319
Views
2
CrossRef citations to date
0
Altmetric
Review

Opportunities within the Agri-food System to Encourage a Nutritionally Balanced Diet– Part II

, , , , , , , , ORCID Icon, , , , , & show all

References

  • European Commission (EC). Closing the Loop - an EU Action Plan for the Circular Economy. http://eur-lex.europa.eu/resource.html?uri=cellar:8a8ef5e8-99a0-11e5-b3b7-01aa75ed71a1.0012.02/DOC_1&format=PDF (Accessed Dec 19, 2017).
  • United Nations (UN). Transforming Our World: The 2030 Agenda for Sustainable Development. https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf (Accessed Dec 19, 2017).
  • Toldrá, F.; Mora, L.; Reig, M. New Insights into Meat By-product Utilization. Meat Sci. 2016, 120, 54–59. DOI: 10.1016/j.meatsci.2016.04.021.
  • Ferraro, V.; Anton, M.; Santé-Lhoutellier, V. The “Sisters” α-helices of Collagen, Elastin and Keratin Recovered from Animal By-products: Functionality, Bioactivity and Trends of Application. Trends Food Sci. Technol. 2016, 51, 65–75. DOI: 10.1016/j.tifs.2016.03.006.
  • Sila, A.; Bougatef, A. Antioxidant Peptides from Marine By-products: Isolation, Identification and Application in Food Systems. A Review. J. Funct. Foods. 2016, 21, 10–26. DOI: 10.1016/j.jff.2015.11.007.
  • Liu, R.; Sing, L.; Fu, A.; Zhou, G.-H.; Shang, W.-G. A Review of Antioxidant Peptides Derived from Meat Muscle and By-products. Antioxidants. 2016, 5, 32–46. DOI: 10.3390/antiox5030032.
  • Karim, A. A.; Bhat, R. Fish Gelatin: Properties, Challenges, and Prospects as an Alternative to Mammalian Gelatins. Food Hydrocoll. 2009, 23, 563–576. DOI: 10.1016/j.foodhyd.2008.07.002.
  • Balti, R.; Jridi, M.; Sila, A.; Souissi, N.; Nedjar-Arroume, N.; Guillochon, D.; Nasri, M. Extraction and Functional Properties of Gelatin from the Skin of Cuttlefish (Sepia Officinalis) Using Smooth Hound Crude Acid Protease-aided Process. Food Hydrocoll. 2011, 25, 943–950. DOI: 10.1016/j.foodhyd.2010.09.005.
  • Cahú, T. B.; Santos, S. D.; Mendes, A.; Córdula, S. R.; Chavantec, S. F.; Carvalho, L. B.; Nader, H. B.; Bezerraa, R. S. Recovery of Protein, Chitin, Carotenoids and Glycosaminoglycans from Pacific White Shrimp (Litopenaeus Vannamei) Processing Waste. Process Biochem. 2012, 47, 570–577. DOI: 10.1016/j.procbio.2011.12.012.
  • Khora, S. S.;. Marine Fish-derived Bioactive Peptides and Proteins for Human Therapeutics. Int. J. Pharm. Pharm. Sci. 2013, 5, 31–37.
  • Kim, S. K.; Mendis, E. Bioactive Compounds from Marine Processing Byproducts – A Review. Food Res. Int. 2006, 39, 383–393. DOI: 10.1016/j.foodres.2005.10.010.
  • Hamed, I.; Ozogul, F.; Regenstein, J. M. Industrial Applications of Crustacean By-products (Chitin, Chitosan, and Chitooligosaccharides): A Review. Trends Food Sci. Technol. 2016, 48, 40–50. DOI: 10.1016/j.tifs.2015.11.007.
  • Pichyangkura, R.; Chadchawan, S. Biostimulant Activity of Chitosan in Horticulture. Sci. Hortic. 2015, 196, 49–55. DOI: 10.1016/j.scienta.2015.09.031.
  • Ravindran, R.; Jaiswal, A. K. Exploitation of Food Industry Waste for High-value Products. Trends Biotechnol. 2016, 34, 58–69. DOI: 10.1016/j.tibtech.2015.10.008.
  • Onipe, O. O.; Jideani, A. I. O.; Beswa, D. Composition and Functionality of Wheat Bran and Its Application in Some Cereal Food Products. Int. J. Food Sci. Technol. 2015, 50, 2509–2518. DOI: 10.1111/ijfs.12935.
  • Slavin, J. Fiber and Prebiotics: Mechanisms and Health Benefits. Nutrients. 2013, 5, 1417–1435. DOI: 10.3390/nu5041417.
  • Abad-García, B.; Garmón-Lobato, S.; Berrueta, L. A.; Gallo, B.; Vicente, F. On Line Characterization of 58 Phenolic Compounds in Citrus Fruit Juices from Spanish Cultivars by High-performance Liquid Chromatography with Photodiode-array Detection Coupled to Electrospray Ionization Triple Quadrupole Mass Spectrometry. Talanta. 2012, 99, 213–224. DOI: 10.1016/j.talanta.2012.05.042.
  • He, X. X.; Liu, C. M.; Sun, H. M.; Liu, M. M. Review of Extraction and Purification of Carotenoids from Pomace. Adv. Mat. Res. 2013, 791–793, 124–127. DOI: 10.4028/www.scientific.net/AMR.791-793.124.
  • Christiaens, S.; Uwibambe, D.; Uyttebroek, M.; Van Droogenbroeck, B.; Hendrickx, M. Pectin Characterisation in Vegetable Waste Streams: A Starting Point for Waste Valorisation in the Food Industry. LWT-Food Sci. Technol. 2015, 61, 275–282. DOI: 10.1016/j.lwt.2014.12.054.
  • Müller-Maatsch, J.; Bencivennia, M.; Caligiania, A.; Tedeschia, T.; Bruggeman, G.; Bosch, M.; Petrusan, J.; Van Droogenbroeck, B.; Elst, K.; Sforza, S. Pectin Content and Composition from Different Food Waste Streams. Food Chem. 2016, 201, 37–45. DOI: 10.1016/j.foodchem.2016.01.012.
  • Bernaert, N.; De Paepe, D.; Bouten, C.; De Clercq, H.; Stewart, D.; Van Bockstaele, E.; De Loose, M.; Van Droogenbroeck, B. Antioxidant Capacity, Total Phenolic and Ascorbate Content as a Function of the Genetic Diversity of Leek (Allium Ampeloprasum Var. Porrum). Food Chem. 2012a, 134, 669–677. DOI: 10.1016/j.foodchem.2012.02.159.
  • Bernaert, N.; Goetghebeur, L.; De Clercq, H.; De Loose, M.; Daeseleire, E.; Van Pamel, E.; Van Bockstaele, E.; Van Droogenbroeck, B. Influence of Cultivar and Harvest Time on the Amounts of Isoalliin and Methiin in Leek (Allium Ampeloprasum Var. Porrum). J. Agric. Food. Chem. 2012b, 60, 10910–10919. DOI: 10.1021/jf302132a.
  • Bernaert, N.; De Clercq, H.; Van Bockstaele, E.; De Loose, M.; Van Droogenbroeck, B. Antioxidant Changes during Postharvest Processing and Storage of Leek (Allium Ampeloprasum Var. Porrum). Postharvest Biol. Technol. 2013, 86, 8–16. DOI: 10.1016/j.postharvbio.2013.06.010.
  • Bernaert, N.; De Loose, M.; Van Bockstaele, E.; Van Droogenbroeck, B. Antioxidant Changes during Domestic Food Processing of the White Shaft and Green Leaves of Leek (Allium Ampeloprasum Var. Porrum). J. Sci. Food Agric. 2014, 94, 1168–1174. DOI: 10.1002/jsfa.6389.
  • Wouters, D.; Bernaert, N.; Anno, N.; Van Droogenbroeck, B.; De Loose, M.; Van Bockstaele, E.; De Vuyst, L. Application and Validation of Autochthonous Lactic Acid Bacteria Starter Cultures for Controlled Leek Fermentations and Their Influence on the Antioxidant Properties of Leek. Int. J. Food Microbiol. 2013, 165, 121–133. DOI: 10.1016/j.ijfoodmicro.2013.04.016.
  • De Paepe, D.; Valkenborg, D.; Noten, B.; Servaes, K.; Diels, L.; De Loose, M.; Van Droogenbroeck, B.; Voorspoels, S. Variability of the Phenolic Profiles in the Fruits from Old, Recent and New Apple Cultivars Cultivated in Belgium. Metabolomics. 2015a, 11, 739–752. DOI: 10.1007/s11306-014-0730-2.
  • De Paepe, D.; Coudijzer, K.; Noten, B.; Valkenborg, D.; Servaes, K.; De Loose, M.; Diels, L.; Voorspoels, S.; Van Droogenbroeck, B. A Comparative Study between Spiral-filter Press and Belt Press Implemented in A Cloudy Apple Juice Production Process. Food Chem. 2015b, 173, 986–996. DOI: 10.1016/j.foodchem.2014.10.019.
  • De Paepe, D.; Coudijzer, K.; Noten, B.; Valkenborg, D.; Servaes, K.; De Loose, M.; Diels, L.; Voorspoels, S.; Van Droogenbroeck, B. Pilot-scale Production of Cloudy Juice from Low-quality Pear Fruit under Low-oxygen Conditions. Food Chem. 2015c, 173, 827–837. DOI: 10.1016/j.foodchem.2014.10.018.
  • Abul-Fadl, M. M.;. Nutritional and Chemical Evaluation of White Cauliflower By-products Flour and the Effect of Its Addition on Beef Sausage Quality. J. Appl. Sci. Res. 2012, 8, 693–704.
  • Kips, L.; De Paepe, D.; Bernaert, N.; Van Pamel, E.; De Loose, M.; Raes, K.; Van Droogenbroeck, B. Using a Novel Spiral-filter Press Technology to Biorefine Horticultural By-products: The Case of Tomato. Part I: Process Optimization and Evaluation of the Process Impact on the Antioxidative Capacity. Innov. Food Sci. Emerg. Technol. 2016, 38, 198–205. DOI: 10.1016/j.ifset.2016.10.005.
  • Kips, L. Characterization and Processing of Horticultural Byproducts: A Case Study of Tomato and Belgian Endive Roots. PhD Thesis, University Press: Wachtebeke, Belgium, 2017. ISBN: 978-9-4635700-2-2.
  • Malarz, J.; Stojakowska, A.; Kisiel, W. Long-term Cultured Hairy Roots of Chicory - a Rich Source of Hydroxycinnamates and 8-deoxylactucin Glucoside. Appl. Biochem. Biotechnol. 2013, 171, 1589–1601. DOI: 10.1007/s12010-013-0446-1.
  • Fardet, A. Food Health Potential Is Primarily Due to Its Matrix Structure, Then Nutrient Composition: A New Paradigm for Food Classification according to Technological Processes Applied. J. Nutr. Health Food Eng. 2014, 1, 1–2. DOI: 10.15406/jnhfe.2014.01.00031.
  • Nayak, B.; Lia, R. H.; Tang, J. Effect of Processing on Phenolic Antioxidants of Fruits, Vegetables, and Grains – A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 887–918. DOI: 10.1080/10408398.2011.654142.
  • Lee, S. H.; Choi, W.; Jun, S. Conventional and Emerging Combination Technologies for Food Processing. Food Eng. Rev. 2016, 8, 414–434. DOI: 10.1007/s12393-016-9145-3.
  • Dewanto, V.; Wu, X. Z.; Adom, K. K.; Liu, R. H. Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. J. Agric. Food Chem. 2002, 50, 3010–3014. DOI: 10.1021/jf0115589.
  • Rao, A. V.; Ali, A. Biologically Active Phytochemicals in Human Health: Lycopene. Int. J. Food Prop. 2007, 10, 279–288. DOI: 10.1080/10942910601052673.
  • Shahidi, F.;. Nutraceuticals and Functional Foods: Whole versus Processed Foods. Trends Food Sci. Technol. 2009, 20, 376–387. DOI: 10.1016/j.tifs.2008.08.004.
  • Ghavidel, R. A.; Prakash, J. The Impact of Germination and Dehulling on Nutrients, Antinutrients, in Vitro Iron and Calcium Bioavailability and in Vitro Starch and Protein Digestibility of Some Legume Seeds. LWT-Food Sci. Technol. 2007, 40, 1292–1299. DOI: 10.1016/j.lwt.2006.08.002.
  • Devi, C. B.; Kushwaha, A.; Kumar, A. Sprouting Characteristics and Associated Changes in Nutritional Composition of Cowpea (Vigna Unguiculata). J. Food Sci. Technol. 2015, 52, 6821–6827. DOI: 10.1007/s13197-015-1832-1.
  • López-Amorós, M. L.; Hernández, T.; Estrella, I. Effect of Germination on Legume Phenolic Compounds and Their Antioxidant Activity. J. Food. Compos. Anal. 2006, 19, 277–283. DOI: 10.1016/j.jfca.2004.06.012.
  • Prajapati, J. B.; Nair, B. M. The History of Fermented Foods. In Fermented Functional Foods; Farnworth, E.R., Ed.; CRC Press: Florida, 2003; pp 1–25.
  • Rodriguez, H.; Curiel, J. A.; Landette, J. M.; De Las Rivas, B.; De Felipe, F. L.; Gomez-Cordoves, C.; Mancheno, J. M.; Munoz, R. Food Phenolics and Lactic Acid Bacteria. Int. J. Food Microbiol. 2009, 132, 79–90. DOI: 10.1016/j.ijfoodmicro.2009.03.025.
  • Martinez-Villaluenga, C.; Penas, E.; Sidro, B.; Ullate, M.; Frias, J.; Vidal-Valverde, C. White Cabbage Fermentation Improves Ascorbigen Content, Antioxidant and Nitric Oxide Production Inhibitory Activity in LPS-induced Macrophages. LWT-Food Sci. Technol. 2012, 46, 77–83. DOI: 10.1016/j.lwt.2011.10.023.
  • Bisakowski, B.; Atwal, A. S.; Gardner, N.; Champagne, C. P. Effect of Lactic Acid Fermentation of Onions (Allium Cepa) on the Composition of Flavonol Glucosides. Int. J. Food Sci. Technol. 2007, 42, 783–789. DOI: 10.1111/j.1365-2621.2006.01268.x.
  • De Castro, A.; Montano, A.; Sánchez, A. H.; Rejano, L. Lactic Acid Fermentation and Storage of Blanched Garlic. Int. J. Food Microbiol. 1998, 39, 205–211. DOI: 10.1016/S0168-1605(98)00003-8.
  • Di Cagno, R.; Surico, R. F.; Siragusa, S.; De Angelis, M.; Paradiso, A.; Mivervini, F.; De Gara, L.; Gobbetti, M. Selection and Use of Autochthonous Mixed Starter for Lactic Acid Fermentation of Carrots, French Beans or Marrows. Int. J. Food Microbiol. 2008, 127, 220–228. DOI: 10.1016/j.ijfoodmicro.2008.07.010.
  • Di Cagno, R.; Surico, R. F.; Minervini, G.; De Angelis, M.; Rizzello, C. G.; Gobbetti, M. Use of Autochthonous Starters to Ferment Red and Yellow Peppers (Capsicum Annum L.) To Be Stored at Room Temperature. Int. J. Food Microbiol. 2009, 130, 108–116. DOI: 10.1016/j.ijfoodmicro.2009.01.019.
  • Di Cagno, R.; Cardinali, G.; Minervini, G.; Antonielli, L.; Rizzello, C. G.; Ricciuti, P.; Gobbetti, M. Taxonomic Structure of the Yeasts and Lactic Acid Bacteria Microbiota of Pineapple (Ananas Comosus L. Merr.) And Use of Autochthonous Starters for Minimally Processing. Food Microbiol. 2010, 27, 381–389. DOI: 10.1016/j.fm.2009.11.012.
  • Di Cagno, R.; Surico, R. F.; Minervini, G.; Rizzello, C. G.; Lovino, R.; Servili, M.; Taticchi, A.; Urbani, S.; Gobbetti, M. Exploitation of Sweet Cherry (Prunus Avium L.) Puree Added of Stem Infusion through Fermentation by Selected Autochthonous Lactic Acid Bacteria. Food Microbiol. 2011, 28, 900–909. DOI: 10.1016/j.fm.2010.12.008.
  • Jung, J. Y.; Lee, S. H.; Kim, J. M.; Park, M. S.; Bae, J.-W.; Hahn, Y.; Madsen, E. L.; Jeon, C. O. Metagenomic Analysis of Kimchi, a Traditional Korean Fermented Food. Appl. Environ. Microbiol. 2011, 77, 2264–2274. DOI: 10.1128/AEM.02157-10.
  • Roberts, J. S.; Kidd, D. R. Lactic Acid Fermentation of Onions. LWT-Food Sci. Technol. 2005, 38, 185–190. DOI: 10.1016/j.lwt.2004.05.007.
  • Sánchez, I.; Palop, L.; Ballesteros, C. Biochemical Characterization of Lactic Acid Bacteria Isolated from Spontaneous Fermentation of ‘Almagro’ Eggplants. Int. J. Food Microbiol. 2000, 59, 9–17. DOI: 10.1016/S0168-1605(00)00256-7.
  • Demir, N.; Bahceci, K. S.; Acar, J. The Effects of Different Initial Lactobacillus Plantarum Concentrations on Some Properties of Fermented Carrot Juice. J. Food Process. Preserv. 2006, 30, 352–363. DOI: 10.1111/j.1745-4549.2006.00070.x.
  • Kusznierewics, B.; Smiechowska, A.; Bartoszek, A.; Namiesnik, J. The Effect of Heating and Fermenting on Antioxidant Properties of White Cabbage. Food Chem. 2008, 108, 853–861. DOI: 10.1016/j.foodchem.2007.11.049.
  • Van Boekel, M.; Fogliano, V.; Pellegrini, N.; Stanton, C.; Scholz, G.; Lalljie, S.; Somoza, V.; Knorr, D.; Jasti, P. R.; Eisenbrand, G. A Review on the Beneficial Aspects of Food Processing. Mol. Nutr. Food Res. 2010, 54, 1215–1247. DOI: 10.1002/mnfr.200900608.
  • Dordevic, T. M.; Siler-Marinkovic, S. S.; Dimitrijevic-Brankovic, S. I. Effect of Fermentation on Antioxidant Properties of Some Cereals and Pseudo Cereals. Food Chem. 2010, 119, 957–963. DOI: 10.1016/j.foodchem.2009.07.049.
  • Nazarro, F.; Fratianni, F.; Sada, A.; Orlando, P. Synbiotic Potential of Carrot Juice Supplemented with Lactobacillus Spp. And Inulin or Fructooligosaccharides. J. Sci. Food Agric. 2008, 88, 2271–2276. DOI: 10.1002/jsfa.3343.
  • Adams, M. R.;. Vinegar. In Microbiology of Fermented Foods; Wood, B.J.B., Ed.; Elsevier Applied Sci Publishers: London, 1985; pp 1–44.
  • Bamforth, C. W.;. Nutritional Aspects of Beer – A Review. Nutr. Res. 2002, 22, 227–237. DOI: 10.1016/S0271-5317(01)00360-8.
  • Lapcik, O.; Hill, M.; Hampl, R.; Wahala, K.; Adlercreutz, H. Identification of Isoflavonoids in Beer. Steroids. 1998, 63, 14–20. DOI: 10.1016/S0039-128X(97)00104-9.
  • Mayer, O.; Simon, J.; Roslova, H. A Population Study of Beer Consumption on Folate, Homocysteine Concentrations. Eur. J. Clin. Nutr. 2001, 55, 605–609. DOI: 10.1038/sj.ejcn.1601191.
  • Messina, M.;. Soyfoods and Soybean Phyto-oestrogens (Isoflavones) as a Possible Alternative to Hormone Replacement Therapy (HRT). Eur. J. Cancer. 2000, 36, S71–S72. DOI: 10.1016/S1051-2276(00)90001-3.
  • Wollgast, J.; Anklam, E. Review on Polyphenols in Theobroma Cacao: Changes in Composition during the Manufacture of Chocolate and Methodology for Identification and Quantification. Food Res. Int. 2000, 33, 423–447. DOI: 10.1016/S0963-9969(00)00068-5.
  • Sagar, V. R.; Kumar, S. P. Recent Advances in Drying and Dehydration of Fruits and Vegetables: A Review. J. Food Sci. Technol. 2010, 47, 15–26. DOI: 10.1007/s13197-010-0010-8.
  • Jeong, S. M.; Kim, S. Y.; Kim, D. R.; Nam, K. C.; Ahn, D. U.; Lee, S. C. Effect of Seed Roasting Conditions on the Antioxidant Activity of Defatted Sesame Meal Extracts. J. Food. Sci. 2004, 69, C377–C381. DOI: 10.1111/j.1365-2621.2004.tb10701.x.
  • Shahidi, F.; Amarowicz, R.; Abou-Garbia, H. A.; Shehata, Y. Endogenous Antioxidants and Stability of Sesame Oil as Affected by Processing and Storage. J. Am. Oil Chem. Soc. 1997, 74, 143–148. DOI: 10.1007/s11746-997-0159-0.
  • Celli, G. B.; Khattab, R.; Ghanem, A.; Brooks, M. S.-L. Refractance WindowTM Drying of Haskap Berry – Preliminary Results on Anthocyanin Retention and Physicochemical Properties. Food Chem. 2016a, 194, 218–221. DOI: 10.1016/j.foodchem.2015.08.012.
  • Durigon, A.; de Souza, G.; Carciofi, P.; Laurindo, B. A. M. J.B. Cast-tape Drying of Tomato Juice for the Production of Powdered Tomato. Food Bioprod. Process. 2016, 100, 145–155. DOI: 10.1016/j.fbp.2016.06.019.
  • Bakowska-Barczak, A. M.; Kolodziejczyk, P. P. Black Currant Polyphenols: Their Storage Stability and Microencapsulation. Ind. Crops Prod. 2011, 34, 1301–1309. DOI: 10.1016/j.indcrop.2010.10.002.
  • Holzwarth, M.; Korhummel, S.; Carle, R.; Kammerer, D. R. Evaluation of the Effects of Different Freezing and Thawing Methods on Color, Phenol and Ascorbic Acid Retention in Strawberries (Fragaria X Ananassa Duch.). Food Res. Int. 2012, 48, 241–248. DOI: 10.1016/j.foodres.2012.04.004.
  • Celli, G. B.; Ghanem, A.; Brooks, M. S.-L. Influence of Freezing Process and Frozen Storage on the Quality of Fruits and Fruit Products. Food Rev. Int. 2016b, 32, 280–304. DOI: 10.1080/87559129.2015.1075212.
  • Oszmianski, J.; Wojdylo, A.; Kolniak, J. Effect of L-ascorbic Acid, Sugar, Pectin and Freeze-thaw Treatment on Polyphenol Content of Frozen Strawberries. LWT-Food Sci. Technol. 2009, 42, 581–586. DOI: 10.1016/j.lwt.2008.07.009.
  • Türkben, C.; Sariburun, E.; Demir, C.; Uylaser, V. Effect of Freezing and Frozen Storage on Phenolic Compounds of Raspberry and Blackberry Cultivars. Food Anal. Methods. 2010, 3, 144–153. DOI: 10.1007/s12161-009-9102-3.
  • Veberic, R.; Stampar, F.; Schmitzer, V.; Cunja, V.; Zupan, A.; Koron, D.; Mikulic-Petkovsek, M. Changes in the Contents of Anthocyanins and Other Compounds in Blackberry Fruits Due to Freezing and Long-term Frozen Storage. J. Agric. Food Chem. 2014, 62, 6926–6935. DOI: 10.1021/jf405143w.
  • Allaith, A. A.; Ahmed, S. H.; Jafer, F. Effect of Different Thermal Treatments and Freezing on the Antioxidant Constituents and Activity of Two Bahraini Date Cultivars (Phoenix Dactylifera L.). Int. J. Food Sci. Technol. 2012, 47, 783–792. DOI: 10.1111/j.1365-2621.2011.02908.x.
  • Irzyniec, Z.; Klimczak, J.; Michalowski, S. Freeze-drying of the Black Currant Juice. Dry. Technol. 1995, 13, 417–424. DOI: 10.1080/07373939508916961.
  • Ratti, C.;. Hot Air and Freeze-drying of High-value Foods: A Review. J. Food Eng. 2001, 49, 311–319. DOI: 10.1016/S0260-8774(00)00228-4.
  • Loaëc, G.; Niquet-Léridon, C.; Henry, N.; Jacolot, P.; Volpoet, G.; Goudemand, E.; Janssens, M.; Hance, P.; Cadalen, T.; Hilbert, J.-L.;, et al. Effects of Variety, Agronomic Factors, and Drying on the Amount of Free Asparagine and Crude Protein in Chicory. Correlation with the Acrylamide Formation during Roasting. Food Res. Int. 2014, 63, 299–305. DOI: 10.1016/j.foodres.2014.03.010.
  • Muttucumaru, N.; Powers, S. J.; Elmore, J. S.; Mottram, D. S.; Halford, N. G. Effects of Water Availability on Free Amino Acids, Sugars, and Acrylamide-forming Potential in Potato. J. Agric. Food Chem. 2015, 63, 2566–2575. DOI: 10.1021/jf506031w.
  • Oey, I.; Van der Plancken, I.; Van Loey, A.; Heyndrickx, M. Does High Pressure Processing Influence Nutritional Aspects of Plant Based Food Systems? Trends Food Sci. Technol. 2008, 19, 300–308. DOI: 10.1016/j.tifs.2007.09.002.
  • Balnya, C.; Mozhaevab, V. V.; Langea, R. Hydrostatic Pressure and Proteins: Basic Concepts and New Data. Comp. Biochem. Physiol. A Physiol. 1997, 116A, 299–304. DOI: 10.1016/S0300-9629(96)00355-6.
  • Penchalaraju, M.; Shireesha, B. Preservation of Foods by HPP – A Review. Ind. J. Sci. Res. Tech. 2013, 1, 30–38. DOI: 10.1.1.429.3097.
  • Melse-Boonstra, A.; Verhoef, P.; Konings, E. J. M.; Van Dusseldorp, M.; Matser, A.; Hollman, P. C. H.; Mayboom, S.; Kok, F. J.; West, C. E. Influence of Processing on Total, Monoglutamate and Polyglutamate Folate Contents of Leeks, Cauliflower, and Green Beans. J. Agric. Food Chem. 2002, 50, 3473–3478. DOI: 10.1021/jf0112318.
  • Muntean, M.-V.; Marian, O.; Barbieru, V.; Cátunescu, G. M.; Ranta, O.; Drocas, I.; Terhes, S. High Pressure Processing in Food Industry – Characteristics and Applications. Agric. Agric. Sci. Proc. 2016, 10, 377–383. DOI: 10.1016/j.aaspro.2016.09.077.
  • Meyer, R. S.; Ultra High Pressure, High Temperature Food Preservation Process. US Patent 6017572, 2000.
  • Meyer, R. S.; Cooper, K. L.; Knorr, D.; Lelieveld, H. L. M. High Pressure Sterilization of Foods. Food Technol. 2000, 54, 67–72.
  • Wilson, M. J.; Baker, R. High Pressure/ultra-high Pressure Sterilization of Foods. U.S. Patent 6,086,936, July 11, 2000.
  • Wilson, M. J.; Baker, R.; High Pressure/ultra-high Pressure Sterilization of Foods. U.S. Patent 6,207,215, March 27, 2001.
  • Van Schepdael, L. J. M. M.; De Heij, W. B. C.; Hoogland, H. Method for High Pressure Preservation. European Patent EP0918472, Feb 21, 2002.
  • Kumar, Y.; Patel, K. K.; Kumar, V. Pulsed Electric Field Processing in Food Technology. Int. J. Engg. Stud. Tech. Approach. 2015, 1, 6–17. DOI: 10.5772/48678.
  • Mertens, B.; Knorr, D. Developments of Non-thermal Processes for Food Preservation. Food Technol. 1992, 46, 124–133.
  • Lelieveld, H. L. M.; Notermans, S.; De Haan, S. W. H. Food Preservation by Pulsed Electric Fields: From Research to Application; Woodhead Publishing Limited: Cambrigde, 2007; pp 363.
  • Buckow, R.; Ng, S.; Toepfl, S. Pulsed Electric Field Processing of Orange Juice: A Review on Microbial, Enzymatic, Nutritional, and Sensory Quality and Stability. Compr. Rev. Food Sci. Food Saf. 2013, 12, 455–467. DOI: 10.1111/1541-4337.12026.
  • Elez-Martínez, P.; Martin-Belloso, O. Effects of High Intensity Pulsed Electric Field Processing Conditions on Vitamin C and Antioxidant Capacity of Orange Juice and Gazpacho, a Cold Vegetable Soup. Food Chem. 2007, 102, 201–209. DOI: 10.1016/j.foodchem.2006.04.048.
  • Bendicho, S.; Barbosa-Cánovas, G. V.; Martin, O. Milk Processing by High Intensity Pulsed Electric Fields. Trends Food Sci. Technol. 2002, 13, 195–204. DOI: 10.16/S0924-2244(02)00132-2.
  • Yeom, H. W.; Evrendilek, G.; Jin, Z. T.; Zhang, Q. H. Processing of Yoghurt-based Products with Pulsed Electric Fields: Microbial, Sensory and Physical Evaluations. J. Food Process. Preserv. 2007, 28, 161–178. DOI: 10.1111/j.1745-4549.2004.tb00818.x.
  • Yogesh, K.;. Pulsed Electric Field Processing of Egg Products: A Review. J. Food Sci. Technol. 2015, 53, 934–945. DOI: 10.1007/s13197-015-2061-3.
  • Castro, A. J.; Barbosa-Canovas, G. V.; Swanson, B. G. Microbial Inactivation of Foods by Pulses Electric Fields. J. Food Process. Preserv. 1993, 17, 47–73. DOI: 10.1111/j.1745-4549.1993.tb00225.x.
  • Barsotti, L.; Cheftel, J. C. Food Processing by Pulsed Electric Fields. II Biological Aspects. Food Rev. Int. 1999, 15, 181–213. DOI: 10.1080/87559129909541186.
  • Odriozola-Serrano, I.; Aguiló-Aguayo, I.; Soliva-Fortuny, R.; Martín-Belloso, O. Pulsed Electric Fields Processing Effects on Quality and Health-related Constituents of Plant-based Foods. Trends Food Sci. Technol. 2013, 29, 98–107. DOI: 10.1016/j.tifs.2011.10.003.
  • Cserhalmi, Z.; Sass-Kiss, A.; Toth-Markus, M.; Lechner, N. Study of Pulsed Electric Field Treated Citrus Juices. Innov. Food Sci. Emerg. Technol. 2006, 7, 49–54. DOI: 10.1016/j.ifset.2005.07.001.
  • Schilling, S.; Schmid, S.; Jaeger, H.; Ludwig, M.; Dietrich, H.; Toepfl, S.; Knorr, D.; Neidhart, S.; Schieber, A.; Carle, R. Comparative Study of Pulsed Electric Field and Thermal Processing of Apple Juice with Particular Consideration of Juice Quality and Enzyme Deactivation. J. Agric. Food Chem. 2008, 56, 4545–4554. DOI: 10.1021/jf0732713.
  • Timmermans, R. A. H.; Mastwijk, H. C.; Knol, J. J.; Quataert, M. C. J.; Vervoort, L.; der Plancken, I. V.; Hendrickx, M. E.; Matser, A. M. Comparing Equivalent Thermal, High Pressure and Pulsed Electric Field Processes for Mild Pasteurization of Orange Juice. Part I: Impact on Overall Quality Attributes. Innov. Food Sci. Emerg. Technol. 2011, 12, 235–243. DOI: 10.1016/j.ifset.2011.05.001.
  • Vervoort, L.; Van der Plancken, I.; Grauwet, T.; Timmermans, R. A. H.; Mastwijk, H. C.; Matser, A. M.; Hendrickx, M. E.; Van Loey, A. Comparing Equivalent Thermal, High Pressure and Pulsed Electric Field Processes for Mild Pasteurization of Orange Juice: Part II: Impact on Specific Chemical and Biochemical Quality Parameters. Innov. Food Sci. Emerg. Technol. 2011, 12, 466–477. DOI: 10.1016/j.ifset.2011.06.003.
  • Yan, L. G.; He, L.; Xi, J. High Intensity Pulsed Electic Field as an Innovative Technique for Extraction for Bioactive Compounds – A Review. Crit. Rev. Food Sci. Nutr. 2017, 57, 2877–2888. DOI: 10.1080/10408398.2015.1077193.
  • Puertolas, E.; Barba, F. J. Electrotechnologies Applied to Valorization of By-products from Food Industry: Main Findings, Energy and Economic Cost of Their Industrialization. Food Bioprod. Process. 2016, 100, 172–184. DOI: 10.1016/j.fbp.2016.06.020.
  • Demeyer, D.; Honikel, K.; De Smet, S. The World Cancer Research Fund Report 2007: A Challenge for the Meat Processing Industry. Meat Sci. 2008, 80, 953–959. DOI: 10.1016/j.meatsci.2008.06.003.
  • Santarelli, R. L.; Pierre, F.; Corpet, D. E. Processed Meat and Colorectal Cancer: A Review of Epidemiologic and Experimental Evidence. Nutr. Cancer. 2008, 60, 131–144. DOI: 10.1080/01635580701684872.
  • Steinberg, P.;. Endogenously Formed N-nitroso Compounds: A New Group of Colon Carcinogens Relevant to Man? Ernährungs Umschau. 2009, 56, 332–337.
  • Corpet, D. E.;. Mechanisms of Pro-cancer Effect of Meat Consumption: A Review. Rev. Med. Vet. 2012, 163, 43–48.
  • Hughes, R.; Magee, E. A. M.; Bingham, S. Protein Degradation in the Large Intestine: Relevance to Colorectal Cancer. Curr. Issues Intest. Microbiol. 2000, 1, 51–58. DOI: 10.1.1.335.2825.
  • Rysman, T.; Utrera, M.; Morcuende, D.; Van Royen, G.; Van Weyenberg, S.; De Smet, S.; Estevez, M. Apple Phenolics as Inhibitors of the Carbonylation Pathway during in Vitro Metal-catalyzed Oxidation of Myofibrillair Proteins. Food Chem. 2016a, 211, 784–790. DOI: 10.1016/j.foodchem.2016.05.126.
  • Rysman, T.; Van Hecke, T.; De Smet, S.; Van Royen, G. Ascorbate and Apple Phenolics Affect Protein Oxidation in Emulsion-type Sausages during Storage and in Vitro Digestion. J. Agric. Food Chem. 2016b, 64, 4131–4138. DOI: 10.1021/acs.jafc.6b00437.
  • Skog, K. I.; Johansson, M. A. E.; Jägerstad, M. I. Carcinogenic Heterocyclic Amines in Model Systems and Cooked Foods: A Review on Formation, Occurrence and Intake. Food Chem. Toxicol. 1998, 36, 879–896. DOI: 10.1016/S0278-6915(98)00061-1.
  • Abdulkarim, B. G.; Smith, J. S. Heterocyclic Amines in Fresh and Processed Meat Products. J. Agric. Food Chem. 1998, 46, 4680–4687. DOI: 10.1021/jf980175g.
  • Skog, K. Cooking Procedures and Food Mutagens: A Literature Review. Food Chem. Toxicol. 1993, 31, 655–675. DOI: 10.1016/0278-6915(93)90049-5.
  • Gibis, M.;. Heterocyclic Aromatic Amines in Cooked Meat Products: Causes, Formation, Occurrence, and Risk Assessment. Compr. Rev. Food Sci. Food Saf. 2016, 15, 269–302. DOI: 10.1111/1541-4337.12186.
  • Andrée, S.; Jira, W.; Schwind, K. H.; Wagner, H.; Schwägele, F. Chemical Safety of Meat and Meat Products. Meat Sci. 2010, 86, 38–48. DOI: 10.1016/j.meatsci.2010.04.020.
  • Chung, S. Y.; Yettella, R. R.; Kim, J. S.; Kwo, K.; Kim, M. C.; Min, D. B. Effects of Grilling and Roasting on the Levels of Polycyclic Aromatic Hydrocarbons in Beef and Pork. Food Chem. 2011, 129, 1420–1426. DOI: 10.1016/j.foodchem.2011.05.092.
  • Singh, L.; Varshney, J. G.; Agarwal, T. Polycyclic Aromatic Hydrocarbons’ Formation and Occurrence in Processed Food. Food Chem. 2016, 199, 768–781. DOI: 10.1016/j.foodchem.2015.12.074.
  • Jira, W.;. Chemical Reactions of Curing and Smoking. Fleischwirtschaft. 2004, 84, 107–111.
  • Bedale, W.; Sindelar, J. J.; Milkowski, A. L. Dietary Nitrate and Nitrite: Benefits, Risks, and Evolving Perceptions. Meat Sci. 2016, 120, 85–92. DOI: 10.1016/j.meatsci.2016.03.009.
  • Mine, Y.; Yang, M. Functional Properties of Egg Components in Food Systems. In Handbook of Poultry Science and Technology; Guerrero-Legarreta, I., Ed.; John Wiley & Sons Inc.: New Jersey, 2010; pp 579–630.
  • Mattila, P.; Ronkainen, R.; Lehikoinen, K.; Piironen, V. Effect of Household Cooking on the Vitamin D Content in Fish, Eggs, and Wild Mushrooms. J. Food Compos. Annal. 1999, 12, 153–160. DOI: 10.1006/jfca.1999.0828.
  • Uysal, R. S.; Boyacı, İ. H.; Soykut, E. A.; Ertaş, N. Effects of Heat Treatment Parameters on Liquid Whole Egg Proteins. Food Chem. 2017, 216, 201–208. DOI: 10.1016/j.foodchem.2016.08.050.
  • Ndife, J.; Ejikeme, C.; Amaechi, N. Effect of Oven Drying on the Functional and Nutritional Properties of Whole Egg and Its Components. Afr. J. Food Sci. 2010, 4, 254–257.
  • Akpinar-Bayizit, A.; Ozcan, T.; Yilmaz-Ersan, L.; Gurbuz, O. Impact of Processing Methods on Nutritive Value and Fatty Acid Profile of Hen Eggs. Pak. Vet. J. 2010, 30, 219–222.
  • Cortinas, L.; Galobart, J.; Barroeta, A. C.; Baucells, M. D.; Grashorn, M. A. Change in α‐tocopherol Contents, Lipid Oxidation and Fatty Acid Profile in Eggs Enriched with Linolenic Acid or Very Long‐chain ω3 Polyunsaturated Fatty Acids after Different Processing Methods. J. Sci. Food Agric. 2003, 83, 820–829. DOI: 10.1002/jsfa.1418.
  • Botsoglou, E.; Govaris, A.; Pexara, A.; Fletouris, D. Effect of Processing and Storage on the Fatty Acid Composition of N‐3 or N‐6 Fatty Acid‐enriched Eggs. Int. J. Food Sci. Technol. 2012, 47, 2388–2396. DOI: 10.1111/j.1365-2621.2012.03114.x.
  • Caboni, M. F.; Boselli, E.; Messia, M. C.; Velazco, V.; Fratianni, A.; Panfili, G.; Marconi, E. Effect of Processing and Storage on the Chemical Quality Markers of Spray-dried Whole Egg. Food Chem. 2005, 92, 293–303. DOI: 10.1016/j.foodchem.2004.07.025.
  • Lechevalier, V.; Jeantet, R.; Arhaliass, A.; Legrand, J.; Nau, F. Egg White Drying: Influence of Industrial Processing Steps on Protein Structure and Functionalities. J. Food Eng. 2007, 83, 404–413. DOI: 10.1016/j.jfoodeng.2007.03.033.
  • Jaekel, T.; Dautel, K.; Ternes, W. Preserving Functional Properties of Hen’s Egg Yolk during Freeze-drying. J. Food Eng. 2008, 87, 522–526. DOI: 10.1016/j.jfoodeng.2008.01.006.
  • Claeys, W. L.; Verraes, C.; Cardoen, S.; De Block, J.; Huyghebaert, A.; Raes, K.; Dewettinck, K.; Herman, L. Consumption of Raw or Heated Milk from Different Species: An Evaluation of Nutritional and Potential Health Benefits. Food Control. 2014, 42, 188–201. DOI: 10.1016/j.foodcont.2014.01.045.
  • Claeys, W. L.; Cardoen, S.; Daube, G.; De Block, J.; Dewettinck, K.; Dierick, K.; De Zutter, L.; Huyghebaert, A.; Imberechts, H.; Thiange, P.; et al. Raw or Heated Milk Consumption: Review of Risks and Benefits. Food Control. 2013, 31, 251–261. DOI: 10.1016/j.foodcont.2012.09.035.
  • Heyndrickx, M.; Marchand, S.; De Jonghe, V.; Smet, K.; Coudijzer, K.; De Block, J. Understanding and Preventing Consumer Milk Microbial Spoilage and Chemical Deterioration. In Improving the Safety and Quality of Milk; Griffiths, M.W., Ed.; Woodhead Publishing Limited: Cambrigde, 2010; pp 97–135.
  • Barrefors, P.; Granelli, K.; Appelqvist, L. A.; Bjoerck, L. Chemical Characterization of Raw Milk Samples with and without Oxidative Off-flavor. J. Dairy Sci. 1995, 78, 2691–2699. DOI: 10.3168/jds.S0022-0302(95)76900-4.
  • Timmons, J. S.; Weiss, W. P.; Palmquist, D. L.; Harper, W. J. Relationships among Dietary Roasted Soybeans, Milk Components, and Spontaneous Oxidized Flavour of Milk. J. Dairy Sci. 2001, 84, 2440–2449. DOI: 10.3168/jds.S0022-0302(01)74694-2.
  • Havemose, M. S.; Weisbjerg, M. R.; Bredie, W. L. P.; Nielsen, J. H. Influence of Feeding Different Types of Roughage on the Oxidative Stability of Milk. Int. Dairy J. 2004, 14, 563–570. DOI: 10.1016/j.idairyj.2003.11.005.
  • Smet, K.; De Block, J.; De Campeneere, S.; De Brabander, D.; Herman, L.; Raes, K.; Dewettinck, K.; Coudijzer, K. Oxidative Stability of UHT Milk as Influenced by Fatty Acid Composition and Packaging. Int. Dairy J. 2009, 19, 372–379. DOI: 10.1016/j.idairyj.2009.02.006.
  • Duboc, P.; Mollet, B. Application of Exopolysaccharides in the Dairy Industry. Int. Dairy J. 2001, 11, 759–768. DOI: 10.1016/S0958-6946(01)00119-4.
  • Park, Y. W.; Nam, M. S. Bioactive Peptides in Milk and Dairy Products: A Review. Korean J. Food Sci. Anim. Resour. 2015, 35, 831–840. DOI: 10.5851/kosfa.2015.35.6.831.
  • López-Expósito, I.; Amigo, L.; Recio, I. A Mini-review on Health and Nutritional Aspects of Cheese with A Focus on Bioactive Peptides. Dairy Sci. Technol. 2012, 92, 419–438. DOI: 10.1007/s13594-012-0066-5.
  • McKinley, M.;. The Nutrition and Health Benefits of Yoghurt. Int. J. Dairy Technol. 2005, 58, 1–12. DOI: 10.1111/j.1471-0307.2005.00180.x.
  • Kawase, M.; Hashimoto, H.; Hosoda, M.; Morita, H.; Hosono, A. Effect of Administration of Fermented Milk Containing Whey Protein Concentrate to Rats and Healthy Men on Serum Lipids and Blood Pressure. J. Dairy Sci. 2000, 83, 255–263. DOI: 10.3168/jds.S0022-0302(00)74872-7.
  • Gladyshev, M. I.; Sushchik, N. N.; Gubanenko, G. A.; Demirchieva, S. M.; Kalachova, G. S. Effect of Way of Cooking on Content of Essential Polyunsaturated Fatty Acids in Muscle Tissue of Humpback Salmon (Oncorhynchus Gorbuscha). Food Chem. 2006, 96, 446–451. DOI: 10.1016/j.foodchem.2005.02.034.
  • Gladyshev, M. I.; Sushchik, N. N.; Gubanenko, G. A.; Demirchieva, S. M.; Kalachova, G. S. Effect of Boiling and Frying on the Content of Essential Polyunsaturated Fatty Acids in Muscle Tissue of Four Fish Species. Food Chem. 2007, 101, 1694–1700. DOI: 10.1016/j.foodchem.2006.04.029.
  • Candela, M.; Astiasaran, I.; Bello, J. Deep-fat Frying Modifies High-fat Lipid Fraction. J. Agric. Food Chem. 1998, 46, 2793–2796. DOI: 10.1021/jf9709616.
  • Kitson, A. P.; Patterson, A. C.; Lzadi, H.; Stark, K. D. Pan-frying Salmon in an Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) Enriched Margarine Prevents EPA and DHA Loss. Food Chem. 2009, 114, 927–932. DOI: 10.1016/j.foodchem.2008.10.039.
  • Sioen, I.; Vyncke, K.; De Maeyer, M.; Gerichhausen, M.; De Henauw, S. Dietary Intake and Food Sources of Total and Individual Polyunsaturated Fatty Acids in the Belgian Population over 15 Years Old. Lipids. 2013, 48, 729–738. DOI: 10.1007/s11745-013-3788-0.
  • Larsen, D.; Quek, S. Y.; Eyres, L. Effect of Cooking Method on the Fatty Acid Profile of New Zealand King Salmon (Oncorhynchus Tshawytscha). Food Chem. 2010, 119, 785–790. DOI: 10.1016/j.foodchem.2009.07.037.
  • Yang, S.; Zhou, Q.; Yang, L.; Xue, Y.; Xu, J.; Xue, C. Effect of Thermal Processing on Astaxanthin and Astaxanthin Esters in Pacific White Shrimp Litopenaeus Vannamei. J. Oleo Sci. 2015, 64, 243–253. DOI: 10.5650/jos.ess14219.
  • Etiévant, P.;. Dietary Behaviours and Practices: Determinants, Action, Outcomes. In Sustainable Diets and Biodiversity. Directions and Solutions for Policy, Research and Action; Burlingame, B., Dernini, S., Eds.; FAO: Rome, 2012; pp 102–107.
  • Arnold, M.; Leitzmann, M.; Freisling, H.; Bray, F.; Romieu, I.; Renehan, A.; Soerjomataram, I. Obesity and Cancer: An Update of the Global Impact. Cancer Epidemiol. 2016, 41, 8–15. DOI: 10.1016/j.canep.2016.01.003.
  • Public Health England, Sugar Reduction. The Evidence for Action. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/470179/Sugar_reduction_The_evidence_for_action.pdf (Accessed Dec 19, 2017).
  • World Health Organization (WHO). Sugars Intake for Adults and Children. http://apps.who.int/iris/bitstream/10665/149782/1/9789241549028_eng.pdf?ua=1 (Accessed Dec 19, 2017).
  • World Health Organization (WHO). Healthy Diet. Fact sheet http://www.who.int/mediacentre/factsheets/fs394/en/ (Accessed Dec 19, 2017).
  • Newens, K. J.; Walton, J. A. Review of Sugar Consumption from Nationally Representative Dietary Surveys across the World. J. Hum. Nutr. Diet. 2016, 29, 225–240. DOI: 10.1111/jhn.12338.
  • Moynihan, P.;. Sugars and Dental Caries: Evidence for Setting a Recommended Threshold for Intake. Adv. Nutr. 2016, 7, 149–156. DOI: 10.3945/an.115.009365.
  • Lê, K. A.; Robin, F.; Roger, O. Sugar Replacers: From Technological Challenges to Consequences on Health. Curr. Opin. Clin. Nutr. Metab. Care. 2016, 19, 310–315. DOI: 10.1097/MCO.0000000000000288.
  • Wilson, R.;. Sweeteners; Leatherhead Publishing/Blackwell Publishing Ltd: Surrey, 2007; pp 304.
  • Mielby, L. H.; Andersen, B. V.; Jensen, S.; Kildegaard, H.; Kuznetsova, A.; Eggers, N.; Brockhoff, P. B.; Byrne, D. V. Changes in Sensory Characteristics and Their Relation with Consumers’ Liking, Wanting and Sensory Satisfaction: Using Dietary Fibre and Lime Flavour in Stevia Rebaudiana Sweetened Fruit Beverages. Food Res. Int. 2016, 82, 14–21. DOI: 10.1016/j.foodres.2016.01.010.
  • Handa, C.; Goomer, S.; Siddhu, A. Physicochemical Properties and Sensory Evaluation of Fructoligosaccharides Enriched Cookies. J. Food Sci. Technol. 2012, 49, 192–199. DOI: 10.1007/s13197-011-0277-4.
  • Boone, C.; Broucke, K. Minder Suiker En Beter Vet http://www.flandersfood.com/sites/default/files/ct_publicatie/16/01/12/MSBV%20-%20Inhoudstafel.pdf (Accessed Dec 19, 2017).
  • Altschul, A. M.;. Low-Calorie Foods Handbook; CRC Press: Florida, 1993; pp 608.
  • Roller, S.; Jones, S. A. Handbook of Fat Replacers; CRC Press: Florida, 1996; pp 325.
  • Talbot, G.;. Reducing Saturated Fats in Foods; Woodhead Publishing Limited: Cambrigde, 2011; pp 392.
  • Gonçalves, C. B.; Granero, M. G. Reduction of Cholesterol in Lard by Solvent Extraction. Chem. Eng. Trans. 2009, 17, 909–914. DOI: 10.3303/CET0917152.
  • European Union (EU). Trans Fats – Overview of Recent Developments. http://www.europarl.europa.eu/RegData/etudes/BRIE/2016/577966/EPRS_BRI(2016)577966_EN.pdf (Accessed Dec 19, 2017).
  • WHO/FAO. Expert Report: Diet, Nutrition and Prevention of Chronic Diseases. Report of a Joint WHO/FAO Expert Consultation, WHO Technical Report Series 916. http://apps.who.int/iris/bitstream/10665/42665/1/WHO_TRS_916.pdf (Accessed Dec 19, 2017).
  • European Food Safety Authority (EFSA). Scientific Opinion on Dietary Reference Values for Fats, Including Saturated Fatty Acids, Polyunsaturated Fatty Acids, Monounsaturated Fatty Acids, Trans Fatty Acids, and Cholesterol. Efsa J. 2010, 8, 1461. DOI: 10.2903/j.efsa.2010.1461.
  • European Commission (EC). Initiative to Limit Industrial Trans Fats Intakes in the EU. http://ec.europa.eu/smart-regulation/roadmaps/docs/2016_sante_143_trans_fats_en.pdf (Accessed Dec 19, 2017)
  • European Food Safety Authority (EFSA). Scientific Opinion on the Substantiation of Health Claims Related to Foods with Reduced Amounts of Sodium and Maintenance of Normal Blood Pressure (ID 336, 705, 1148, 1178, 1185, 1420) Pursuant to Article 13 (1)of Regulation (EC) No 1924/2006. Efsa J. 2011, 9, 2237. DOI: 10.2903/j.efsa.2011.2260.
  • World Health Organization (WHO). Salt Reduction. Fact sheet. http://www.who.int/mediacentre/factsheets/fs393/en/ (Accessed Dec 19, 2017).
  • World Health Organization (WHO). Global Action Plan for the Prevention and Control of Noncommunicable Diseases 2013–2020 http://apps.who.int/iris/bitstream/10665/94384/1/9789241506236_eng.pdf (Accessed Dec 19, 2017).
  • European Commission (EC). Survey on Members States’ Implementation of the EU Salt Reduction Framework: Results of Member States Survey. http://ec.europa.eu/health/nutrition_physical_activity/docs/salt_report1_en.pdf (Accessed Dec 19, 2017).
  • Hoge gezondheidsraad. Herformulering Van Levensmiddelen – Zoutreductie: Gemeenschappelijk Advies SciCom 05–2012 En HGR 8663. http://www.favv-afsca.fgov.be/wetenschappelijkcomite/adviezen/2012/_documents/ADVIES05-2012_HGR_NL_DOSSIER2010-09.pdf (Accessed Dec 19, 2017).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.