347
Views
7
CrossRef citations to date
0
Altmetric
Review

Are Data from Mycotoxins’ Urinary Biomarkers and Food Surveys Linked? A Review Underneath Risk Assessment

, , , &

References

  • Vettorazzi, A.; López de Cerain, A. Mycotoxins as Food Carcinogens. In Environmental Mycology in Public Health, Viegas, C., Pinheiro, A. C., Sabino, R., Viegas, S., Brandão, J., Veríssimo, C., Eds.; Academic Press: 2016, pp 261–298. DOI: 10.1016/B978-0-12-411471-5.00017-X.
  • Louro, H.; Heinälä, M.; Bessems, J.; Buekers, J.; Vermeire, T.; Woutersen, M.; van Engelen, J.; Borges, T.; Rousselle, C.; Ougier, E.;, et al. Human Biomonitoring in Health Risk Assessment in Europe: Current Practices and Recommendations for the Future. Int. J. Hyg. Environ. Health.2019, 222(5), 727–737. DOI: 10.1016/j.ijheh.2019.05.009.
  • Choi, J.; Mørck, T. A.; Polcher, A.; Knudsen, L. E.; Joas, A. Review of the State of the Art of Human Biomonitoring for Chemical Substances and Its Application to Human Exposure Assessment for Food, EFSA Supporting Publications, EN-724, 2015.
  • Bennett, J. W.; Klich, M. Mycotoxins. Clin Microbiol Rev. 2003, 16(3), 497–516. DOI: 10.1128/CMR.16.3.497.
  • Turner, P. C.; Flannery, B.; Isitt, C.; Ali, M.; Pestka, J. The Role of Biomarkers in Evaluating Human Health Concerns from Fungal Contaminants in Food. Nutr. Res. Rev. 2012, 25(01), 162–179. DOI: 10.1017/S095442241200008X.
  • Straumfors, A.; Uhlig, S.; Eriksen, G. S.; Heldal, K. K.; Eduard, W.; Krska, R.; Sulyok, M. Mycotoxins and Other Fungal Metabolites in Grain Dust from Norwegian Grain Elevators and Compound Feed Mills. World Mycotoxin J. 2015, 8(3), 361–373. DOI: 10.3920/WMJ2014.1799.
  • Wu, F.;. Time to Face the Fungal Threat. Nature. 2014, 516(729), S7. DOI: 10.1038/516S7a.
  • Abrunhosa, L.; Morales, H.; Soares, C.; Calado, T.; Vila-Chã, A. S.; Pereira, M.; Venâncio, A. A Review of Mycotoxins in Food and Feed Products in Portugal and Estimation of Probable Daily Intakes. Crit. Rev. Food Sci. Nutr. 2016, 56, 249–265. DOI: 10.1080/10408398.2012.720619.
  • Lee, H. J.; Ryu, D. Worldwide Occurrence of Mycotoxins in Cereals and Cereal-Derived Food Products: Public Health Perspectives of Their Co-Occurrence. J. Agric. Food Chem. 2017, 65(33), 7034–7051. DOI: 10.1021/acs.jafc.6b04847.
  • IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer Press: Lyon, France, 2002.
  • Koplan, J. P.; Bond, T. C.; Merson, M. H.; Reddy, K. S.; Rodriguez, M. H.; Sewankambo, N. K.; Wasserheit, J. N. Towards a Common Definition of Global Health. Lancet. 2009, 373(9679), 1993–1995. DOI: 10.1016/S0140-6736(09)60332-9.
  • Mally, A.; Solfrizzo, M.; Degen, G. H. Biomonitoring of the Mycotoxin Zearalenone: Current State-of-the Art and Application to Human Exposure Assessment. Arch. Toxicol. 2016, 90(6), 1281–1292. DOI: 10.1007/s00204-016-1704-0.
  • Ostry, V.; Malir, F.; Toman, J.; Grosse, Y. Mycotoxins as Human Carcinogens—The IARC Monographs Classification. Mycotoxin Res. 2017, 33(1), 65–73. DOI: 10.1007/s12550-016-0265-7.
  • Schatzmayr, G.; Streit, E. Global Occurrence of Mycotoxins in the Food and Feed Chain: Facts and Figures. World Mycotoxin J. 2013, 6(3), 213–222. DOI: 10.3920/WMJ2013.1572.
  • Barreira, M. J.; Alvito, P. C.; Almeida, C. M. M. Occurrence of Patulin in Apple-Based-Foods in Portugal. Food Chem. 2010, 121(3), 653–658. DOI: 10.1016/j.foodchem.2009.12.085.
  • Fernane, F.; Cano-Sancho, G.; Sanchis, V.; Marín, S.; Ramos, A. J. Aflatoxins and Ochratoxin A in Pistachios Sampled in Spain: Occurrence and Presence of Mycotoxigenic Fungi. Food Addit. Contam. Part B. 2010, 3(3), 185–192. DOI: 10.1080/19440049.2010.497257.
  • Coronel, M. B.; Marín, S.; Cano-Sancho, G.; Ramos, A. J.; Sanchis, V. Exposure Assessment to Ochratoxin A in Catalonia (Spain) Based on the Consumption of Cereals, Nuts, Coffee, Wine, and Beer. Food Addit. Contam. Part A. 2012, 29(6), 979–993. DOI: 10.1080/19440049.2012.660708.
  • Duarte, S. C.; Almeida, A. M.; Teixeira, A. S.; Pereira, A. L.; Falcão, A. C.; Pena, A.; Lino, C. M. Aflatoxin M1 in Marketed Milk in Portugal: Assessment of Human and Animal Exposure. Food Control. 2013, 30(2), 411–417. DOI: 10.1016/j.foodcont.2012.08.002.
  • Assunção, R.; Martins, C.; Dupont, D.; Alvito, P. Patulin and Ochratoxin A Co-Occurrence and Their Bioaccessibility in Processed Cereal-Based Foods: A Contribution for Portuguese Children Risk Assessment. Food Chem. Toxicol. 2016, 96, 205–214. DOI: 10.1016/j.fct.2016.08.004.
  • Martins, C.; Assunção, R.; Cunha, S. C.; Fernandes, J. O.; Jager, A.; Petta, T.; Oliveira, C. A.; Alvito, P. Assessment of Multiple Mycotoxins in Breakfast Cereals Available in the Portuguese Market. Food Chem. 2018, 239, 132–140. DOI: 10.1016/j.foodchem.2017.06.088.
  • De Boevre, M.; Jacxsens, L.; Lachat, C.; Eeckhout, M.; Di Mavungu, J. D.; Audenaert, K.; Maene, P.; Haesaert, G.; Kolsteren, P.; De Meulenaer, B.;, et al. Human Exposure to Mycotoxins and Their Masked Forms through Cereal-Based Foods in Belgium. Toxicol. Lett.2013, 218(3), 281–292. DOI: 10.1016/j.toxlet.2013.02.016.
  • Torović, L.; Dimitrov, N.; Lopes, A.; Martins, C.; Alvito, P.; Assunção, R. Patulin in Fruit Juices: Occurrence, Bioaccessibility, and Risk Assessment for Serbian Population. Food Addit. Contam. Part A. 2018, 35(5), 985–995. DOI: 10.1080/19440049.2017.1419580.
  • Nathanail, A. V.; Syvähuoko, J.; Malachová, A.; Jestoi, M.; Varga, E.; Michlmayr, H.; Adam, G.; Sieviläinen, E.; Berthiller, F.; Peltonen, K. Simultaneous Determination of Major Type A and B Trichothecenes, Zearalenone and Certain Modified Metabolites in Finnish Cereal Grains with A Novel Liquid Chromatography-Tandem Mass Spectrometric Method. Anal. Bioanal. Chem. 2015, 407(16), 4745–4755. DOI: 10.1007/s00216-015-8676-4.
  • Berthiller, F.; Cramer, B.; Iha, M. H.; Krska, R.; Lattanzio, V. M. T.; MacDonald, S.; Malone, R. J.; Maragos, C.; Solfrizzo, M.; Stranska-Zachariasova, M.;, et al. Developments in Mycotoxin Analysis: An Update for 2016-2017. World Mycotoxin J.2018, 11(1), 5–32. DOI: 10.3920/WMJ2017.2250.
  • EFSA. International Frameworks. Dealing with Human Risk Assessment of Combined Exposure to Multiple Chemicals. Efsa J. 2013, 11(7), 3313. DOI:10.2903/j.efsa.2013.3313.
  • Rychlik, M.; Humpf, H. U.; Marko, D.; Dänicke, S.; Mally, A.; Berthiller, F.; Klaffke, H.; Lorenz, N. Proposal of a Comprehensive Definition of Modified and Other Forms of Mycotoxins Including “Masked” Mycotoxins. Mycotoxin Res. 2014, 30(4), 197–205. DOI: 10.1007/s12550-014-0203-5.
  • Dellafiora, L.; Dall’Asta, C.; Galaverna, G. Toxicodynamics of Mycotoxins in the Framework of Food Risk Assessment—An in Silico Perspective. Toxins (Basel). 2018, 10(2), 52. DOI: 10.3390/toxins10020052.
  • Freire, L.; Sant’Ana, A. S. Modified Mycotoxins: An Updated Review on Their Formation, Detection, Occurrence, and Toxic Effects. Food Chem. Toxicol. 2018, 111(November 2017), 189–205. DOI: 10.1016/j.fct.2017.11.021.
  • De Ruyck, K.; De Boevre, M.; Huybrechts, I.; De Saeger, S. Dietary Mycotoxins, Co-Exposure, and Carcinogenesis in Humans: Short Review. Mutat. Res. Mutat. Res. 2015, 766, 32–41. DOI: 10.1016/j.mrrev.2015.07.003.
  • Leong, Y. H.; Latiff, A. A.; Ahmad, N. I.; Rosma, A. Exposure Measurement of Aflatoxins and Aflatoxin Metabolites in Human Body Fluids. A Short Review. Mycotoxin Res. 2012, 28(2), 79–87. DOI: 10.1007/s12550-012-0129-8.
  • Wu, Q.; Jezkova, A.; Yuan, Z.; Pavlikova, L.; Dohnal, V.; Kuca, K. Biological Degradation of Aflatoxins. Drug Metab. Rev. 2009, 41(1), 1–7. DOI: 10.1080/03602530802563850.
  • Vidal, A.; Mengelers, M.; Yang, S.; De Saeger, S.; De Boevre, M. Mycotoxin Biomarkers of Exposure: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2018, (July). DOI: 10.1111/1541-4337.12367.
  • FAO/WHO. Evaluation of Certain Contaminants in Food; Rome, 2017.
  • McMillan, A.; Renaud, J. B.; Burgess, K. M. N.; Orimadegun, A. E.; Akinyinka, O. O.; Allen, S. J.; Miller, J. D.; Reid, G.; Sumarah, M. W. Aflatoxin Exposure in Nigerian Children with Severe Acute Malnutrition. Food Chem. Toxicol. 2018, 111(September 2017), 356–362. DOI: 10.1016/j.fct.2017.11.030.
  • Jager, A. V.; Tonin, F. G.; Baptista, G. Z.; Souto, P. C. M. C.; Oliveira, C. A. F. Assessment of Aflatoxin Exposure Using Serum and Urinary Biomarkers in São Paulo, Brazil: A Pilot Study. Int. J. Hyg. Environ. Health. 2016, 219(3), 294–300. DOI: 10.1016/j.ijheh.2015.12.003.
  • Pfohl-Leszkowicz, A.; Manderville, R. A.; Ochratoxin, A. An Overview on Toxicity and Carcinogenicity in Animals and Humans. Mol. Nutr. Food Res. 2007, 51(1), 61–99. DOI: 10.1002/mnfr.200600137.
  • Tao, Y.; Xie, S.; Xu, F.; Liu, A.; Wang, Y.; Chen, D.; Pan, Y.; Huang, L.; Peng, D.; Wang, X.;, et al. Ochratoxin A: Toxicity, Oxidative Stress and Metabolism. Food Chem. Toxicol.2018, 112(October 2017), 320–331. DOI: 10.1016/j.fct.2018.01.002.
  • Soto, J. B.; Ruiz, M.-J.; Manyes, L.; Juan-García, A. Blood, Breast Milk and Urine: Potential Biomarkers of Exposure and Estimated Daily Intake of Ochratoxin A: A Review. Food Addit. Contam. Part A. 2015, 33(2), 1–16. DOI: 10.1080/19440049.2015.1118160.
  • Sugita-Konishi, Y.; Kamata, Y.; Sato, T.; Yoshinari, T.; Saito, S. Exposure and Risk Assessment for Ochratoxin A and Fumonisins in Japan. Food Addit. Contam. Part A. Chem. Anal. Control. Expo. Risk Assess. 2012, November, 37–41. doi: 10.1080/19440049.2012.743190.
  • Marin, S.; Ramos, A. J.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, Toxicology, and Exposure Assessment. Food Chem. Toxicol. 2013, 60, 218–237. DOI: 10.1016/j.fct.2013.07.047.
  • EFSA. Opinion of the Scientific Panel on Contaminants in the Food Chain Related to Ochratoxin A in Food. Efsa J. 2006, 4(6), 365. DOI:10.2903/j.efsa.2006.365.
  • JECFA. Evaluation of certain food additives and contaminants. In World Health Organization - Technical Report Series 947, World Health Organization: Geneva, Switzerland, 2007.
  • Muñoz, K.; Blaszkewicz, M.; Degen, G. H. Simultaneous Analysis of Ochratoxin A and Its Major Metabolite Ochratoxin Alpha in Plasma and Urine for an Advanced Biomonitoring of the Mycotoxin. J. Chromatogr. B. 2010, 878(27), 2623–2629. DOI: 10.1016/j.jchromb.2009.11.044.
  • Studer-Rohr, I.; Schlatter, J.; Dietrich, D. R. Kinetic Parameters and Intraindividual Fluctuations of Ochratoxin A Plasma Levels in Humans. Arch. Toxicol. 2000, 74(9), 499–510. DOI: 10.1007/s002040000157.
  • Gilbert, J.; Brereton, P.; MacDonald, S. Assessment of Dietary Exposure to Ochratoxin A in the UK Using A Duplicate Diet Approach and Analysis of Urine and Plasma Samples. Food Addit. Contam. 2001, 18(12), 1088–1093. DOI: 10.1080/02652030110070030.
  • Ali, N.; Blaszkewicz, M.; Degen, G. H. Occurrence of the Mycotoxin Citrinin and Its Metabolite Dihydrocitrinone in Urines of German Adults. Arch. Toxicol. 2015, 89(4), 573–578. DOI: 10.1007/s00204-014-1363-y.
  • Ali, N.; Muñoz, K.; Degen, G. H. Ochratoxin A and Its Metabolites in Urines of German Adults—An Assessment of Variables in Biomarker Analysis. Toxicol. Lett. 2017, 275, 19–26. DOI: 10.1016/j.toxlet.2017.04.013.
  • Shephard, G. S.; Van Der Westhuizen, L.; Sewram, V. Biomarkers of Exposure to Fumonisin Mycotoxins: A Review. Food Addit. Contam. 2007, 24(10), 1196–1201. DOI: 10.1080/02652030701513818.
  • Marasas, W. F. O. Discovery and Occurrence of the Fumonisins: A Historical Perspective. Environ. Health Perspect. 2001, 109(SUPPL. 2), 239–243. DOI: 10.2307/3435014.
  • Marasas, W. F. O.; Riley, R. T.; Hendricks, K. A.; Stevens, V. L.; Sadler, T. W.; Gelineau-van Waes, J.; Missmer, S. A.; Cabrera, J.; Torres, O.; Gelderblom, W. C. A.;, et al. Fumonisins Disrupt Sphingolipid Metabolism, Folate Transport, and Neural Tube Development in Embryo Culture and in Vivo: A Potential Risk Factor for Human Neural Tube Defects among Populations Consuming Fumonisin-Contaminated Maize. J. Nutr.2004, 134(4), 711–716. DOI: 10.1093/jn/134.4.711.
  • Missmer, S. A.; Suarez, L.; Felkner, M.; Wang, E.; Merrill, A. H.; Rothman, K. J.; Hendricks, K. A. Exposure to Fumonisins and the Occurrence of Neural Tube Defects along the Texas–Mexico Border. Environ. Health Perspect. 2006, 114(2), 237–241. DOI: 10.1289/ehp.8221.
  • Voss, K. A.; Riley, R. T. Fumonisin Toxicity and Mechanism of Action: Overview and Current Perspectives. Food Saf. 2013, 1(1), 2013006. DOI: 10.14252/foodsafetyfscj.2013006.
  • Scott, P. M. Recent Research on Fumonisins: A Review. Food Addit. Contam. Part A. Chem. Anal. Control. Expo. Risk Assess. 2012, 29(2), 242–248. DOI: 10.1080/19440049.2010.546000.
  • Torres, O.; Matute, J.; Gelineau-van Waes, J.; Maddox, J. R.; Gregory, S. G.; Ashley-Koch, A. E.; Showker, J. L.; Voss, K. A.; Riley, R. T. Human Health Implications from Co-Exposure to Aflatoxins and Fumonisins in Maize-Based Foods in Latin America: Guatemala as a Case Study. World Mycotoxin J. 2015, 8(2), 143–159. DOI: 10.3920/WMJ2014.1736.
  • IARC. Some Naturally Occurring Substances: Food Items and Constituents, Heterocyclic Aromatic Amines and Mycotoxins. IARC Monogr. Eval. Carcinog. Risk Chem. Hum. Suppl. 1993, 56, 1–521. DOI: 10.1002/food.19940380335.
  • Cano-Sancho, G.; Marin, S.; Ramos, A. J.; Sanchis, V. Biomonitoring of Fusarium Spp. Mycotoxins: Perspectives for an Individual Exposure Assessment Tool. Food Sci. Technol. Int. 2010, 16(3), 266–276. DOI: 10.1177/1082013210368884.
  • Wangia, R. N.; Githanga, D. P.; Xue, K. S.; Tang, L.; Anzala, O. A.; Wang, J.-S. Validation of Urinary Sphingolipid Metabolites as Biomarker of Effect for Fumonisins Exposure in Kenyan Children. Biomarkers. 2019, 1–10. DOI: 10.1080/1354750X.2019.1587510.
  • Shephard, G. S.; Thiel, P. G.; Sydenham, E. W.; Alberts, J. F.; Cawood, M. E. Distribution and Excretion of a Single Dose of the Mycotoxin Fumonisin B1 in a non-human Primate. Toxicon. 1994, 32, 735–741.
  • Dilkin, P.; Direito, G.; Simas, M. M. S.; Mallmann, C. A.; Corrêa, B. Toxicokinetics and Toxicological Effects of Single Oral Dose of Fumonisin B1 Containing Fusarium Verticillioides Culture Material in Weaned Piglets. Chem. Biol. Interact. 2010, 185(3), 157–162. DOI: 10.1016/j.cbi.2010.03.025.
  • Riley, R. T.; Torres, O.; Showker, J. L.; Zitomer, N. C.; Matute, J.; Voss, K. A.; Gelineau-van Waes, J.; Maddox, J. R.; Gregory, S. G.; Ashley-Koch, A. E. The Kinetics of Urinary Fumonisin B1excretion in Humans Consuming Maize-Based Diets. Mol. Nutr. Food Res. 2012, 56(9), 1445–1455. DOI: 10.1002/mnfr.201200166.
  • Gambacorta, S.; Solfrizzo, H.; Visconti, A.; Powers, S.; Cossalter, A. M.; Pinton, P.; Oswald, I. P. Validation Study on Urinary Biomarkers of Exposure for Aflatoxin B 1, Ochratoxin A, Fumonisin B 1, Deoxynivalenol and Zearalenone in Piglets. World Mycotoxin J. 2013, 6(3), 299–308. DOI: 10.3920/WMJ2013.1549.
  • Souto, P. C. M. C.; Jager, A. V.; Tonin, F. G.; Petta, T.; Di Gregório, M. C.; Cossalter, A.-M.; Pinton, P.; Oswald, I. P.; Rottinghaus, G. E.; Oliveira, C. A. F. Determination of Fumonisin B 1 Levels in Body Fluids and Hair from Piglets Fed Fumonisin B 1 -contaminated Diets. Food Chem. Toxicol. 2017, 108, 1–9. DOI: 10.1016/j.fct.2017.07.036.
  • Cirlini, M.; Hahn, I.; Varga, E.; Dall’Asta, M.; Falavigna, C.; Calani, L.; Berthiller, F.; Del Rio, D.; Dall’Asta, C. Hydrolysed Fumonisin B 1 and N -(deoxy-d-fructos-1-yl)-fumonisin B 1 : Stability and Catabolic Fate under Simulated Human Gastrointestinal Conditions. Int. J. Food Sci. Nutr. 2015, 66(1), 98–103. DOI: 10.3109/09637486.2014.979316.
  • EFSA. Risks to Human and Animal Health Related to the Presence of Deoxynivalenol and Its Acetylated and Modified Forms in Food and Feed. Efsa J. 2017, 15(9). DOI: 10.2903/j.efsa.2017.4718.
  • Zheng, W.; Pan, S.; Wang, G.; Wang, Y. J.; Liu, Q.; Gu, J.; Yuan, Y.; Liu, X. Z.; Liu, Z. P.; Bian, J. C. Zearalenone Impairs the Male Reproductive System Functions via Inducing Structural and Functional Alterations of Sertoli Cells. Environ. Toxicol. Pharmacol. 2016, 42, 146–155. DOI: 10.1016/j.etap.2016.01.013.
  • Kowalska, K.; Habrowska-Górczyńska, D. E.; Domińska, K.; Piastowska-Ciesielska, A. W. The Dose-Dependent Effect of Zearalenone on Mitochondrial Metabolism, Plasma Membrane Permeabilization and Cell Cycle in Human Prostate Cancer Cell Lines. Chemosphere. 2017, 180, 455–466. DOI: 10.1016/j.chemosphere.2017.04.027.
  • Pang, J.; Zhou, Q.; Sun, X.; Li, L.; Zhou, B.; Zeng, F.; Zhao, Y.; Shen, W.; Sun, Z. Effect of Low-Dose Zearalenone Exposure on Reproductive Capacity of Male Mice. Toxicol. Appl. Pharmacol. 2017, 333(August), 60–67. DOI: 10.1016/j.taap.2017.08.011.
  • Mukherjee, D.; Royce, S. G.; Alexander, J. A.; Buckley, B.; Isukapalli, S. S.; Bandera, E. V.; Zarbl, H.; Georgopoulos, P. G. Physiologically-Based Toxicokinetic Modeling of Zearalenone and Its Metabolites: Application to the Jersey Girl Study. PLoS One. 2014, 9(12), e113632. DOI: 10.1371/journal.pone.0113632.
  • EFSA. Appropriateness to Set a Group Health‐based Guidance Value for Zearalenone and Its Modified Forms. Efsa J. 2016, 14, 4. DOI: 10.2903/j.efsa.2016.4425.
  • Warth, B.; Sulyok, M.; Berthiller, F.; Schuhmacher, R.; Krska, R. New Insights into the Human Metabolism of the Fusarium Mycotoxins Deoxynivalenol and Zearalenone. Toxicol. Lett. 2013, 220(1), 88–94. DOI: 10.1016/j.toxlet.2013.04.012.
  • Ali, N.; Degen, G. H. Urinary Biomarkers of Exposure to the Mycoestrogen Zearalenone and Its Modified Forms in German Adults. Arch. Toxicol. 2018, 92(8), 2691–2700. DOI: 10.1007/s00204-018-2261-5.
  • Lorenz, N.; Dänicke, S.; Edler, L.; Gottschalk, C.; Lassek, E.; Marko, D.; Rychlik, M.; Mally, A. A Critical Evaluation of Health Risk Assessment of Modified Mycotoxins with A Special Focus on Zearalenone. Mycotoxin Res. 2019, 35(1), 27–46. DOI: 10.1007/s12550-018-0328-z.
  • Khaneghah, A. M.; Martins, L. M.; von Hertwig, A. M.; Bertoldo, R.; Sant’Ana, A. S. Deoxynivalenol and Its Masked Forms: Characteristics, Incidence, Control and Fate during Wheat and Wheat Based Products Processing - A Review. Trends Food Sci. Technol. 2018, 71(November 2017), 13–24. DOI: 10.1016/j.tifs.2017.10.012.
  • Gratz, S. W.; Richardson, A. J.; Duncan, G.; Holtrop, G. Annual Variation of Dietary Deoxynivalenol Exposure during Years of Different Fusarium Prevalence: A Pilot Biomonitoring Study. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2014, 31(9), 1579–1585. DOI: 10.1080/19440049.2014.937772.
  • Brera, C.; Bertazzoni, V.; Debegnach, F.; Gregori, E.; Prantera, E.; de Santis, B. Exposure Assessment for Italian Population Groups to Deoxynivalenol Deriving from Pasta Consumption. Toxins (Basel). 2013, 5(12), 2293–2309. DOI: 10.3390/toxins5122293.
  • Dänicke, S.; Brezina, U. Kinetics and Metabolism of the Fusarium Toxin Deoxynivalenol in Farm Animals: Consequences for Diagnosis of Exposure and Intoxication and Carry Over. Food Chem. Toxicol. 2013, 60, 58–75. DOI: 10.1016/j.fct.2013.07.017.
  • Nagl, V.; Schatzmayr, G. Deoxynivalenol and Its Masked Forms in Food and Feed. Curr. Opin. Food Sci. 2015, 5, 43–49. DOI: 10.1016/j.cofs.2015.08.001.
  • Vidal, A.; Claeys, L.; Mengelers, M.; Vanhoorne, V.; Vervaet, C.; Huybrechts, B.; De Saeger, S.; De Boevre, M. Humans Significantly Metabolize and Excrete the Mycotoxin Deoxynivalenol and Its Modified Form Deoxynivalenol-3-Glucoside within 24 Hours. Sci. Rep. 2018, 8(1), 5255. DOI: 10.1038/s41598-018-23526-9.
  • Mengelers, M.; Zeilmaker, M.; Vidal, A.; De Boevre, M.; De Saeger, S.; Hoogenveen, R. Biomonitoring of Deoxynivalenol and Renal Excretion Profiles. Toxins (Basel). 2019, 11(466), 1–16. DOI: 10.3390/toxins1108466.
  • Pastoor, T. P.; Bachman, A. N.; Bell, D. R.; Cohen, S. M.; Dellarco, M.; Dewhurst, I. C.; Doe, J. E.; Doerrer, N. G.; Embry, M. R.; Hines, R. N.;, et al. A 21st Century Roadmap for Human Health Risk Assessment. Crit. Rev. Toxicol.2014, 44(sup3), 1–5. DOI: 10.3109/10408444.2014.931923.
  • de Nijs, M.; Mengelers, M. J. B.; Boon, P. E.; Heyndrickx, E.; Hoogenboom, L. A. P.; Lopez, P.; Mol, H. G. J. Strategies for Estimating Human Exposure to Mycotoxins via Food. World Mycotoxin J. 2016, 9(5), 831–845. DOI: 10.3920/WMJ2016.2045.
  • Exley, K.; Aerts, D.; Biot, P.; Casteleyn, L.; Kolossa-Gehring, M.; Schwedler, G.; Castano, A.; Angerer, J.; Koch, H. M.; Esteban, M.; et al. Human Biomonitoring to Assess Environmental Chemical Exposures : Work Towards a UK Framework. Perspect. Public Health. 2014, 134(5), 299–301.
  • Routledge, M. N.; Gong, Y. Y. Developing Biomarkers of Human Exposure to Mycotoxins; Woodhead Publishing Limited, 2011. DOI: 10.1533/9780857090973.3.225.
  • Heyndrickx, E.; Sioen, I.; Huybrechts, B.; Callebaut, A.; De Henauw, S.; De Saeger, S. Human Biomonitoring of Multiple Mycotoxins in the Belgian Population: Results of the BIOMYCO Study. Environ. Int. 2015, 84, 82–89. DOI: 10.1016/j.envint.2015.06.011.
  • Assunção, R.; Martins, C.; Vasco, E.; Jager, A.; Oliveira, C.; Cunha, S. C.; Fernandes, J. O.; Nunes, B.; Loureiro, S.; Alvito, P. Portuguese Children Dietary Exposure to Multiple Mycotoxins – An Overview of Risk Assessment under MYCOMIX Project. Food Chem. Toxicol. 2018, 118, 399–408. DOI: 10.1016/j.fct.2018.05.040.
  • Wallin, S.; Gambacorta, L.; Kotova, N.; Warensjö Lemming, E.; Nälsén, C.; Solfrizzo, M.; Olsen, M. Biomonitoring of Concurrent Mycotoxin Exposure among Adults in Sweden through Urinary Multi-Biomarker Analysis. Food Chem. Toxicol. 2015, 83(June), 133–139. DOI: 10.1016/j.fct.2015.05.023.
  • Degen, G.;. Tools for Investigating Workplace-Related Risks from Mycotoxin Exposure. World Mycotoxin J. 2011, 4(3), 315–327. DOI: 10.3920/wmj2011.1295.
  • Föllmann, W.; Ali, N.; Blaszkewicz, M.; Degen, G. H. Biomonitoring of Mycotoxins in Urine: Pilot Study in Mill Workers. J. Toxicol. Environ. Heal. Part A. 2016, 79(22–23), 1015–1025. DOI: 10.1080/15287394.2016.1219540.
  • Viegas, S.; Assunção, R.; Nunes, C.; Osteresch, B.; Twarużek, M.; Kosicki, R.; Grajewski, J.; Martins, C.; Alvito, P.; Almeida, A.;, et al. Exposure Assessment to Mycotoxins in a Portuguese Fresh Bread Dough Company by Using a Multi-Biomarker Approach. Toxins (Basel).2018, 10(9), 342. DOI: 10.3390/toxins10090342.
  • Viegas, S.; Assunção, R.; Martins, C.; Nunes, C.; Osteresch, B.; Twarużek, M.; Kosicki, R.; Grajewski, J.; Ribeiro, E.; Viegas, C. Occupational Exposure to Mycotoxins in Swine Production: Environmental and Biological Monitoring Approaches. Toxins (Basel). 2019, 11(2), 78. DOI: 10.3390/toxins11020078.
  • Barr, D. B.; Wilder, L. C.; Caudill, S. P.; Gonzalez, A. J.; Needham, L. L.; Pirkle, J. L. Urinary Creatinine Concentrations in the U.S. Population: Implications for Urinary Biologic Monitoring Measurements. Environ. Health Perspect. 2004, 113(2), 192–200. DOI: 10.1289/ehp.7337.
  • Middleton, D. R. S.; Watts, M. J.; Lark, R. M.; Milne, C. J.; Polya, D. A. Assessing Urinary Flow Rate, Creatinine, Osmolality and Other Hydration Adjustment Methods for Urinary Biomonitoring Using NHANES Arsenic, Iodine, Lead and Cadmium Data. Environ. Heal. A Glob. Access Sci. Source. 2016, 15(1), 1–13. DOI: 10.1186/s12940-016-0152-x.
  • MacPherson, S.; Arbuckle, T. E.; Fisher, M. Adjusting Urinary Chemical Biomarkers for Hydration Status during Pregnancy; Springer: US, 2018. DOI: 10.1038/s41370-018-0043-z.
  • Suwazono, Y.; Åkesson, A.; Alfvén, T.; Järup, L.; Vahter, M. Creatinine versus Specific Gravity-Adjusted Urinary Cadmium Concentrations. Biomarkers. 2005, 10(2–3), 117–126. DOI: 10.1080/13547500500159001.
  • Fiddicke, U.;. 1 st Prioritisation Report on Survey Design : Study Protocols, SOPs and Guidelines, Tailored and Transferred Questionnaires for Recruitment and Sampling; HBM4EU: Berlin, Germany, 2018. https://www.hbm4eu.eu/deliverables/.
  • LaKind, J. S.; Idri, F.; Naiman, D. Q.; Verner, M.-A. Biomonitoring and Nonpersistent Chemicals—Understanding and Addressing Variability and Exposure Misclassification. Curr. Environ. Heal. Reports. 2019, (i). DOI: 10.1007/s40572-019-0227-2.
  • Calafat, A. M.;. Contemporary Issues in Exposure Assessment Using Biomonitoring. Curr. Epidemiol. Reports. 2016, 3(2), 145–153. DOI: 10.1007/s40471-016-0075-7.
  • Aylward, L. L.;. Integration of Biomonitoring Data into Risk Assessment. Curr. Opin. Toxicol. 2018, 9, 14–20. DOI: 10.1016/j.cotox.2018.05.001.
  • Steckling, N.; Gotti, A.; Bose-O’Reilly, S.; Chapizanis, D.; Costopoulou, D.; De Vocht, F.; Garí, M.; Grimalt, J. O.; Heath, E.; Hiscock, R.; et al. Biomarkers of Exposure in Environment-Wide Association Studies – Opportunities to Decode the Exposome Using Human Biomonitoring Data. Environ. Res.2018, 164(April), 597–624. DOI: 10.1016/j.envres.2018.02.041.
  • Horvat, M.; Sarigiannis, D.; Handakas, E.; Karakitsios, S.; Gotti, A. Report on the Optimal Methodology for Exposure Reconstruction from HBM Data Deliverable Report WP 12 - From HBM to Exposure Deadline : December 2017 Upload by Coordinator : 12 December 2017; 2017.
  • Šarkanj, B.; Warth, B.; Uhlig, S.; Abia, W. A.; Sulyok, M.; Klapec, T.; Krska, R.; Banjari, I. Urinary Analysis Reveals High Deoxynivalenol Exposure in Pregnant Women from Croatia. Food Chem. Toxicol. 2013, 62, 231–237. DOI: 10.1016/j.fct.2013.08.043.
  • Vidal, A.; Cano-Sancho, G.; Marín, S.; Ramos, A. J.; Sanchis, V. Multidetection of Urinary Ochratoxin A, Deoxynivalenol and Its Metabolites: Pilot Time-Course Study and Risk Assessment in Catalonia, Spain. World Mycotoxin J. 2016, 9(4), 597–612. DOI: 10.3920/WMJ2015.2006.
  • EFSA. Aflatoxins (Sum of B1, B2, G1, G2) in Cereals and Cereal-Derived Food Products. Support. Publ. 2013, EN-406(March), 1–11.
  • EFSA. Scientific Opinion on the Risks for Public and Animal Health Related to the Presence of Nivalenol in Food and Feed. Efsa J. 2013, 11(6), 1–119. DOI:10.2903/j.efsa.2012.2605.
  • EFSA. Scientific Opinion on the Risks for Human and Animal Health Related to the Presence of Modified Forms of Certain Mycotoxins in Food and Feed. Efsa J. 2014, 12(12:3916), 1–107. DOI:10.2903/j.efsa.2011.2197.Available.
  • Eskola, M.; Altieri, A.; Galobart, J. Overview of the Activities of the European Food Safety Authority on Mycotoxins in Food and Feed. World Mycotoxin J. 2018, 11(2), 277–289. DOI: 10.3920/WMJ2017.2270.
  • Romero, A. D. C.; Ferreira, T. R. B.; Dias, C. T. D. S.; Calori-Domingues, M. A.; da Gloria, E. M. Occurrence of AFM1 in Urine Samples of a Brazilian Population and Association with Food Consumption. Food Control. 2010, 21(4), 554–558. DOI: 10.1016/j.foodcont.2009.08.004.
  • Coronel, M. B.; Marin, S.; Tarragó, M.; Cano-Sancho, G.; Ramos, A. J.; Sanchis, V. Ochratoxin A and Its Metabolite Ochratoxin Alpha in Urine and Assessment of the Exposure of Inhabitants of Lleida, Spain. Food Chem. Toxicol. 2011, 49(6), 1436–1442. DOI: 10.1016/j.fct.2011.03.039.
  • Klapec, T.; Šarkanj, B.; Banjari, I.; Strelec, I. Urinary Ochratoxin A and Ochratoxin Alpha in Pregnant Women. Food Chem. Toxicol. 2012, 50(12), 4487–4492. DOI: 10.1016/j.fct.2012.09.030.
  • Piekkola, S.; Turner, P. C. C.; Abdel-Hamid, M.; Ezzat, S.; El-Daly, M.; El-Kafrawy, S.; Savchenko, E.; Poussa, T.; Woo, J. C. S. C. S.; Mykkänen, H.; et al. Characterisation of Aflatoxin and Deoxynivalenol Exposure among Pregnant Egyptian Women. Food Addit. Contam. Part A.2012, 29(6), 962–971. DOI: 10.1080/19440049.2012.658442.
  • Redzwan, S. M.; Rosita, J.; Sokhini, A. M. M.; Aqilah, A. R. N. Association between Aflatoxin M1 Excreted in Human Urine Samples with the Consumption of Milk and Dairy Products. Bull. Environ. Contam. Toxicol. 2012, 89(6), 1115–1119. DOI: 10.1007/s00128-012-0853-y.
  • Schwartzbord, J. R.; Leroy, J. L.; Severe, L.; Brown, D. L. Urinary Aflatoxin M1 in Port-Au-Prince and a Rural Community in North-East Haiti. Food Addit. Contam. Part A. 2016, 33(6), 1036–1042. DOI: 10.1080/19440049.2016.1185899.
  • Ali, N.; Blaszkewicz, M.; Hossain, K.; Degen, G. H. Determination of Aflatoxin M 1 in Urine Samples Indicates Frequent Dietary Exposure to Aflatoxin B 1 in the Bangladeshi Population. Int. J. Hyg. Environ. Health. 2017, 220(2), 271–281. DOI: 10.1016/j.ijheh.2016.11.002.
  • Smith, L. E.; Mbuya, M. N. N.; Prendergast, A. J.; Turner, P. C.; Ruboko, S.; Humphrey, J. H.; Nelson, R. J.; Chigumira, A.; Kembo, G.; Stoltzfus, R. J. Determinants of Recent Aflatoxin Exposure among Pregnant Women in Rural Zimbabwe. Mol. Nutr. Food Res. 2017, 61(9), 1601049. DOI: 10.1002/mnfr.201601049.
  • Gong, Y. Y.; Torres-Sanchez, L.; Lopez-Carrillo, L.; Jian, H. P.; Sutcliffe, A. E.; White, K. L.; Humpf, H. U.; Turner, P. C.; Wild, C. P. Association between Tortilla Consumption and Human Urinary Fumonisin B1 Levels in a Mexican Population. Cancer Epidemiol. Biomarkers Prev. 2008, 17(3), 688–694. DOI: 10.1158/1055-9965.EPI-07-2534.
  • Turner, P. C.; Rothwell, J. A.; White, K. L. M.; Gong, Y.; Cade, J. E.; Wild, C. P. Urinary Deoxynivalenol Is Correlated with Cereal Intake in Individuals from the United Kingdom. Environ. Health Perspect. 2008, 116(1), 21–25. DOI: 10.1289/ehp.10663.
  • Turner, P. C.; Hopton, R. P.; Lecluse, Y.; White, K. L. M.; Fisher, J.; Lebailly, P. Determinants of Urinary Deoxynivalenol and De-Epoxy Deoxynivalenol in Male Farmers from Normandy, France. J. Agric. Food Chem. 2010, 58(8), 5206–5212. DOI: 10.1021/jf100892v.
  • Turner, P. C.; White, K. L. M.; Burley, V. J.; Hopton, R. P.; Rajendram, A.; Fisher, J.; Cade, J. E.; Wild, C. P. A Comparison of Deoxynivalenol Intake and Urinary Deoxynivalenol in UK Adults. Biomarkers. 2010, 15(6), 553–562. DOI: 10.3109/1354750X.2010.495787.
  • Bandera, E. V.; Chandran, U.; Buckley, B.; Lin, Y.; Isukapalli, S.; Marshall, I.; King, M.; Zarbl, H. Urinary Mycoestrogens, Body Size and Breast Development in New Jersey Girls. Sci. Total Environ. 2011, 409(24), 5221–5227. DOI: 10.1016/j.scitotenv.2011.09.029.
  • Van Der Westhuizen, L.; Shephard, G. S.; Burger, H. M.; Rheeder, J. P.; Gelderblom, W. C. A.; Wild, C. P.; Gong, Y. Y. Fumonisin B1 as a Urinary Biomarker of Exposure in a Maize Intervention Study among South African Subsistence Farmers. Cancer Epidemiol. Biomarkers Prev. 2011, 20(3), 483–489. DOI: 10.1158/1055-9965.EPI-10-1002.
  • Hepworth, S. J. J.; Hardie, L. J. J.; Fraser, L. K. K.; Burley, V. J. J.; Mijal, R. S. S.; Wild, C. P. P.; Azad, R.; Mckinney, P. A. A.; Turner, P. C. C. Deoxynivalenol Exposure Assessment in a Cohort of Pregnant Women from Bradford, UK. Food Addit. Contam. Part A. Chem. Anal. Control. Expo. Risk Assess. 2012, 29(2), 269–276. DOI: 10.1080/19440049.2010.551301.
  • Srey, C.; Kimanya, M. E.; Routledge, M. N.; Shirima, C. P.; Gong, Y. Y. Deoxynivalenol Exposure Assessment in Young Children in Tanzania. Mol. Nutr. Food Res. 2014, 58(7), 1574–1580. DOI: 10.1002/mnfr.201400012.
  • Wallin, S.; Hardie, L. J.; Kotova, N.; Warensjo Lemming, E.; Nälsén, C.; Ridefelt, P.; Turner, P. C.; White, K. L. M.; Olsen, M. Biomonitoring Study of Deoxynivalenol Exposure and Association with Typical Cereal Consumption in Swedish Adults. World Mycotoxin J. 2013, 6(4), 439–448. DOI: 10.3920/WMJ2013.1581.439.
  • Torres, O.; Matute, J.; Gelineau-van Waes, J.; Maddox, J. R.; Gregory, S. G.; Ashley-Koch, A. E.; Showker, J. L.; Zitomer, N. C.; Voss, K. A.; Riley, R. T. Urinary Fumonisin B1 and Estimated Fumonisin Intake in Women from High- and Low-Exposure Communities in Guatemala. Mol. Nutr. Food Res. 2014, 58(5), 973–983. DOI: 10.1002/mnfr.201300481.
  • Shirima, C. P.; Kimanya, M. E.; Kinabo, J. L.; Routledge, M. N.; Srey, C.; Wild, C. P.; Gong, Y. Y. Dietary Exposure to Aflatoxin and Fumonisin among Tanzanian Children as Determined Using Biomarkers of Exposure. Mol. Nutr. Food Res. 2013, 57(10), 1874–1881. DOI: 10.1002/mnfr.201300116.
  • Brera, C.; de Santis, B.; Debegnach, F.; Miano, B.; Moretti, G.; Lanzone, A.; Del Sordo, G.; Buonsenso, D.; Chiaretti, A.; Hardie, L.;, et al. Experimental Study of Deoxynivalenol Biomarkers in Urine; EFSA Supporting Publications: Parma, 2015.
  • Pearson, M. A.; Lu, C.; Schmotzer, B. J.; Waller, L. A.; Riederer, A. M. Evaluation of Physiological Measures for Correcting Variation in Urinary Output: Implications for Assessing Environmental Chemical Exposure in Children. J. Expo. Sci. Environ. Epidemiol. 2009, 19(3), 336–342. DOI: 10.1038/jes.2008.48.
  • Shephard, G.; Berthiller, F.; Burdaspal, P.; Crews, C.; Jonker, M.; Krska, R.; MacDonald, S.; Malone, R.; Maragos, C.; Sabino, M.;, et al. Developments in Mycotoxin Analysis: An Update for 2010–2011. World Mycotoxin J.2012, 5(1), 3–30. DOI: 10.3920/WMJ2011.1338.
  • Escrivá, L.; Font, G.; Manyes, L.; Berrada, H. Studies on the Presence of Mycotoxins in Biological Samples: An Overview. Toxins (Basel). 2017, 9, 8. DOI: 10.3390/toxins9080251.
  • Šarkanj, B.; Ezekiel, C. N.; Turner, P. C.; Abia, W. A.; Rychlik, M.; Krska, R.; Sulyok, M.; Warth, B. Ultra-Sensitive, Stable Isotope Assisted Quantification of Multiple Urinary Mycotoxin Exposure Biomarkers. Anal. Chim. Acta. 2018, 1019(April), 84–92. DOI: 10.1016/j.aca.2018.02.036.
  • Shephard, G. S.; Burger, H. M.; Gambacorta, L.; Gong, Y. Y.; Krska, R.; Rheeder, J. P.; Solfrizzo, M.; Srey, C.; Sulyok, M.; Visconti, A.; et al. Multiple Mycotoxin Exposure Determined by Urinary Biomarkers in Rural Subsistence Farmers in the Former Transkei, South Africa. Food Chem. Toxicol. 2013, 62, 217–225. DOI: 10.1016/j.fct.2013.08.040.
  • Gerding, J.; Cramer, B.; Humpf, H. U. Determination of Mycotoxin Exposure in Germany Using an LC-MS/MS Multibiomarker Approach. Mol. Nutr. Food Res. 2014, 58(12), 2358–2368. DOI: 10.1002/mnfr.201400406.
  • Kouadio, J. H. J. J. H.; Lattanzio, V. T. M. T.; Ouattara, D.; Kouakou, B.; Visconti, A.; Lattanzio, V. T. M. T.; Ouattara, D.; Visconti, A.; Kouakou, B.; Visconti, A. Assessment of Mycotoxin Exposure in Côte D’ivoire (Ivory Coast) through Multi-Biomarker Analysis and Possible Correlation with Food Consumption Patterns. Toxicol. Int. 2014, 21(3), 248–257. DOI: 10.4103/0971-6580.155336.
  • Ezekiel, C. N.; Warth, B.; Ogara, I. M.; Abia, W. A.; Ezekiel, V. C.; Atehnkeng, J.; Sulyok, M.; Turner, P. C.; Tayo, G. O.; Krska, R.; et al. Mycotoxin Exposure in Rural Residents in Northern Nigeria: A Pilot Study Using Multi-Urinary Biomarkers. Environ. Int. 2014, 66, 138–145. DOI: 10.1016/j.envint.2014.02.003.
  • IPCS/WHO. Biomarkers In Risk Assessment: Validity And Validation; Geneva, 2001.
  • IPCS/WHO. Biomarkers and Risk Assessment: Concepts and Principles; World Health Organization: Geneva, Swuitzerland, 1993.
  • Martins, C.; Vidal, A.; De Boevre, M.; De Saeger, S.; Nunes, C.; Torres, D.; Goios, A.; Lopes, C.; Assunção, R.; Alvito, P. Exposure Assessment of Portuguese Population to Multiple Mycotoxins: The Human Biomonitoring Approach. Int. J. Hyg. Environ. Health. 2019, 222(6), 913–925. DOI: 10.1016/j.ijheh.2019.06.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.