429
Views
3
CrossRef citations to date
0
Altmetric
Review

A Review of Genetic Understanding and Amelioration of Edible Allium Species

, &

References

  • Jones, M.-G.; Hughes, J.; Tregova, A.; Milne, J.; Tomsett, A.-B.; Collin, H.-A. Biosynthesis of the Flavour Precursors of Onion and Garlic. J. Exp. Bot. 2004, 55(404), 1903–1918. DOI: 10.1093/jxb/erh138.
  • Randle, W. M.; Lancaster, J. E. Sulphur Compounds in Alliums in Relation to Flavor Quality. In Allium Crop Science: Recent Advances; Rabinowitch, H.-D., Currah, L., Eds.; CABI publishing, 2002; pp 330. DOI: 10.1079/9780851995106.0329.
  • Liguori, L.; Califano, R.; Albanese, D.; Raimo, F.; Crescitelli, A.; Matteo, M.-D. Chemical Composition and Antioxidant Properties of Five White Onion (Allium cepa L.) Landraces. J. Food Qual. 2017, 2017, Article ID 6873651, 9. DOI: 10.1155/2017/6873651.
  • Nicastro, H.-L.; Ross, S.-A.; Milner, J.-A. Garlic and Onions: Their Cancer Prevention Properties. Cancer Prev. Res. (Phila.). 2015, 8(3), 181–189. DOI: 10.1158/1940-6207,CAPR-14-0172.
  • Bisen, P.-S.; Emerald, M. Nutritional and Therapeutic Potential of Garlic and Onion (Allium sp.). Curr. Nutr. Food Sci. 2016, 12, 190. DOI: 10.2174/1573401312666160608121954.
  • Gohil, R.-N.; Koul, A.-K. Cytology of the Tetraploid Allium chinense G. Don. Caryologia. 1981, 34(1), 73–81. DOI: 10.1080/00087114.1981.10796874.
  • Kiełkowska, A. Meiotic Irregularities in Interspecific Crosses within Edible Alliums. In Meiosis-Molecular Mechanisms and Cytogenetic Diversity; Swan, A., Ed.; IntechOpen, 2012. https://www.intechopen.com/books/meiosis-molecular-mechanisms-and-cytogenetic-diversity/meiotic-irregularities-in-the-interspecific-crosses-within-edible-alliums (accessed Aug 09, 2018).
  • Shah, N.-C. Status of Cultivated & Wild Allium Species in India: A Review. Scitech. J. 2014, 1(9), 28–36.
  • Meena, L.-K.; Bairwa, S.-L.; Kumari, M.; Wadhwani, M.-K. Performance of Onion in Bihar - an Economic Analysis. Econ. Aff. 2016, 61(2), 299–304. DOI: 10.5958/0976-4666.2016.00038.3.
  • Jo, J.; Purushotham, P.-M.; Han, K.; Lee, H.-R.; Nah, G.; Kang, B.-C. Development of a Genetic Map for Onion (Allium cepa L.) Using Reference-Free Genotyping-by-Sequencing and SNP Assays. Front. Plant Sci. 2017, 8, 1606. DOI: 10.3389/fpls.2017.01606.
  • Rajkumar, H.; Ramagoni, R.-K.; Anchoju, V.-C.; Vankudavath, R.-N.; Syed, A.-U.-Z. De Novo Transcriptome Analysis of Allium cepa L. (Onion) Bulb to Identify Allergens and Epitopes. PLoSONE. 2015, 10(8), e0135387. DOI: 10.1371/journal.pone.0135387.
  • Lawande, K.-E.; Khar, A.; Mahajan, V.; Srinivas, P.-S.; Sankar, V.; Singh, R.-P. Onion and Garlic Research in India. J. Hort. Sci. 2009, 4(2), 91–119.
  • Duangjit, J.; Bohanec, B.; Chan, A.-P.; Town, C.-D.; Havey, M.-J. Transcriptome Sequencing to Produce SNP-based Genetic Maps of Onion. Theor. Appl. Genet. 2013, 126, 2093–2101. DOI: 10.1007/s00122-013-2121-x.
  • Hyde, P.-T.; Earle, E.-D.; Mutschler, M.-A. Doubled Haploid Onion (Allium cepa L.) Lines and Their Impact on Hybrid Performance. Hort. Sci. 2012, 47(12), 1690–1695. DOI: 10.21273/HORTSCI.47.12.1690.
  • Khan, S.-A.; Amjad, M.; Khan, -A.-A. The Extent of Inbreeding Depression in Seven Cultivars of Onion (Allium cepa L.). Int. J. Agr. Biol. 2001, 3(4), 498–500.
  • Khodadadi, M.; Hassanpanah, D. Iranian Onion (Allium cepa L.) Cultivars Responses to Inbreeding Depression. World Appl. Sci. J. 2010, 11(4), 426–428.
  • Peška, V.; Mandáková, T.; Ihradská, V.; Fajkus, J. Comparative Dissection of Three Giant Genomes: Allium cepa, Allium sativum, and Allium ursinum. Int. J. Mol. Sci. 2019, 20(3), 733. DOI: 10.3390/ijms20030733.
  • Chinnappareddy, L.-R.-D.; Khandagale, K.; Chennareddy, A.; Ramappa, V.-G. Molecular Markers in the Improvement of Allium. Crop. Czech J. Genet. Plant Breed. 2013, 49(4), 131–139. DOI: 10.17221/111/2013-CJGPB.
  • Cardi, T.; D’Agostino, N.; Tripodi, P. Genetic Transformation and Genomic Resources for Next-Generation Precise Genome Engineering in Vegetable Crops. Front. Plant Sci. 2017, 8, 241. DOI: 10.3389/fpls.2017.00241.
  • Karpavičienė, B. Causes of Variation in Sexual and Asexual Reproduction in Diploid and Triploid Populations of Allium scorodoprasum. Plant Syst. Evol. 2017, 303, 105. DOI: 10.1007/s00606-016-1355-x.
  • Mathew, D.; Forer, Y.; Rabinowitch, H. D.; Kamenetsky, R. Effect of Long Photoperiod on the Reproductive and Bulbing Processes in Garlic (Allium sativum L.). Genotypes. Environ. Experi. Bot. 2011, 71, 166–173. DOI: 10.1016/j.envexpbot.2010.11.008.
  • Brat, V. Genetic Systems in Allium III. Meiosis and Breeding Systems. Heredity. 1965, 20, 325–339. DOI: 10.1038/hdy.1965.47.
  • Du, Q.; Lu, W.; Quan, M.; Xiao, L.; Song, F.; Li, P.; Zhou, D.; Xie, J.; Wang, L.; Zhang, D. Genome-Wide Association Studies to Improve Wood Properties: Challenges and Prospects. Front. Plant Sci. 2018, 9, 1912. DOI: 10.3389/fpls.2018.01912.
  • Villanueva-Mosqueda, E.; Havey, M.-J. Genetic Analyses of Seed Yield in Onion. J. Am. Soc. Hortic. Sci. 2001, 126(5), 575–578. DOI: 10.21273/JASHS.126.5.575.
  • Jaume Pellicer, J.; Kelly, L.-J.; Leitch, I.-J.; Zomlefer, W.-J.; Fay, M.-F. A Universe of Dwarfs and Giants: Genome Size and Chromosome Evolution in the Monocot Family Melanthiaceae. New Phytol. 2014, 20, 1484–1497. DOI: 10.1111/nph.12617.
  • Shukla, S.; Iquebal, M.-A.; Jaiswal, S.; Angadi, U.-B.; Fatma, S.; Kumar, N.; Jasrotia, R.-S.; Fatima, Y.; Rai, A.; Kumar, D. The Onion Genomic Resource: A Genomics and Bioinformatics Driven Resource for Onion Breeding. Plant Genet. 2016, 8, 9–15. DOI: 10.1016/j.plgene.2016.09.003.
  • Arumuganathan, K.; Earle, E.-D. Nuclear DNA Content of Some Important Plant Species. Plant Mol. Biol. Rep. 1991, 9, 208–218. DOI: 10.1007/BF02672069.
  • Sato, S.; Tabata, S.; Hirakawa, H.; Asamizu, E.; Shirasawa, K.; Isobe, S.; Kaneko, T.; Nakamura, Y.; Shibata, D.; Aoki, K.; et al. The Tomato Genome Sequence Provides Insights into Fleshy Fruit Evolution. Nature. 2012, 485, 635–641.
  • Xu, X.; Pan, S.; Cheng, S.; Zhang, B.; Mu, D.; Ni, P.; Zhang, G.; Yang, S.; Li, R.; Wang, J.; et al. Genome Sequence and Analysis of the Tuber Crop Potato. Nature. 2011, 475, 189–195.
  • Qin, C.; Yu, C.; Shen, Y.; Fang, X.; Chen, L.; Min, J.; Cheng, J.; Zhao, S.; Xu, M.; Luo, Y.; et al. Whole-genome Sequencing of Cultivated and Wild Peppers Provides Insights into Capsicum Domestication and Specialization. PNAS. 2014, 111(14), 5135–5140.
  • Guo, S.; Zhang, J.; Sun, H.; Salse, J.; Lucas, W.-J.; Zhang, H.; Zheng, Y.; Mao, L.; Ren, Y.; Wang, Z.; et al. The Draft Genome of Watermelon (Citrullus lanatus) and Resequencing of 20 Diverse Accessions. Nature Genet. 2013, 45, 51–58. DOI: 10.1038/ng.2470.
  • Appels, R.; Eversole, K.; Feuillet, C.; Keller, B.; Rogers, J.; Stein, N.; Pozniak, C.-J.; Stein, N.; Choulet, F.; Distelfeld, A.; et al. Shifting the Limits in Wheat Research and Breeding Using a Fully Annotated Reference Genome. Science. 2018, 361(6403). DOI: 10.1126/science.aar7191.
  • Yu, J.; Hu, S.; Wang, J.; Wong, G.-K.-S.; Li, S.; Liu, B.; Deng, Y.; Dai, L.; Zhou, Y.; Zhang, X.; et al. A Draft Sequence of the Rice Genome (Oryza sativa L. ssp. indica). Science. 2002, 296(5565), 79–92.
  • Canal, D.; Fernandes, M.; Enrique, P.-H.; Santos, -D.-D.; Cruz, T.-I.-D.; Ferreira, M.-F.-D.-S.; Ferreira, A. De Novo Assembly of Onion (Allium cepa L.). Presented at XXII Encontro Latino Americano de Iniciação Científica, 2018, XVIII Encontro Latino Americano de Pós-Graduação e, VIII Encontro de Iniciação à Docência -Universidade do Vale do Paraíba, Brazil, Oct 25–26, 2018.
  • McCallum, J.; Leite, D.; Pither-Joyce, M.; Havey, M.-J. Expressed Sequence Markers for Genetic Analysis of Bulb Onion (Allium cepa). Theor. Appl. Genet. 2001, 103, 979–991. DOI: 10.1007/s001220100630.
  • Ohara, T.; Song, Y.-S.; Tsukazak, H.; Wako, T.; Nunome, T.; Kojima, A. Genetic Mapping of AFLP Markers in Japanese Bunching Onion (Allium fistulosum). Euphytica. 2005, 144, 255–263. DOI: 10.1007/s10681-005-6768-5.
  • Baldwin, S.; Pither-Joyce, M.; Wright, K.; Chen, L.; McCallum, J. Development of Robust Genomic Simple Sequence Repeat Markers for Estimation of Genetic Diversity within and among Bulb Onion (Allium cepa L.) Population. Mol. Breed. 2012, 30, 1401–1411. DOI: 10.1007/s11032-012-9727-6.
  • Finkers, R.; Van Workum, W.; Van Kaauwen, M.-P.-W.; Huits, H.; Jungerius, A.; Vosman, B. J.; Scholten, O. E. SEQUON – Sequencing the Onion Genome Source. Proceedings of the Plant & Animal Genome XXIII – PAG, San Diego, CA 2015.
  • Kim, B.; Kim, K.; Yang, T. J.; Kim, S. Completion of the Mitochondrial Genome Sequence of Onion (Allium cepa L.) Containing the CMS-S Male Sterile Cytoplasm and Identification of an Independent Event of the CCMF N Gene Split. Curr. Genet. 2016, 62(4), 873–885. DOI: 10.1007/s00294-016-0595-1.
  • Sun, X.; Zhou, S.; Meng, F.; Liu, S. De Novo Assembly and Characterization of the Garlic (Allium sativum) Bud Transcriptome by Illumina Sequencing. Plant Cell Rep. 2012, 31(10), 1823–1828. DOI: 10.1007/s00299-012-1295-z.
  • Han, J.; Thamilarasan, S. K.; Natarajan, S.; Park, J.-I.; Chung, M.-Y.; Nou, I.-S. De Novo Assembly and Transcriptome Analysis of Bulb Onion (Allium cepa L.) During Cold Acclimation Using Contrasting Genotypes. PLoS ONE. 2016, 11(9), e0161987. DOI: 10.1371/journal.pone.0161987.
  • Araki, N.; Masuzaki, S.-I.; Tsukazaki, H.; Yaguchi, S.; Wako, T.; Tashiro, Y.; Yamauchi, N.; Shigyo, M. Development of Microsatellite Markers in Cultivated and Wild Species of Sections Cepa and Phyllodolon in Allium. Euphytica. 2010, 173, 321–328. DOI: 10.1007/s10681-009-0087-1.
  • Fischer, D.; Bachmann, K. Onion Microsatellites for Germplasm Analysis and Their Use in Assessing Intra- and Interspecific Relatedness within the Subgenus Rhizirideum. Theor. Appl. Genet. 2000, 101, 153–164. DOI: 10.1007/s001220051464.
  • Cunha, C.-P.; Hoogerheide, E.-S.-S.; Zucchi, M.-I.; Monteiro, M.; Pinheiro, J.-B. New Microsatellite Markers for Garlic, Allium sativum (Alliaceae). Am. J. Bot. 2012, e17– e19. DOI: 10.3732/ajb.1100278.
  • Ma, K.-H.; Kwag, J.-G.; Zhao, W.; Dixit, A.; Lee, G.-A.; Kim, -H.-H.; Chung, I.-M.; Kim, N.-S.; Lee, J.-S.; Ji, -J.-J.; et al. Isolation and Characteristics of Eight Novel Polymorphic Microsatellite Loci from the Genome of Garlic (Allium sativum L.). Sci. Hortic. 2009, 122, 355–361. DOI: 10.1016/j.scienta.2009.06.010.
  • Lee, G.-A.; Kwon, S. J.; Park, Y.-J.; Lee, M.-C.; Kim, -H.-H.; Lee, J.-S.; Lee, S.-Y.; Gwag, J.-G.; Kim, C.-K.; Ma, K.-H. Cross-Amplification of SSR Markers Developed from Allium sativum to Other Allium Species. Sci. Hortic. 2011, 128(4), 401–407. DOI: 10.1016/j.scienta.2011.02.014.
  • Ipek, M.; Sahin, N.; Ipek, A.; Cansev, A.; Simon, P.-W. Development and Validation of New SSR Markers from Expressed Regions in the Garlic Genome. Sci. Agr. 2015, 72(1), 41–46. DOI: 10.1590/0103-9016-2014-0138.
  • Chen, S.; Chen, W.; Shen, X.; Yang, Y.; Qi, F.; Liu, Y.; Meng, H. Analysis of Genetic Diversity of Garlic (Allium sativa L.) by Simple Sequence Repeats and Inter Simple Sequence Repeat Analysis and Agromorphological Traits. Biochem. Syst. Ecol. 2004, 55, 260–267. DOI: 10.1016/j.bse.2014.03.021.
  • Liu, T.; Zeng, L.; Zhu, S.; Chen, X.; Tang, Q.; Mei, S.; Tang, S. Large-Scale Development of Expressed Sequence Tag-derived Simple Sequence Repeat Markers by Deep Transcriptome Sequencing in Garlic (Allium sativum L.). Mol. Breeding. 2015, 35, 204. DOI: 10.1007/s11032-015-0399-x.
  • Yang, L.; Wen, C.; Zhao, H.; Liu, Q.; Yang, J.; Liu, L.; Wang, Y. Development of Polymorphic Genic SSR Markers by Transcriptome Sequencing in the Welsh Onion (Allium fistulosum L.). Appl. Sci. 2015, 5, 1050–1063. DOI: 10.3390/app5041050.
  • Ovesná, J.; Leišová-Svobodová, L.; Kučera, L. Microsatellite Analysis Indicates the Specific Genetic Basis of Czech Bolting Garlic. Czech. J. Genet. Plant Breed. 2014, 50, 226–234. DOI: 10.17221/CJGPB.
  • McCallum, J.; Thomson, S.; Pither-Joyce, M.; Kenel, F.; Clarke, A.; Havey, M.-J. Genetic Diversity Analysis and Single-nucleotide Polymorphism Marker Development in Cultivated Bulb Onion Based on Expressed Sequence Tag–Simple Sequence Repeat Markers. J. Am. Soc. Hortic. Sci. 2008, 133(6), 810–818. DOI: 10.21273/JASHS.133.6.810.
  • Park, J.; Cho, D.-Y.; Moon, J.-S.; Yoon, M.-K.; Kim, S. Development of Functional Markers for Detection of Inactive DFR-A Alleles Responsible for Failure of Anthocyanin Production in Onions (Allium cepa L.). Korean J. Hortic. Sci. 2013, 31(1), 72–79.
  • Shemesh-Mayer, E.; Ben-Michael, T.; Rotem, N.; Rabinowitch, H.-D.; Doron-Faigenboim, A.; Kosmala, A.; Perlikowski, D.; Sherman, A.; Amenetsky, R. Garlic (Allium sativum L.) Fertility: Transcriptome and Proteome Analyses Provide Insight into Flower and Pollen Development. Front. Plant Sci. 2015, 6, 271. DOI: 10.3389/fpls.2015.00271.
  • Kim, E.-Y.; Kim, C.-W.; Kim, S. Identification of Two Novel Mutant ANS Alleles Responsible for Inactivation of Anthocyanidin Synthase and Failure of Anthocyanin Production in Onion (Allium cepa L.). Euphytica. 2016, 212(3), 427–437. DOI: 10.1007/s10681-016-1774-3.
  • Masamura, N.; McCallum, J.; Kenel, F.; Pither-Joyce, M.; Khrustaleva, L.; Suzuki, G.; Mukai, Y.; Yamauchi, N.; Shigyo, M. Genome Organization of Gene Encoding Lachrymatory Factor Synthase in Allium cepa. Acta Hortic. 2012, 969, 73–80. DOI: 10.17660/Acta_Hortic.2012.969.6.
  • Kim, S.; Kim, C.-W.; Choi, M.-S.; Kim, S. Development of a Simple PCR Marker Tagging the Allium roylei Fragment Harboring Resistance to Downy Mildew (Peronospora destructor) in Onion (Allium cepa L.). Euphytica. 2016, 208(3), 561–569. DOI: 10.1007/s10681-015-1601-2.
  • Baek, G.; Kim, C.-W.; Kim, S. Development of a Molecular Marker Tightly Linked to the C Locus Conferring a White Bulb Color in Onion (Allium cepa L.) Using Bulked Segregant Analysis and RNA-Seq. Mol. Breed. 2017, 37, 94. DOI: 10.1007/s11032-017-0697-6.
  • Kim, S.; Baek, D.; Cho, D.-Y.; Lee, E.-T.; Yoon, M.-K. Identification of Two Novel Inactive DFR-A Alleles Responsible for Failure to Produce Anthocyanin and Development of a Simple PCR-Based Molecular Marker for Bulb Color Selection in Onion (Allium cepa L.). Theor. Appl. Genet. 2009, 118(7), 1391–1399. DOI: 10.1007/s00122-009-0989-2.
  • Tsujimura, M.; Kaneko, T.; Sakamoto, T.; Kimura, S.; Shigyo, M.; Yamagishi, H. Toru Terachi Multichromosomal Structure of the Onion Mitochondrial Genome and a Transcript Analysis. Mitochondrion. 2019, 46, 179–186. DOI: 10.1016/j.mito.2018.05.001.
  • Yusupov, Z.; Deng, T.; Liu, L.; Lin, N.; Tojibaev, K.; Sun, H. The Complete Chloroplast Genome of Allium fistulosum. Mitochondr. DNA B. 2019, 4(1), 489–490. DOI: 10.1080/23802359.2018.1545532.
  • Filyushin, M. A.; Beletsky, A.-V.; Mazur., A.-M.; Kochieva, E.-Z. Characterization of the Complete Plastid Genome of Lop-sided Onion Allium obliquum L. (Amaryllidaceae). Mitochondr. DNA B. 2018, 3(1), 393–394. DOI: 10.1080/23802359.2018.1456369.
  • Lee, J.; Chon, J.-Y.; Lim, J.-S.; Kim, E.-K.; Nah, G. Characterization of Complete Chloroplast Genome of Allium victorialis and its Application for Barcode Markers. Plant Breed Biotech. 2017, 5(3), 221–227. DOI: 10.9787/PBB.2017.5.3.221.
  • Xie, D.-F.; Jin, F.-Y.; Xin, Y.; Li, H.; Xie, F.-M.; He, X.-J. The Complete Chloroplast Genome of a Wild Onion Species Allium monanthum (Alliaceae). Mitochondr. DNA B. 2019, 4(1), 854–855. DOI: 10.1080/23802359.2019.1572462.
  • Yang, X.; Xie, D.-F.; Zhou, S.-D.; He, X.-J. Characterization of the Complete Chloroplast Genome of Allium kingdonii. Mitochondr. DNA B. 2019, 4(1), 868–869. DOI: 10.1080/23802359.2019.1573118.
  • Jin, F.-Y.; Xie, D.-F.; Zhou, S.-D.; He, X.-J. Characterization of the Complete Chloroplast Genome of Allium prattii. Mitochondr. DNA B. 2018, 3(1), 153–154. DOI: 10.1080/23802359.2018.1436994.
  • Sun, K.; He, J.; Xiang, Q.; Wang, X.; Guan, W.-B.; Zhao, L. The Complete Chloroplast Genome of Allium ovalifolium var. leuconeurum, an Endemic Plant in Southwest China. Mitochondr. DNA B. 2019, 4(1), 16811682. DOI: 10.1080/23802359.2019.1602009.
  • Abdelrahman, M.; El-Sayed, M.; Sato, S.; Hirakawa, H.; Ito, S.-I.; Tanaka, K.; Mine, Y.; Sugiyama, N.; Suzuki, Y.; Yamauchi, N.; et al. RNA Sequencing-based Transcriptome and Biochemical Analyses of Steroidal Saponin Pathway in a Complete Set of Allium fistulosum—A. cepa Monosomic Addition Lines. PLoS ONE. 2017, 12(8), e0181784.
  • Mostafa, A.-R.; Sho, H.; Yuji, S.; Hirai, Y.-M.; Sato, S.; Hirakawa, H.; Mine, Y.; Tanaka, K.; Shigyo, M. Widely Targeted Metabolome and Transcriptome Landscapes of Allium fistulosum–A. cepa Chromosome Addition Lines Revealed a Flavonoid Hot Spot on Chromosome 5A. Sci. Rep. 2019, 9, 3541. DOI: 10.1038/s41598-019-39856-1.
  • Rina, K.; Adi, F.; Einat, S.-M.; Michael, T.-B.; Gershberg, C.; Kimhi, S.; Esquira, I.; Shalom, S.-R.; Eshe, D.; Rabinowitch, H.-D.; et al. Integrated Transcriptome Catalogue and Organ-Specific Profiling of Gene Expression in Fertile Garlic (Allium sativum L.). BMC Genom. 2015, 16, 12. DOI: 10.1186/s12864-015-1212-2.
  • Eady, C.; Weld, R.; Lister, C. Agrobacterium Tumefaciens Mediated Transformation and Regeneration of Onion (Allium cepa L.). Plant Cell Rep. 2000, 19, 376–381. DOI: 10.1007/s002990050743.
  • Wu, Z.; Sheng, W.; Wu, Z.; Li, S.; Fen, Y.; Sheng, Z.; Xue, W.; Bao, X. Genetic Transformation of OSISAP1 Gene to Onion (Allium cepa L.) Mediated by a Microprojectile Bombardment. J. Plant Physiol. Mol. Biol. 2007, 33(3), 188–196.
  • Kondo, T.; Hasegawa, H.; Suzuki, M. Transformation and Regeneration of Garlic (Allium sativum L.) by Agrobacterium-mediated Gene Transfer. Plant Cell Rep. 2000, 19, 989–993. DOI: 10.1007/s002990000222.
  • Sawahel, W.-A. Stable Genetic Transformation of Garlic Plants Using Particle Bombardment. Cell. Mol. Biol. Lett. 2002, 7(1), 49–59.
  • Robledo-Paz, A.; Cabrera-Ponce, J.-L.; Villalobos-Arambula, V.-M.; Herrara-Estrella, L.; Jofre-Garfias, A.-E. Genetic Transformation of Garlic by Particle Bombardment. Hort. Sci. 2004, 39(6), 1208–1211. DOI: 10.21273/HORTSCI.39.6.1208.
  • Eady, C.; Davis, S.; Catanach, A.; Kenel, F.; Hunger, S. Agrobacterium Tumefaciens -mediated Transformation of Leek (Allium porrum) and Garlic (Allium sativum). Plant Cell Rep. 2005, 24, 209–215. DOI: 10.1007/s00299-005-0926-z.
  • Wang, H. Genetic Engineering Male Sterility in Leek (Allium porrum L.). Ph. D. Thesis, Universiteit Gent, Belgium, 1996.
  • Zheng, S.-J. Towards Onion and Shallots (Allium cepa L.) Resistant to Beet Armyworm (Spodoptera exigua Hübner) by Transgenesis and Conventional Breeding. http://library.wur.nl/WebQuery/wurpubs/fulltext/199612 (accessed July 22, 2019).
  • Zheng, S. J.; Henken, B.; De Maagd, R. A.; Purwito, A.; Krens, F. A.; Kik, C. Two Different Bacillus thuringiensis Toxin Genes Confer Resistance to Beet Armyworm (Spodoptera exigua Hübner) in Transgenic Bt-shallots (Allium cepa L.). Transgenic Res. 2005, 14, 261–272. DOI: 10.1007/s11248-005-0109-2.
  • Zheng, S.-J.; Henken, B.; Ahn, Y.-K.; Krens, F.-A.; Kik, C. The Development of a Reproducible Agrobacterium tumefaciens Transformation System for Garlic (Allium sativum L.) and the Production of Transgenic Garlic Resistant to Beet Armyworm (Spodoptera exigua Hübner). Mol. Breeding. 2004, 14, 293–307. DOI: 10.1023/B:MOLB.0000047775.83715.b5.
  • Eady, -C.-C.; Davis, S.; Farrant, J.; Reader, J.; Kenel, F. Agrobacterium tumefaciens-mediated Transformation and Regeneration of Herbicide Resistant Onion (Allium cepa) Plants. Ann. Appl. Biol. 2003, 142, 213–217. DOI: 10.1111/j.1744-7348.2003.tb00243.x.
  • Lagunes-Fortiz, E.; Robledo-Paz, A.; Gutiérrez-Espinosa, M.-A.; Mascorro-Gallardo, J.-O.; Espitia-Rangel, E. Genetic Transformation of Garlic (Allium sativum L.) With Tobacco Chitinase and Glucanase Genes for Tolerance to the Fungus Sclerotium Cepivorum. Afr. J. Biotechnol. 2013, 12(22), 3482–3492.
  • Eady, -C.-C.; Kamoi, T.; Kato, M.; Porter, N.-G.; Davis, S.; Shaw, M.; Kamoi, A.; Imai, S. Silencing Onion Lachrymatory Factor Synthase Causes a Significant Change in the Sulfur Secondary Metabolite Profile. Plant Physiol. 2008, 147(4), 2096–2106. DOI: 10.1104/pp.108.123273.
  • Xu, K.; Huang, X.; Wu, M.; Wang, Y.; Chang, Y.; Liu, K.; Zhang, J.; Zhang, Y.; Zhang, F.; Yi, L.; et al. A Rapid, Highly Efficient and Economical Method of Agrobacterium-mediated in Planta Transient Transformation in Living Onion Epidermis. PLoS One. 2014, 9(1), e83556. DOI: 10.1371/journal.pone.0083556.
  • Eady, -C.-C. Towards the Transformation of Onions (Allium cepa). New Zeal. J. Crop. Hort. 1995, 23(3), 239–250. DOI: 10.1080/01140671.1995.9513895.
  • Gokce, A.-F.; McCallum, J.; Sato, Y.; Havey, M.-J. Molecular Tagging of the Ms Locus in Onion. J. Am. Soc. Hortic. Sci. 2002, 127(4), 576–582. DOI: 10.21273/JASHS.127.4.576.
  • Gai, S.-P.; Meng, X.-D. Study on Conversion of RAPD Markers Linked to Cytoplasmic Male Sterile Loci to SCAR Markers in Welsh Onion (Allium fistulosum L.). J. Laiyang Agric. Coll. 2004, 21, 189–192. “(article in Chinese with an abstract in English)”.
  • Gai, S.-P.; Meng, X.-D. Development and Identification of RAPD Markers Linked to Cytoplasmic Male Sterility in Welsh Onion (Allium fistulosum L.). J. Agric. Biotechnol. 2002, 10, 94–97. “(article in Chinese with an abstract in English)”.
  • Yamashita, K.; Takatori, Y.; Tashiro, Y. Chromosomal Location Of A Pollen Fertility-restoring Gene, Rf, for CMS in Japanese Bunching Onion (Allium fistulosum L.) Possessing the Cytoplasm of A. galanthum Kar. et Kir. Revealed by Genomic in Situ Hybridization. Theor. Appl. Genet. 2005, 111(1), 15–22. DOI: 10.1007/s00122-005-1941-8.
  • Scholten, O.-E.; van Kaauwen, M.-P.-W.; Shahin, A.; Hendrick, P.-M.; Keizer, L.-C.-P.; Burger, K.; Van Heusden, A.-W.; Van Der Linden, C.-G.; Vosman, B. SNP-markers in Allium Species to Facilitate Introgression Breeding in Onion. BMC Plant Biol. 2016, 16, 187. DOI: 10.1186/s12870-016-0879-0.
  • Martin, W.-J.; McCallum, J.; Shigyo, M.; Jakse, J.; Kuhl, J.-C.; Yamane, N.; Pither-Joyce, M.; Gokce, A.-F.; Sink, K.-C.; Town, C.-D.; et al. Genetic Mapping of Expressed Sequences in Onion and in Silico Comparisons with Rice Show Scant Colinearity. Mol. Genet. Genomics. 2005, 274(3), 197–204.
  • McCallum, J.; Clarke, A.; Pither-Joyce, M.; Shaw, M.; Butler, R.; Brash, D.; Scheffer, J.; Sims, I.; Heusden, S.-V.; Shigyo, M.; et al. Genetic Mapping of a Major Gene Affecting Onion Bulb Fructan Content. Theor. Appl. Genet. 2006, 112(5), 958–967.
  • McCallum, J.; Pither-Joyce, M.; Shaw, M.; Kenel, F.; Davis, S.; Butler, R.; ScheVer, J.; Jakse, J.; Havey, M.-J. Genetic Mapping of Sulfur Assimilation Genes Reveals a QTL for Onion Bulb Pungency. Theor. Appl. Genet. 2007, 114, 815–822. DOI: 10.1007/s00122-006-0479-8.
  • Masuzaki, S.; Shigyo, M.; Yamauchi, N. Complete Assignment of Structural Genes Involved in Flavonoid Biosynthesis Influencing Bulb Color to Individual Chromosomes of the Shallot (Allium cepa L.). Genes Genet. Sys. 2006, 81(4), 255–263. DOI: 10.1266/ggs.81.255.
  • Masuzaki, S.; Shigyo, M.; Yamauchi, N. Direct Comparison between Genomic Constitution and Flavonoid Contents in Allium Multiple Alien Addition Lines Reveals Chromosomal Locations of Genes Related to Biosynthesis from Dihydrokaempferol to Quercetin Glucosides in Scaly Leaf of Shallot (Allium cepa L.). Theor. Appl. Genet. 2006, 112(4), 607–617. DOI: 10.1007/s00122-005-0157-2.
  • Tsukazaki, H.; Yamashita, K.; Yaguchi, S.; Yamashita, K.; Hagihara, T.; Shigyo, M.; Kojima, A.; Wako, T. Direct Determination of the Chromosomal Location of Bunching Onion and Bulb Onion Markers Using Bunching Onion-shallot MonosomicAdditions and Allotriploid-Bunching Onion Single Alien Deletions. Theor. Appl. Genet. 2011, 22(3), 501–510. DOI: 10.1007/s00122-010-1464-9.
  • McCallum, J.; Baldwin, S.; Thomson, S.; Pither-Joyce, M.; Kenel, F.; Lee, R.; Khosa, J.-S.; Macknight, R. Molecular Genetics Analysis of Onion (Allium cepa L.) Adaptive Physiology of Bulb. Acta Hortic. 2016, 1110, 71–76. DOI: 10.17660/ActaHortic.2016.1110.11.
  • King, J.; Bradeen, J.-M.; Bark, O.; McCallum, J.-A.; Havey, M.-J. A Low-density Genetic Map of Onion Reveals A Role for Tandem Duplication in the Evolution of an Extremely Large Diploid Genome. Theor. Appl. Genet. 1998, 96(1), 52–62. DOI: 10.1007/s001220050708.
  • Kuhl, J.-C.; Cheung, F.; Yuan, Q.; Martin, W.; Zewdie, Y.; McCallum, J.; Catanach, A.; Rutherford, O.; Sink, K.-C.; Jenderek, M.; et al. A Unique Set of 11,008 Onion Expressed Sequence Tags Reveals Expressed Sequence and Genomic Differences between the Monocot Orders Asparagales and Poales. Plant Cell. 2004, 16(1), 114–125.
  • Ipek, M.; Ipek, A.; Almquist, S.-G.; Simon, P.-W. Demonstration of Linkage and Development of the First Low-density Genetic Map of Garlic, Based on AFLP Markers. Theor. Appl. Genet. 2005, 110(2), 228–236. DOI: 10.1007/s00122-004-1815-5.
  • Zewdie, Y.; Havey, M.-J.; Prince, J.-P.; Jenderek, -M.-M. The First Genetic Linkages among Expressed Regions of the Garlic Genome. J. Am. Soc. Hortic. Sci. 2005, 130(4), 569–574. DOI: 10.21273/JASHS.130.4.569.
  • Ohara, T.; Song, Y.-S.; Tsukazaki, H.; Wako, T.; Nunome, T.; Kojima, A. Genetic Mapping of AFLP Markers in Japanese Bunching Onion (Allium fistulosum). Euphytica. 2005, 144(3), 3255–3263. DOI: 10.1007/s10681-005-6768-5.
  • Tsukazaki, H.; Yamashita, K.; Yaguchi, S.; Masuzaki, S.; Fukuoka, H.; Yonemaru, J.; Kanamori, H.; Kono, I.; Hang, -T.-T.; Shigyo, M.; et al. Construction of SSR-Based Chromosome Map in Bunching Onion (Allium fistulosum). Theor. Appl. Genet. 2008, 117(8), 1213–1223.
  • Konvicka, O. Generative Reproduktion Von Knoblauch (Allium sativum). Allium Newslett. 1984, 1, 28–37.
  • Pooler, M.-R.; Simon, P.-W. True Seed Production in Garlic. Sex. Plant Reprod. 1994, 7(5), 282–286. DOI: 10.1007/BF00227710.
  • Inaba, A.; Ujiie, T.; Etoh, T. Seed Productivity and Germinability of Garlic. Breed. Sci. 1995, 45(suppl. 2), 310.
  • Jenderek, -M.-M. Generative Reproduction of Garlic (Allium sativum L). Sesja Naukowa. 1998, 57, 141–145. (In Polish).
  • Kamenetsky, R.; Shafir, I.-L.; Baizerman, M.; Khassanov, F.; Kik, C.; Rabinowitch, H.-D. Garlic (Allium sativum L.) and its Wild Relatives from Central Asia: Evaluation for Fertility Potential. Acta Hortic. 2004, 637, 83–91. DOI: 10.17660/ActaHortic.2004.637.9.
  • Chuda, A.; Adamus, A. Hybridization and Molecular Characterization of F1 Allium cepa × Allium roylei Plants. Acta. Biol. Cracov. Bot. 2012, 54(2), 25–31.
  • Kofoet, A.; Kik, C.; Wietsma, W.-A.; De Vries, J.-N. Inheritance of Resistance to Downy Mildew (Peronospora destructor [Berk.] Casp.) From Allium roylei Stearn. In the Backcross Allium cepa L. × (A. roylei × A. cepa). Plant Breed. 1990, 105, 144–149. DOI: 10.1111/j.1439-0523.1990.tb00467.x.
  • Kofoet, A.; Zinkernagel, V. Resistance to Downy Mildew (Peronospora destructor (Berk.) Casp.) In Allium Species. J. Plant Dis. Protect. 1990, 97(1), 13–23.
  • Yanagino, T.; Sugawara, T.; Watanabe, M.; Takahata, Y. Production and Characterization of an Inter-specific Hybrid between Leek and Garlic. Theor. Appl. Genet. 2009, 107, 1–5. DOI: 10.1007/s00122-003-1232-1.
  • Scholten, O.-E.; Van Heusden, A.-W.; Khrustaleva, L.-I.; Burger-Meijer, K.; Mank, R.-A.; Antonise, R.-G.-C.; Harrewijn, J.-L.; Van Haecke, W.; Oost, E.-H.; Peters, R.-J.; et al. The Long and Winding Road Leading to the Successful Introgression of Downy Mildew Resistance into Onion. Euphytica. 2007, 156(3), 345–353.
  • Vu, H.-Q.; Yoshimatsu, Y.; Khrustaleva, L.-I.; Yamauchi, N.; Shigyo, M. Alien Genes Introgression and Development of Alien Monosomic Addition Lines from a Threatened Species, Allium roylei Stearn, to Allium cepa L. Theor. Appl. Genet. 2012, 124(7), 1241–1257. DOI: 10.1007/s00122-011-1783-5.
  • Yaguchi, S.; Yamauchi, N.; Shigyo, M. Single Alien Chromosome Additions from Shallot (Allium cepa L. Aggregatum Group) Increase Endogenous Polyphenol Contents in Japanese Bunching Onion. J. Japanese Soc. Hortic. Sci. 2009, 78(4), 431–435. DOI: 10.2503/jjshs1.78.431.
  • Vu, H. Q.; Iwata, M.; Yamauchi, N.; Shigyo, M. Production of Novel Alloplasmic Male Sterile Lines in Allium cepa Harbouring the Cytoplasm from Allium roylei. Plant Breed. 2011, 130(5), 601. DOI: 10.1111/j.1439-0523.2011.01855.x.
  • Yamashita, K.; Arita, H.; Tashiro, Y. Cytoplasm of a Wild Species, Allium galanthum Kar et Kir., is Useful for Developing the Male Sterile Line of A. fistulosum L. J. Japanese Soc. Hortic. Sci. 1999, 68(4), 788–797. DOI: 10.2503/jjshs.68.788.
  • Arold, G. Summer Onion F1 Hybrid Cultivars Tested in Lower Bavaria. Gemuse-Munchen. 1998, 34(8), 456–459.
  • El-Sayed, A.-M.; Atia, -A.-A.-M.; El-Haq, S.-H.-G.; Azab, A.-M.; Mohamed, H.-Y. Studies on Heterosis, Gene Action and Combining Ability of Some Traits in Onion (Allium cepa L.). Egyp. J. Hort. 1999, 26(1), 85–95.
  • Sato, Y.; Nagai, M.; Ito, K.; Tanaka, M.; Yoshikawa, H.; Uragami, A.; Muro, T. A New Onion Hybrid Variety. Toyohira Res. Bullet. 1999, 168, 47–57.
  • Gowda, V.-R.; Rao, E.-S.; Pathak, C.-S.; Singh, T.-H. Development and Commercialization of F1Hybrids in Short Day Onion-Indian Perspective. Proceedings of International Conference on Vegetables, Bangalore, India, Nov 11–14, 2002.
  • Engelke, T.; Terefe, D.; Tatlioglu, T. A PCR-based Marker System Monitoring CMS-(S), CMS-(T) and (N)-cytoplasm in the Onion (Allium cepa L.). Theor. Appl. Genet. 2003, 107, 162–167. DOI: 10.1007/s00122-003-1230-3.
  • Kim, S.; Lee, E.-T.; Cho, D.-Y.; Han, T.; Bang, H.; Patil, B.-S.; Ahn, Y.-K.; Yoon, M.-K. Identification of a Novel Chimeric Gene, Orf725, and its Use in Development of a Molecular Marker for Distinguishing among Three Cytoplasm Types in Onion (Allium cepa L.). Theor. Appl. Genet. 2009, 118, 433–441. DOI: 10.1007/s00122-008-0909-x.
  • Sato, Y. PCR Amplification of CMS-specific Mitochondrial Nucleotide Sequences to Identify Cytoplasmic Genotypes of Onion (Allium cepa L.) Sequences. Theor. Appl. Genet. 1998, 96, 367–370. DOI: 10.1007/s001220050750.
  • Gao, L.-M.; Chen, Y.-Q.; Huo, Y.-M.; Dong, F.; Yang, -Y.-Y.; Kong, S.-P.; Chen, W.; Wu, X. Development of SCAR Markers to Distinguish Male-sterile and Normal Cytoplasm in Bunching Onion (Allium fistulosum L.). J. Hortic. Sci. Biotech. 2015, 90(1), 57–62. DOI: 10.1080/14620316.2015.11513153.
  • Wang, C.; Li, H.-Y.; Zhang, L.-Y.; Pei, Y.-X.; Wang, Y.-Q. Identification of an AFLP Marker and Conversion to a SCAR Marker to Identify Cytoplasmic Male-sterile or Normal Cytoplasm in Welsh Onion (Allium fistulosum L.). J. Hortic. Sci. Biotech. 2013, 88(4), 409–414. DOI: 10.1080/14620316.2013.11512984.
  • Havey, M.-J. Single Nucleotide Polymorphisms in Linkage Disequilibrium with the Male-Fertility Restoration (Ms) Locus in Open-Pollinated and Inbred Populations of Onion. J. Am. Soc. Hortic. Sci. 2013, 138(4), 306–309. DOI: 10.21273/JASHS.138.4.306.
  • Yang, -Y.-Y.; Meng, Y.; Miao, H.-J.; Liu, B.-J.; Kong, S.-P.; Gao, L.-M.; Liu, C.; Wang, Z.-B.; Tahara, Y.; Kitano, H.; et al. Identification of Two SCAR Markers Co-Segregated with the Dominant Ms and Recessive Ms Alleles in Onion (Allium cepa L.). Euphytica. 2013, 190(2), 267–277.
  • Kim, S.; Kim, S. Application of the Molecular Marker in Linkage Disequilibrium with Ms, a Restorer-of-Fertility Locus for Improvement of Onion Breeding Efficiency. Korean J. Hortic. Sci. 2015, 33, 550–558.
  • Bang, H.; Kim, S.; Park, S.-O.; Yoo, K.-S.; Patil, B.-S. Development of a Codominant CAPS Marker Linked to the Ms Locus Controlling Fertility Restoration in Onion (Allium cepa L.). Sci. Hortic. 2013, 153(4), 42–49. DOI: 10.1016/j.scienta.2013.01.020.
  • Park, J.; Bang, H.; Cho, D.-Y.; Yoon, M.-K.; Patil, B.-S.; Kim, S. Construction of High-Resolution Linkage Map of the Ms Locus, a Restorer-of-Fertility Gene in Onion (Allium cepa L.). Euphytica. 2013, 192(2), 267–278. DOI: 10.1007/s10681-012-0851-5.
  • Huo, Y.-M.; Liu, B.-J.; Yang, -Y.-Y.; Miao, J.; Gao, L.-M.; Kong, S.-P.; Wang, Z.-B.; Kitano, H.; Wu, X. ACSKP1, a Multiplex PCR Based Co-dominant Marker in Complete Linkage Disequilibrium with the Male Fertility Restoration (Ms) Locus and its Application in Open Pollinated Populations of Onion. Euphytica. 2015, 204(3), 711–722. DOI: 10.1007/s10681-015-1374-7.
  • Khosa, J.-S.; Lee, R.; Bräuning, S.; Lord, J.; Pither-Joyce, M.; McCallum, J.; Macknight, R.-C. Doubled Haploid ‘CUDH2107ʹ as a Reference for Bulb Onion (Allium cepa L.) Research: Development of a Transcriptome Catalogue and Identification of Transcripts Associated with Male Fertility. PLoS One. 2016, 11(11), e0166568. DOI: 10.1371/journal.pone.0166568.
  • Jones, H.-A.; Clarke, A.-E. Inheritance of Male Sterility in the Onion and the Production of Hybrid Seed. Proc. Am. Soc. Hortic. Sci. 1943, 43, 189–194.
  • Santos, C.-A. F.; Leite, D.-L.; Oliveira, V.-R.; Rodrigues, M.-A. Marker-assisted Selection of Maintainer Lines within an Onion Tropical Population. Sci. Agr. 2010, 67(2), 223–227. DOI: 10.1590/S0103-90162010000200015.
  • Sheemar, G.; Dhatt, A.-S. PCR-based Rapid Identification of Indian Onion Populations Possessing S-cytoplasm for Isolation of CMS Lines. Res. Crop. 2015, 16(1), 133–138. DOI: 10.5958/2348-7542.2015.00019.4.
  • Malik, G.; Dhatt, A.-S.; Malik, -A.-A. Isolation of Male Sterile and Maintainer Lines from North Indian Onion (Allium cepa L.) Populations with the Aid of PCR Based Molecular Marker. Vegetos. 2017, 2(30). DOI: 10.4172/2229-4473.1000249.
  • Khar, A.; Saini, N. Limitations of PCR‐based Molecular Markers to Identify Male‐sterile and Maintainer Plants from Indian Onion (Allium cepa L.) Populations. Plant Breed. 2016, 135(4), 519–524. DOI: 10.1111/pbr.12373.
  • Ferriera, -R.-R.; Santos, C.-A.-F. Partial Success of Marker-assisted Selection of ‘A’ and ‘B’ Onion Lines in Brazilian Germplasm. Sci. Hort. 2018, 242, 110–115. DOI: 10.1016/j.scienta.2018.08.002.
  • El-Shafie, M.; Davis, G. Inheritance of Bulb Color in the Onion (Allium cepa L.). Hilgardia. 1967, 38(17), 607–622. DOI: 10.3733/hilg.v38n17p607.
  • Galmarini, C.-R.; Goldman, I.-L.; Havey, M.-J. Quantitative Trait Loci Controlling Solid Content, Pungency and Antiplatelet Activity of Onion (Allium cepa L.). Plant & Animal Genome VIII Conference, Town & Country Hotel, San Diego, CA, 2000.
  • McCallum, J.; Baldwin, S.; Shigyo, M.; Deng, Y.; Van Heusden, S.; Pither-Joyce, M.; Kenel, F. AlliumMap-A Comparative Genomics Resource for Cultivated Allium Vegetables. BMC Genom. 2012, 13, 168. DOI: 10.1186/1471-2164-13-168.
  • Kim, D.-W.; Jung, T.-S.; Nam, S.-H.; Kwon, H.-R.; Kim, A.; Chae, S.-H.; Choi, S.-H.; Kim, D.-W.; Kim, R.-N.; Park, S.-H. GarlicESTdb: An Online Database and Mining Tool for Garlic EST Sequences. BMC. Plant Biol. 2009, 9, 61. DOI: 10.1186/1471-2229-9-6.
  • Filyushin, M.-A.; Beletsky, A.-V.; Mazur, A.-M.; Kochieva, E.-Z. The Complete Plastid Genome Sequence of Garlic (Allium sativum L.). Mitochondr. DNA B. 2016, 1, 831–832. DOI: 10.1080/23802359.2016.1247669+.
  • Schröder, W.; Bernhardt, J.; Marincola, G.; Klein-Hitpass, L.; Herbig, A.; Krupp, G.; Nieselt, K.; Wolz, C. Altering Gene Expression by Aminocoumarins: The Role of DNA Supercoiling in Staphylococcus aureus. BMC Genom. 2014, 15, 291. DOI: 10.1186/1471-2164-15-291.
  • Ruan, D.; Zhu, Y.-W.; Fouad, A.-M.; Yan, S.-J.; Chen, W.; Zhang, Y.-N.; Xia, W.-G.; Wang, S.; Jiang, S.-Q.; Yang, L.; et al. Dietary Curcumin Enhances Intestinal Antioxidant Capacity in Ducklings via Altering Gene Expression of Antioxidant and Key Detoxification Enzymes. Poult. Sci. 2019. DOI: 10.3382/ps/pez058.
  • Till, B.-J.; Reynolds, S.-H.; Weil, C.; Springer, N.; Burtner, C.; Young, K.; Enns, L.-C.; Odden, A.-R.; Greene, E.-A.; Comai, L.; et al. Discovery of Induced Point Mutations in Maize Genes by TILLING. BMC Plant Biol. 2004, 12. DOI: 10.1186/1471-2229-4-12.
  • Beyaz, R.; Yildiz, M. The Use of Gamma Irradiation in Plant Mutation Breeding. In Plant Engineering; Intech, 2017; 33–46. https://www.intechopen.com/books/Pant-Engineering/the-use-of-Gamma-Irradiation-in-Plant-Mutation-Breeding
  • Ida, L.; Ola, A.; Tiffany, L.; Dunbar, E.-A.; Matthew, A.-E.; Allan, G.-R. Changes in External pH Rapidly Alter Plant Gene Expression and Modulate Auxin and Elicitor Responses. Plant Cell Environ. 2010, 33, 1513–1528. DOI: 10.1111/j.1365-3040.2010.02161.x.
  • Chinnusamy, V.; Zhu, J.; Zhu, J.-K. Cold Stress Regulation of Gene Expression in Plants. Trends Plant Sci. 2007, 12(10), 444–451. DOI: 10.1016/j.tplants.2007.07.002.
  • Tschermak, E. Über Den Gegenwartigen Stand Der Gemiisenzuchtung. Z. Zucht. 1916, 4, 65–104.
  • Meunissier, A. Expkriences Gknktiques Faitesii Verri2re. Bull. Soc. Acclim. Fr. 1918, 65, 81–90.
  • Rieman, G.-H. Genetic Factors for Pigmentation in the Onion and Their Relation to Disease. J. Agric. Res. 1931, 42, 251–278.
  • Clarke, A.-E.; Jones, H.-A.; Little, T.-M. Inheritance of Bulb Color in the Onion. Genetics. 1944, 29(6), 569–575.
  • Jones, H.-A.; Clarke, A.-E. Inheritance of Male Sterility in the Onion and the Production of Hybrid Seed. Proc. Am. Soc. Hortic. Sci. 1943, 43, 189–194.
  • Berninger, E. Contribution a L‟etude De La Sterilite-Male De L‟Oignon (Allium cepa L.). Ann. Amelior. Plantes. 1965, 15, 183–199.
  • Schweisguth, B. Etude D’un Nouveau Type De Sterilite Male Chez L’Oignon, Allium cepa L. Ann. Amelior. Plantes. 1973, 23, 221–233. (Article in French).
  • Moue, T.; Uehara, T. Inheritance of Cytoplasmic Male Sterility in Allium fistulosum L. (Welsh Onion). Engei. Gakkai. Zasshi. 1984, 53(4), 432–437. DOI: 10.2503/jjshs.53.432.
  • Kim, S.; Binzel, M.-L.; Yoo, K.-S.; Park, S.; Pike, L.-M. Pink (P), A New Locus Responsible for A Pink Trait in Onions (Allium cepa) Resulting from Natural Mutations of Anthocyanidin Synthase. Mol. Genet. Genom. 2004, 272(1), 18–27. DOI: 10.1007/s00438-004-1041-5.
  • Kim, B.; Cho, Y.; Kim, S. Identification of a Novel DFR-A Mutant Allele Determining the Bulb Color Difference between Red and Yellow Onions (Allium cepa L.). Plant Breed Biotech. 2017, 5(1), 45–53. DOI: 10.9787/PBB.2017.5.1.45.
  • Khar, A.; Jakse, J.; Havey, M.-J. Segregations for Onion Bulb Colors Reveal that Red is Controlled by at Least Three Loci. J. Am. Soc. Hortic. Sci. 2008, 133(1), 42–47. DOI: 10.21273/JASHS.133.1.42.
  • Baldwin, S.; Revanna, R.; Pither-Joyce, M.; Shaw, M.; Wright, K.; Thomson, S.; Moya, L.; Lee, R.; Macknight, R.; McCallum, J. Genetic Analyses of Bolting in Bulb Onion (Allium cepa L.). Theor. Appl. Genet. 2013, 127(3), 535–547. DOI: 10.1007/s00122-013-2232-4.
  • Pavlović, N.; Cvikić, D.; Zdravković, J.; Đorđević, R.; Zdravković, M.; Varga, J.-G.; Moravčević, Đ. Bulb Fresh Weight Mode of Inheritance in Onion (Allium cepa L.). Ratarstvo I Povrtarstvo. 2015, 52(1), 24–28. DOI: 10.5937/ratpov52-7723.
  • Khokhar, K.-M. Flowering and Seed Development in Onion— A Review. Open Access Lib. J. 2014, 1, e104.
  • Lee, R.; Baldwin, S.; Kenel, F.; McCallum, J.; Macknight, R. Flowering Locus T Genes Control Onion Bulb Formation and Flowering. Nat. Commun. 2013, 4, 2884. DOI: 10.1038/ncomms3884.
  • Khrustaleva, L.; Mardini, M.; Kudryavtseva, N.; Alizhanova, R.; Romanov, D.; Sokolov, P.; Monakhos, G. The Power of Genomic in Situ Hybridization (GISH) in Interspecific Breeding of Bulb Onion (Allium cepa L.) Resistant to Downy Mildew (Peronospora destructor [Berk.] Casp.). Plants. 2019, 8, 36. DOI: 10.3390/plants8020036.
  • De Vries, J.-N.; Wietsma, W.-A.; De Vries, T. Introgression of Leaf Blight Resistance from Allium Roylei Stearn. Into Onion (A cepa L.). Euphytica. 1992, 62, 127. DOI: 10.1007/BF00037938.
  • Galván, G.-A.; Wietsma, W.; Putrasemedja, S.-A.-H.; Permadi, C.-K. Screening for Resistance to Anthracnose (Colletotrichum gloeosporioides Penz.) In Allium Cepa and its Wild Relatives. Euphytica. 1997, 95, 173. DOI: 10.1023/A:1002914225154.
  • Galván, G.-A.; Koning-Boucoiran, C.-F.-S.; Koopman, W.-J.-M.; Burger-Meijer, K.; González, P.-H.; Waalwijk, C.; Kik, C.; Olga, E.-S. Genetic Variation among Fusarium Isolates from Onion, and Resistance to Fusarium Basal Rot in Related Allium Species. Eur. J. Plant Pathol. 2008, 121, 499. DOI: 10.1007/s10658-008-9270-9.
  • Khrustaleva, L.; Kik, C. Cytogenetical Studies in the Bridge Cross Allium cepa × (A. fistulosum×A. roylei). Theor. Appl. Genet. 1998, 96, 8. DOI: 10.1007/s001220050702.
  • Nanda, S.; Chand, S.-K.; Mandal, T.-P.; Joshi, R.-K. Identification of Novel Source of Resistance and Differential Response of Allium Genotypes to Purple Blotch Pathogen, Alternaria porri (Ellis) Ciferri. Plant Pathol. J. 2016, 32(6), 519–527. DOI: 10.5423/PPJ.OA.02.2016.0034.
  • Dhatt, A. S.; Thakur, P. Production of Doubled Haploids in Onion: A Review. J. Hortl. Sci. 2014, 9(2), 107–112.
  • Bohanec, B.; Jakše, M. Variations in Gynogenic Response among Long-day Onion (Allium cepa L.) Accessions. Plant Cell Rep. 1999, 18, 737–742. DOI: 10.1007/s002990050652.
  • Jakše, M.; Hirschegger, P.; Bohanec, B.; Havey, M.-J. Evaluation of Gynogenic Responsiveness and Pollen Viability of Selfed Doubled Haploid Onion Lines and Chromosome Doubling via Somatic Regeneration. J. Am. Soc. Hortic. Sci. 2010, 135, 67–73. DOI: 10.21273/JASHS.135.1.67.
  • Chen, J.-F.; Cui, L.; Malik, -A.-A.; Mbira, K.-G. In Vitro Haploid and Dihaploid Production via Unfertilized Ovule Culture. Plant Cell Tiss. Org. 2011, 104, 311–319. DOI: 10.1007/s11240-010-9874-6.
  • Fayos, O.; Vallés, M.-P.; Garcés-Claver, A.; Mallor, C.; Castillo, A.-M. Doubled Haploid Production from Spanish Onion (Allium cepa L.) Germplasm: Embryogenesis Induction, Plant Regeneration and Chromosome Doubling. Front. Plant Sci. 2015, 6, 384. DOI: 10.3389/fpls.2015.00384.
  • Jakše, M.; Bohanec, B. Haploid Induction in Onion via Gynogenesis. In Doubled Haploid Production in Crop; Maluszynski, M., Kasha, K.-J., Forster, B.-P., Szarejko, I.-E., Eds.; Kluwer Academic Publishers: Dordrecht, 2003; pp 281–285.
  • Konvička, O.; Levan, A. Chromosome Studies in Allium sativum. Hereditas. 1972, 72, 129–148. DOI: 10.1111/j.1601-5223.1972.tb01035.x.
  • Dhall, R.-K. True Seed Production of Garlic (Allium sativum L.) In Sub-Tropical Plains of India. Veg. Sci. 2015, 42(1), 44–48.
  • Kamenetsky, R. https://www.garlicfarm.ca/article-garlic-seeds.htm (accessed Jun 20, 2019).
  • Jenderek, -M.-M.; Hannan, R.-M. Variation in Reproductive Characteristics and Seed Production in the USDA Garlic Germplasm Collection. HortScience. 2004, 39(3), 485–488. DOI: 10.21273/HORTSCI.39.3.485.
  • Zeng, Y.; Li, Y.; Yang, J.; Pu, X.; Du, J.; Yang, X.; Yang, T.; Yang, S. Therapeutic Role of Functional Components in Alliums for Preventive Chronic Disease in Human Being. Evidence-Based Comp. Alt. Med. 2017, 2017, Article ID 9402849, 13.
  • Patil, B. S.; Pike, L. M.; Yoo, K. S. Variation in the Quercetin Content in Different Colored Onions (Allium cepa L.). J. Amer. Soc. Hort. Sci. 1995, 120, 909–913. DOI: 10.21273/JASHS.120.6.909.
  • Bajaj, K. L.; Kaur, G.; Chadha, M. L. Varietal Variations in Some Important Chemical Constituents of Onion (Allium cepa L.). Crop Sci. 1990, 30, 391–395.
  • Leighton, T.; Glinther, C.; Fluss, L.; Harte, W. K.; Cansado, J.; Notario, V. Molecular Characterization of Quercetin and Quercetin Glycosides in Allium Vegetables: Their Effects on Cell Transformation. In Phenolic Compounds in Food and Their Effects on Health Ed.; Huang, M.T., Lee, C.Y., Ho, C.T., Eds.; American Chemical Society, ACS Publications. 1992; pp 221–238.
  • Patil, B. S.; Pike, L. M. Distribution of Quercetin Content in Different Rings of Various Colored Onion (Allium cepa L.) Cultivars. J. Amer. Soc. Hort. Sci. 1995, 70, 643–650.
  • Selvakumar, K.; Prabha, R. L.; Saranya, K.; Bavithra, S.; Krishnamoorthy, G.; Arunakaran, J. Polychlorinated Biphenyls Impair Blood-brain Barrier Integrity via Disruption of Tight Junction Proteins in Cerebrum, Cerebellum and Hippocampus of Female Wistar Rats: Neuropotential Role of Quercetin. Human Experi. Toxicol. 2013, 32(7), 706–720. DOI: 10.1177/0960327112464798.
  • Costa, L. G.; Garrick, J. M.; Roque, P. J.; Pellacani, C. Mechanisms of Neuroprotection by Quercetin: Counteracting Oxidative Stress and More. Oxid. Med. Cel. Long. 2016, 2016, Article ID 2986796, 10.
  • Lin, S.-Y.; Wang, -Y.-Y.; Chen, W.-Y.; Chuang, Y.-H.; Pan, P. H.; Chen, C.-J. Beneficial Effect of Quercetin on Cholestatic Liver Injury. J. Nutr. Biochem. 2014, 25(11), 1183–1195. DOI: 10.1016/j.jnutbio.2014.06.003.
  • Sak, K. Site-specific Anticancer Effects of Dietary Flavonoid Quercetin. Nutr. Cancer. 2014, 66(2), 177–193. DOI: 10.1080/01635581.2014.864418.
  • Yasmin, M.; Ali, T.; Haque, S.; Hossain, M. Interaction of Quercetin of Onion with Axon Guidance Protein Receptor, NRP-1 Plays Important Role in Cancer Treatment: An in Silico Approach. Interdiscip. Sci. Comp. Life Sci. 2015, 9(2), 184–191.
  • Jaiswal, N.; Rizvi, S. I. Onion Extract (Allium cepa L.), Quercetin and Catechin Up-Regulate Paraoxonase 1 Activity with Concomitant Protection against Low-Density Lipoprotein Oxidation in Male Wistar Rats Subjected to Oxidative Stress. J. Sci. Food Agric. 2014, 94(13), 2752–2757. DOI: 10.1002/jsfa.2014.94.issue-13.
  • Lu, T.-M.; Chiu, H.-F.; Shen, Y.-C.; Chung, -C.-C.; Venkatakrishnan, K.; Wang, C.-K. Hypocholesterolemic Efficacy of Quercetin Rich Onion Juice in Healthy Mild Hypercholesterolemic Adults: A Pilot Study. Plant Food. Human Nutr. 2015, 70(4), 395–400. DOI: 10.1007/s11130-015-0507-4.
  • Majewska-Wierzbicka, M.; Czeczot, H. Flavonoids in the Prevention and Treatment of Cardiovascular Diseases. Polski Merkuriusz Lekarski. 2012, 32(187), 50–54.
  • Park, S.; Kim, M.-Y.; Lee, D. H.; Lee, S.-H.; Baik, E.-J.; Moon, C.-H.; Park, S.-W.; Ko, E.-Y.; Oh, S.-R.; Jung, Y.-S. Methanolic Extract of Onion (Allium cepa) Attenuates Ischemia/Hypoxia-Induced Apoptosis in Cardiomyocytes via Antioxidant Effect,”. Eur. J. Nutr. 2009, 48(4), 235–242.
  • Bae, C.-R.; Park, Y.-K.; Cha, Y.-S. Quercetin-rich Onion Peel Extract Suppresses Adipogenesis by Down-Regulating Adipogenic Transcription Factors and Gene Expression in 3T3-L1 Adipocytes. J. Sci. Food Agric. 2014, 94(13), 2655–2660. DOI: 10.1002/jsfa.2014.94.issue-13.
  • Kim, O. Y.; Lee, S. M.; Do, H.; Moon, J.; Lee, K. H.; Cha, Y. J.; Shin, M. J. Influence of Quercetin-rich Onion Peel Extracts on Adipokine Expression in the Visceral Adipose Tissue of Rats. Phytother. Res. 2012, 26, 432–437. DOI: 10.1002/ptr.3570.
  • Dai, X.; Ding, Y.; Zhang, Z.; Cai, X.; Li, Y. Quercetin and Quercitrin Protect against Cytokine-Induced Injuries in Rinm5f β-Cells via the Mitochondrial Pathway and NF-κB Signaling. Internat. J. Mol. Med. 2013, 31(1), 265–271. DOI: 10.3892/ijmm.2012.1177.
  • Bas, H.; Kalender, S.; Pandir, D. In Vitro Effects of Quercetin on Oxidative Stress Mediated in Human Erythrocytes by Benzoic Acid and Citric Acid. Folia Biol. 2014, 62(1), 57–64. DOI: 10.3409/fb62_1.59.
  • Alam, M. M.; Meerza, D.; Naseem, I. Protective Effect of Quercetin on Hyperglycemia, Oxidative Stress and DNA Damage in Alloxan Induced Type 2 Diabetic Mice. Life Sci. 2014, 109(1), 8–14. DOI: 10.1016/j.lfs.2014.06.005.
  • Lee, B. K.; Jung, Y.-S. Allium Cepa Extract and Quercetin Protect Neuronal Cells from Oxidative Stress via PKC- Inactivation/ERK1/2 Activation. Oxid. Med. Cell. Longev. 2016, 2016, Article ID 2495624, 9.
  • Trisat, K.; Wong-on, M.; Lapphanichayakool, P.; Tiyaboonchai, W.; Limpeanchob, N. Vegetable Juices and Fibers Reduce Lipid Digestion or Absorption by Inhibiting Pancreatic Lipase, Cholesterol Solubility and Bile Acid Binding. Int. J. Veg. Sci. 2017, 23, 260–269. DOI: 10.1080/19315260.2016.1258604.
  • Slanc, P.; Doljak, B.; Kreft, S.; Lunder, M.; Janeš, D.; Štrukelj, B. Screening of Selected Food and Medicinal Plant Extracts for Pancreatic Lipase Inhibition. Phytother. Res. 2009, 23, 874–877. DOI: 10.1002/ptr.2718.
  • Kim, H. Y. Effects of Onion (Allium cepa) Skin Extract on Pancreatic Lipase and Body Weight-Related Parameters. Food Sci. Biotechnol. 2007, 16, 434–438.
  • Moon, J.; Do, H. J.; Kim, O. Y.; Shin, M. J. Antiobesity Effects of Quercetin-Rich Onion Peel Extract on the Differentiation of 3T3-L1 Preadipocytes and the Adipogenesis in High Fat-Fed Rats. Food Chem. Toxicol. 2013, 58, 347–354. DOI: 10.1016/j.fct.2013.05.006.
  • Lee, S. G.; Parks, J. S.; Kang, H. W. Quercetin, a Functional Compound of Onion Peel, Remodels White Adipocytes to Brown-like Adipocytes. J. Nutr. Biochem. 2017, 42, 62–71. DOI: 10.1016/j.jnutbio.2016.12.018.
  • Lata, S.; Saxena, K. K.; Bhasin, V.; Saxena, R. S.; Kumar, A.; Srivastava, V. K. Beneficial Effects of Allium sativum, Allium cepa and Commiphora mukul on Experimental Hyperlipidaemia and Atherosclerosis–A Comparative Evaluation. J. Postgrad. Med. 1991, 37, 132–135.
  • Lee, K. H.; Kim, Y.; Park, E.; Hwang, H. J. Effect of Onion Powder Supplementation on Lipid Metabolism in High Fat-Cholesterol Fed SD Rats. J. Food Sci. Nutr. 2008, 13, 71–76.
  • Wang, X. K.; Wang, X.; Huang, J. Effects of Allicin on Experimental Colorectal Cancer in Rats and its Mechanism. Prod. Res. Dev. 2016, 28, 943–948. DOI: 10.1080/00207549008942765.
  • Hu, H. J.; Pan, Y. Q.; Fan, X. J.; Hu, X. M.; Zou, W. W.; Lin, X. L. Allicin Inhibits H2O2-induced Senescence in Human Umbilical Vein Endothelial Cells through Activation of SIRT1. Chinese J. Biochem. Mol. Biol. 2016, 32(5), 536–543.
  • Chhabria, S. V.; Akbarsha, M. A.; Li, A. P.; Kharkar, P. S.; Desai, K. B. In Situ Allicin Generation Using Targeted Alliinase Delivery for Inhibition of MIA PaCa-2 Cells via Epigenetic Changes, Oxidative Stress and Cyclin-dependent Kinase Inhibitor (CDKI) Expression. Apoptosis. 2015, 20(10), 1388–1409. DOI: 10.1007/s10495-015-1159-4.
  • Zhang, X.; Zhu, Y.; Duan, W.; Feng, C.; He, X. Allicin Induces Apoptosis of the MGC-803 Human Gastric Carcinoma Cell Line through the P38 Mitogen-activated Protein Kinase/caspase-3 Signaling Pathway. Mol. Med. Rep. 2015, 11(4), 2755–2760. DOI: 10.3892/mmr.2014.3109.
  • Wan, Q.; Yang, Y. P.; Liu, Z. Y. Allicin Prevents EA. Hy926 Endothelial Cell Injury Induced by PM2.5 Via Inhibiting ERK1/2 Pathway. Chinese Pharmac. Bulletin. 2016, 32(5), 692–696.
  • Panyod, S.; Wu, W.-K.; Ho, C.-T.; Lu, K.-H.; Liu, C.-T.; Chu, Y.-L.; Lai, Y.-S.; Chen, W.-C.; Lin, Y.-E; Lin, S.-H.; et al. Diet Supplementation with Allicin Protects against Alcoholic Fatty Liver Disease in Mice by Improving Anti-inflammation and Antioxidative Functions. J. Agric. Food Chem. 2016, 64(38), 7104–7113.
  • El-Sheakh, A. R.; Ghoneim, H. A.; Suddek, G. M.; Ammar, E. S. Attenuation of Oxidative Stress, Inflammation, and Endothelial Dysfunction in Hypercholesterolemic Rabbits by Allicin. Canad. J. Physiol. Pharmaco. 2015, 94(2), 216–224. DOI: 10.1139/cjpp-2015-0267.
  • Lin, -J.-J.; Chang, T.; Cai, W.-K.; Zhang, Z.; Yang, Y.-X.; Sun, C.; Li, Z.-Y.; Li, W.-X. Post-injury Administration of Allicin Attenuates Ischemic Brain Injury through Sphingosine Kinase 2: In Vivo and in Vitro Studies. Neurochem. Internat. 2015, 89, 92–100. DOI: 10.1016/j.neuint.2015.07.022.
  • Wallock-Richards, D.; Doherty, C. J.; Doherty, L.; Clarke D.-J.; Place, M.; Govan, J.-R.; Campopiano, D.-J. Garlic Revisited: Antimicrobial Activity of Allicin-containing Garlic Extracts against Burkholderia Cepacia Complex. PLoS ONE. 2014, 9(12), Article ID e112726. DOI: 10.1371/journal.pone.0112726.
  • Imai, T.; Kosuge, Y.; Endo-Umeda, K.; Miyagishi, H.; Ishige, K.; Makishima, M.; Ito, Y. Protective Effect of S-allyl-l-cysteine against Endoplasmic Reticulum Stress-Induced Neuronal Death is Mediated by Inhibition of Calpain. Amino Acids. 2014, 46(2), 385–393.
  • Imai, T.; Kosuge, Y.; Saito, H.; Uchiyama, T.; Wada, T.; Shimba, S.; Ishige, K.; Miyairi, S.; Makishima, M.; Ito, Y. Neuroprotective Effect of S-Allyl-L-Cysteine Derivatives against Endoplasmic Reticulum Stress-Induced Cytotoxicity is Independent of Calpain Inhibition. J. Pharmacol. Sci. 2016, 130, 185e188. DOI: 10.1016/j.jphs.2016.03.004.
  • Fu, E.; Tsai, M.-C.; Chin, Y.-T.; Tu, H.-P.; Fu, M.-M.; Chiang, C.-Y.; Chiu, H.-C. The Effects of Diallyl Sulfide upon Porphyromonas Gingivalis Lipopolysaccharide Stimulated Proinflammatory Cytokine Expressions and Nuclear Factor Kappa B Activation in Human Gingival Fibroblasts. J. Periodont. Res. 2015, 50(3), 380–388.
  • Ahmad, M. S.; Ahmed, N. Antiglycation Properties of Aged Garlic Extract: Possible Role in Prevention of Diabetic Complications. J. Nutr. 2006, 136(3), 796S–799S. DOI: 10.1093/jn/136.3.796S.
  • Al-Malki, A. L. Inhibition of α-glucosidase by Thiosulfinate as a Target for Glucose Modulation in Diabetic Rats. Evid-Based Comp. Alt. Med. 2016, 2016, Article ID 7687915, 5.
  • Kang, J. G.; Park, C. Y. Anti-obesity Drugs: A Review about Their Effects and Safety. Diabetes Metab. J. 2012, 36, 13–25. DOI: 10.4093/dmj.2012.36.1.13.
  • Padwal, R. S.; Majumdar, S. R. Drug Treatments for Obesity: Orlistat, Sibutramine and Rimonabant. Lancet. 2007, 369, 71–77. DOI: 10.1016/S0140-6736(07)60033-6.
  • Krentz, A. J.; Fujioka, K.; Hompesch, M. Evolution of Pharmacological Obesity Treatments: Focus on Adverse Side-Effect Profiles. Diabetes Obes. Metab. J. 2016, 8, 558–570. DOI: 10.1111/dom.12657.
  • Van Damme, E. J.; Smeets, K.; Torrekens, S.; Van Leuven, F.; Peumans, W. J. Isolation and Characterization of Alliinase cDNA Clones from Garlic (Allium sativum L.) and Related Species. Eur. J. Biochem. 1992, 209, 751–757. DOI: 10.1111/j.1432-1033.1992.tb17344.x.
  • Rabinkov, A.; Zhu, X. Z.; Grafi, G.; Galili, G.; Mirelman, D. Alliin Lyase (Alliinase) from Garlic (Allium Sativum). Biochemical Characterization and cDNA Cloning. Appl. Biochem. Biotech. 1994, 48(3), 149–171. DOI: 10.1007/BF02788739.
  • Do, G. S.; Suzuki, G.; Mukai, Y. Genomic Organization of a Novel Root Alliinase Gene, ALL1, in Onion. Gene. 2004, 325, 7–24. DOI: 10.1016/j.gene.2003.09.033.
  • Drugă, B.; Şuteu, D.; Rosca-Casian, O.; Pârvu, M.; Sragos, N. Two Novel Alliin Lyase (Alliinase) Genes from Twisted-Leaf Garlic (Allium obliquum) and Mountain Garlic (Allium senescens var. montanum). Not. Bot. Hort. Agrobot. Cluj. 2011, 39(2), 293–298. DOI: 10.15835/nbha3926355.
  • Endo, A.; Imai, Y.; Nakamura, M.; Yanagisawa, E.; Taguchi, T.; Torii, K.; Okumura, H.; Ichinose, K. Distinct Intraspecific Variations of Garlic (Allium sativum L.) Revealed by the Exon-Intron Sequences of the Alliinase Gene. J. Nat. Med. 2014, 68(2), 442–447.
  • Ovesná, J.; Mitrová, K. Kučera, L. Garlic (A. sativum L.) Alliinase Gene Family Polymorphism Reflects Bolting Types and Cysteine Sulphoxides Content. BMC Genet. 2015, 16, 53. DOI: 10.1186/s12863-015-0214-z.
  • Lombard, K.; Geoffriau, E.; Peffly, E. B. Flavonol Quantification in Onion by Spectrophotometric and High Performance Liquid Chromatography Analysis. HortSci. 2002, 37(4), 682–685. DOI: 10.21273/HORTSCI.37.4.682.
  • Smith, C.; Lombard, K. A.; Peffley, E. B.; Liu, W. Genetic Analysis of Quercetin in Onion (Allium Cepa L.) ‘lady Raider’. Texas J. Agric. Nat. Res. 2003, 16, 24–28.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.