2014, 588, 206–212. DOI: 10.1016/j.febslet.2013.11.024.
  • Currin, A.; Swainston, N.; Day, P. J.; Kel, D. B. Synthetic Biology for the Directed Evolution of Protein Biocatalysts: Navigating Sequence Space Intelligently. Chem. Soc. Rev. 2015, 44(5), 1172–1239.
  • Badhan, A.; Wang, Y. X.; Gruninger, R.; Patton, D.; Powlowski, J.; Tsang, A.; McAllister, T. A. Improvement in Saccharification Yield of Mixed Rumen Enzymes by Identification of Recalcitrant Cell Wall Constituents Using Enzyme Fingerprinting. BioMed. Res. Int. 2015, 2015, 1–13. DOI: 10.1155/2015/562952.
  • Meng, H.; Liu, P.; Sun, H.; Cai, Z.; Zhou, J.; Lin, J.; Li, Y. Engineering a D-lactate Dehydrogenase that Can Super-efficiently Utilize NADPH and NADH as Cofactors. Sci. Rep. 2016, 6, 24887. DOI: 10.1038/srep24887.
  • Ramirez-Paz, J.; Saxena, M.; Delinois, L. J.; Joaquín-Ovalle, F. M.; Lin, S.; Chen, Z.;Rojas-Nieves, V. A.; Griebenow, K. Site-specific PEGylation crosslinking of L-asparaginase subunits to improve its therapeutic efficiency. BioRxiv. 2018, p.317040.
  • Kurtzberg, J.; Asselin, B.; Bernstein, M.; Buchanan, G. R.; Pollock, B. H.; Camitta, B. M. Polyethylene Glycol-Conjugated L-Asparaginase Versus Native L-Asparaginase In Combination With Standard Agents For Children With Acute Lymphoblastic Leukemia In Second Bone Marrow Relapse: A Children’s Oncology Group Study. J. Pediatr. Hematol. Oncol. 2011, 33(8), 610–616. DOI: 10.1097/MPH.0b013e31822d4d4e.
  • Schoffelen, S.; van Hest, J. C. Chemical Approaches for the Construction of Multi-enzyme Reaction Systems. Curr. Opin. Struct. Biol. 2013, 23, 613–621. DOI: 10.1016/j.sbi.2013.06.010.
  • Li, Y. Y.; Cirino, P. C. Recent Advances in Engineering Proteins for Biocatalysis. Biotechnol. Bioeng. 2014, 111, 1273–1287. DOI: 10.1002/bit.25240.
  • Singh-Blom, A.; Hughes, R. A.; Ellington, A. D. An Amino Acid Depleted Cell-free Protein Synthesis System for the Incorporation of Non-canonical Amino Acid Analogs into Proteins. J. Biotechnol. 2014, 178, 12–22. DOI: 10.1016/j.jbiotec.2014.02.009.
  • Schmidt, M.; Toplak, A.; Quaedflieg, P. J. L. M.; Nuijens, T. Enzyme-mediated Ligation Technologies for Peptides and Proteins. Curr. Opin. Chem. Biol. 2017, 38, 1–7. DOI: 10.1016/j.cbpa.2017.01.017.
  • Wu, Z. P.; Hilvert, D. Redesign of Protein Function: A Semisynthetic Selenoenzyme. In Biotechnology and Polymers; Gebelein, C.G., Ed.; Springer: Boston, MA, 1991, 315–320.
  • Yang, H.; Li, J.; Du, G.; Liu, L. Microbial Production and Molecular Engineering of Industrial Enzymes: Challenges and Strategies. In Biotechnology of Microbial Enzymes: Production, Biocatalysis and Industrial Applications; Brahmachari, G., Demain, A.L., Adrio, J.L., Eds., Academic Press, Elsevier Publications: USA, 2017; pp 151–165.ISBN: 978-0-12-803725-6
  • Shoemaker, S.; Schweickart, V.; Ladner, M.; Gelfand, D.; Kwok, S.; Myambo, K.; Innis, M. Molecular Cloning of Exo-cellobiohydrolase I Derived from Trichoderma Reesei Strain L27. Bio/Technol. 1983, 1, 691–696.
  • Brunt, V. J.;. Fungi: The Perfect Hosts? Bio/Technol. 1986, 4, 1057–1062.
  • Hartinsveldt, V. W.; van Zeijl, C. M.; Harteeld, G. M.; Gouka, R. J.; Suykerbuyk, M.; Luiten, R. G.; Paridon, P. A.; Selten, G. C. M.; Veenstra, A. E.; Gorcom, R. F. M.; et al. Cloning, Characterization and Overexpression of the Phytase-encoding Gene (Phya) of Aspergillus Niger. Gene. 1993, 127(1), 87–94. DOI: 10.1016/0378-1119(93)90620-I.
  • Kaur, B.; Chakraborty, D.; Kumar, B. Metabolic Engineering of Pediococcus Acidilactici BD16 for Production of Vanillin through Ferulic Acid Catabolic Pathway and Process Optimization Using Response Surface Methodology. Appl. Microbiol. Biotechnol. 2014, 98(20), 8539–8551. DOI: 10.1007/s00253-014-5950-x.
  • Chakraborty, D.; Kaur, G.; Kaur, B. Metabolic Engineering of E.coli Top 10 for Production of Vanillin through FA Catabolic Pathway and Bioprocess Optimization Using RSM. Protein Expr. Purif. 2016, 128, 123–133. DOI: 10.1016/j.pep.2016.08.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.