642
Views
14
CrossRef citations to date
0
Altmetric
Review

Full Utilization of Squid Meat and Its Processing By-products: Revisit

, ORCID Icon & ORCID Icon

References

  • Guillen, J.; Natale, F.; Carvalho, N.; Casey, J.; Hofherr, J.; Druon, J.-N.; … Martinsohn, J. T. Global Seafood Consumption Footprint. Ambio. 2019, 48(2), 111–122.
  • Li, -X.-X.; Sun, P.; Jia, J.-Z.; Cai, L.-Y.; Li, J.-R.; Lv, Y.-F. Effect of Low Frequency Ultrasound Thawing Method on the Quality Characteristics of Peru Squid (Dosidicus Gigas). Food Sci. Technol. Int. 2019, 25(2), 171–181.
  • Singh, A.; Benjakul, S.; Kishimura, H. Characteristics and Functional Properties of Ovary from Squid Loligo Formosana. J. Aqua. Food Prod. Technol. 2017, 26(9), 1083–1092.
  • Arkhipkin, A. I.; Rodhouse, P. G. K.; Pierce, G. J.; Sauer, W.; Sakai, M.; Allcock, L.; … Zeidberg, L. D. World Squid Fisheries. Rev. Fish. Sci. Aqua. 2015, 23(2), 92–252.
  • Vate, N. K.; Benjakul, S.; Agustini, T. W. Application of Melanin-Free Ink as a New Antioxidative Gel Enhancer in Sardine Surimi Gel. J. Sci. Food Agri. 2015, 95(11), 2201–2207.
  • Ehsanudin, N. A.; Shafie, F. A.; Abdullah, A. H.; Mahalingam, S. R.; Tiong, C. S.; Arshad, K. Heavy Metals in Dried Squids (Loligo Sp.) In Melaka Tengah District. MAEH J. Environ. Health. 2019, 1(1), 24–27.
  • Yuan, P.; Deng, S.; Hatab, S.; Yuan, N.; Huo, J. Comparative Evaluation of the Quality Changes in Squid (Ommastrephes Bartrami) during Flake and Slurry Ice Storage. Emir. J. Food Agri. 2017, 29(5)339–345.
  • Morrissey, M.; Okada, T. Marine Enzymes from Seafood by-Products. In Maximising the Value of Marine by-Products; Woodhead Publishing: Sawston‎, ‎Cambridge, UK, 2007; pp 374–396.
  • Vate, N. K.; Benjakul, S. Effect of the Mixtures of Squid Ink Tyrosinase and Tannic Acid on Properties of Sardine Surimi Gel. J. Food Sci. Technol. 2016, 53(1), 411–420.
  • Lodhi, G.; Kim, Y.-S.; Hwang, J.-W.; Kim, S.-K.; Jeon, Y.-J.; Je, J.-Y.; Park, P.-J. Chitooligosaccharide and Its Derivatives: Preparation and Biological Applications. BioMed. Res. Int. 2014, 2014, 1–13.
  • Singh, A.; Benjakul, S.; Prodpran, T. Ultrasound-Assisted Extraction of Chitosan from Squid Pen: Molecular Characterization and Fat Binding Capacity. J. Food Sci. 2019, 84(2), 224–234.
  • Packard, A.;. Cephalopods and Fish: The Limits of Convergence. Biol. Rev. 1972, 47(2), 241–307.
  • Sikorski, Z. E.; Kołodziejska, I. The Composition and Properties of Squid Meat. Food Chem. 1986, 20(3), 213–224.
  • Mehta, N. K.; Nayak, B. B. Bio-Chemical Composition, Functional, and Rheological Properties of Fresh Meat from Fish, Squid, and Shrimp: A Comparative Study. Int. J. Food Prop. 2017, 20(sup1), S707–S721.
  • Abugoch, L.; Guarda, A.; Pérez, L.; Paredes, M. Determination of Proximal Chemical Composition of Squid (Dosidicus Gigas) and Development of Gel Products. Arch. Latinoam. Nutr. 1999, 49(2), 156–161.
  • Márquez-Ríos, E.; Morán-Palacio, E.; Lugo-Sánchez, M.; Ocano-Higuera, V.; Pacheco-Aguilar, R. Postmortem Biochemical Behavior of Giant Squid (Dosidicus Gigas) Mantle Muscle Stored in Ice and Its Relation with Quality Parameters. J. Food Sci. 2007, 72(7), C356–C362.
  • Valverde, J. C.; Martínez-Llorens, S.; Vidal, A. T.; Jover, M.; Rodríguez, C.; Estefanell, J.; … García, B. G. Amino Acids Composition and Protein Quality Evaluation of Marine Species and Meals for Feed Formulations in Cephalopods. Aqua. Int. 2013, 21(2), 413–433.
  • Paredi, M. E.; Roldán, H. A.; Crupkin, M. Changes in Myofibrillar Proteins and Lipids of Squid (Illex Argentinus) during Frozen Storage. J. Food Biochem. 2006, 30(5), 604–621.
  • Hong, J.-H.; Ryu, H.-S.; Kim, H.-B. Cholesterol Content and Formation of Oxidized Cholesterols in Processed Squids. Prev. Nutr. Food Sci. 1996, 1(2), 196–202.
  • Veeruraj, A.; Arumugam, M.; Ajithkumar, T.; Balasubramanian, T. Isolation and Characterization of Collagen from the Outer Skin of Squid (Doryteuthis Singhalensis). Food Hydrocoll. 2015, 43, 708–716.
  • Nagarajan, M.; Benjakul, S.; Prodpran, T.; Songtipya, P.; Kishimura, H. Characteristics and Functional Properties of Gelatin from Splendid Squid (Loligo Formosana) Skin as Affected by Extraction Temperatures. Food Hydrocoll. 2012, 29(2), 389–397.
  • Bloodgood, R. A. The Squid Accessory Nidamental Gland: Ultrastructure and Association with Bacteria. Tissue Cell. 1977, 9(2), 197–208.
  • Harms, E. Vietnam’s Civilizing Process and the Retreat from the Street: A Turtle’s Eye View from Ho Chi Minh City. City Society. 2009, 21(2), 182–206.
  • Jun-hui, X.; Hui-juan, C.; Bin, Z.; Hui, Y. The Mechanistic Effect of Bromelain and Papain on Tenderization in Jumbo Squid (Dosidicus Gigas) Muscle. Food Res. Int. 2020, 131, 108991.
  • Torres-Arreola, W.; Ocaño-Higuera, V. M.; Ezquerra-Brauer, J. M.; López-Corona, B. E.; Rodríguez-Felix, F.; Castro-Longoria, R.; Ramírez-Guerra, H. E. Effect of Cooking on Physicochemical and Structural Properties of Jumbo Squid (Dosidicus Gigas) Muscle. J. Food Proces. Pres. 2018, 42(2), e13528.
  • Hu, Y.; Yu, H.; Dong, K.; Yang, S.; Ye, X.; Chen, S. Analysis of the Tenderisation of Jumbo Squid (Dosidicus Gigas) Meat by Ultrasonic Treatment Using Response Surface Methodology. Food Chem. 2014, 160, 219–225.
  • Sikes, A. L.; Warner, R. 10 - Application of High Hydrostatic Pressure for Meat Tenderization. In Innovative Food Processing Technologies; Knoerzer, K., Juliano, P., Smithers, G., Eds.; Woodhead Publishing: Sawston‎, ‎Cambridge, UK, 2016; pp 259–290.
  • Gokoglu, N.; Topuz, O. K.; Gokoglu, M.; Tokay, F. G. Characterization of Protein Functionality and Texture of Tumbled Squid, Octopus and Cuttlefish Muscles. J. Food Meas. Charact. 2017, 11(4), 1699–1705.
  • Melendo, J. A.; Beltrán, J. A.; Roncalés, P. Tenderization of Squid (Loligo Vulgaris and Illex Coindetii) with Bromelain and a Bovine Spleen Lysosomal-Enriched Extract. Food Res. Int. 1997, 30(5), 335–341.
  • Sungsri-in, R.; Benjakul, S.; Kijroongrojana, K. Pink Discoloration and Quality Changes of Squid (Loligo Formosana) during Iced Storage. LWT - Food Sci. Technol. 2011, 44(1), 206–213.
  • Benjakul, S.; Sungsri-in, R.; Kijroongrojana, K. Effect of Treating of Squid with Sodium Chloride in Combination with Oxidising Agent on Bleaching, Physical and Chemical Changes during Frozen Storage. Food Bioproc. Technol. 2012, 5(6), 2077–2084.
  • Fu, X.-Y.; Xue, C.-H.; Miao, B.-C.; Li, Z.-J.; Zhang, Y.-Q.; Wang, Q. Effect of Processing Steps on the Physico-Chemical Properties of Dried-Seasoned Squid. Food Chem. 2007, 103(2), 287–294.
  • Tsai, C. H.; Pan, B. S.; Kong, M. S. Browning Behavior of Taurine and Proline in Model and Dried Squid Systems. J. Food Biochem. 1991, 15(1), 67–77.
  • Suyama, M.; Kobayashi, H. Free Amino Acids and Quaternary Ammonium Bases in Mantle Muscle of Squids [Decapoda]. Nippon Suisan Gakkai. 1980, 46(10), 1261–1264.
  • Haard, N.; Arcilla, R. Precursors of Maillard Browning in Atlantic Short Finned Squid. Can. Ins. Food Sci. Technol. J. 1985, 18(4), 326–331.
  • Omura, Y.; Okazaki, E.; Yamashita, Y.; Yamazawa, M.; Watabe, S. The Influence of Ribose on Browning of Dried and Seasoned Squid Products. Nippon Suisan Gakkai. 2004, 70(2), 187–193.
  • Morita, K.; Kubota, K.; Aishima, T. Investigating Influence of pH and Parts on Sensory Characteristics and Volatile Components in Boiled Squid Using Experimental Designs. J. Food Sci. 2002, 67(2), 848–854.
  • Chiou, T.-K.; Chang, H.-K.; Lo, L.; Lan, H.-L.; Shiau, C.-Y. Changes in Chemical Constituents and Physical Indices during Processing of Dried-Seasoned Squid. Fish. Sci. 2000, 66(4), 708–715.
  • Dong, L.; Zhu, J.; Li, X.; Li, J. Effect of Tea Polyphenols on the Physical and Chemical Characteristics of Dried-Seasoned Squid (Dosidicus Gigas) during Storage. Food Cont. 2013, 31(2), 586–592.
  • Choi, K.-D.; Park, U.-Y.; Shin, I.-S. Microbial Contamination of Seasoned and Dried Squid Dosidicus Gigas during Processing. Kor. J. Fish. Aqua. Sci. 2012, 45(5), 445–453.
  • Gou, J.-Y.; Zou, -Y.-Y.; Choi, G.-P.; Park, Y.-B.; Ahn, J.-H. Effect of High Pressure Processing on the Shelf Life of Seasoned Squid. J. Kor. Soc. Food Sci. Nutr. 2011, 40(8), 1136–1140.
  • Choi, S.; Puligundla, P.; Mok, C. Effect of Corona Discharge Plasma on Microbial Decontamination of Dried Squid Shreds Including Physico-Chemical and Sensory Evaluation. LWT-Food Sci. Technol. 2017, 75, 323–328.
  • Ko, J.-K.; Ma, Y.-H.; Song, K.-B. Effect of Electron Beam Irradiation on the Microbial Safety and Qualities of Sliced Dried Squid. J. Kor. Soc. Food Sci. Nutr. 2005, 34(3), 433–437.
  • Lee, E.-S.; Park, S. Y.; Ha, S.-D. Effect of Uv-C Light on the Microbial and Sensory Quality of Seasoned Dried Seafood. Food Sci. Technol. Int. 2016, 22(3), 213–220.
  • Byun, M.-W.; Lee, K.-H.; Kim, D.-H.; Kim, J.-H.; Yook, H.-S.; Ahn, H.-J. Effects of Gamma Radiation on Sensory Qualities, Microbiological and Chemical Properties of Salted and Fermented Squid. J. Food Prot. 2000, 63(7), 934–939.
  • Zhu, J.; Li, J.; Jia, J. Effects of Thermal Processing and Various Chemical Substances on Formaldehyde and Dimethylamine Formation in Squid Dosidicus Gigas. J. Sci. Food Agri. 2012, 92(12), 2436–2442.
  • Kuda, T.; Yazaki, T.; Takahashi, H.; Kimura, B. Effect of Dried and Vinegar Flavored Squid Products on Acid Resistance of Salmonella Typhimurium and Staphylococcus Aureus. Food Cont. 2013, 30(2), 569–574.
  • Buamard, N.; Benjakul, S. Improvement of Gel Properties of Sardine (Sardinella Albella) Surimi Using Coconut Husk Extracts. Food Hydrocoll. 2015, 51, 146–155.
  • Quan, T. H.; Benjakul, S. Comparative Study on the Effect of Duck and Hen Egg Albumens on Proteolysis and Gel Property of Sardine Surimi. Int. J. Food Prop. 2017, 20(sup3), S2786–S2797.
  • Singh, A.; Benjakul, S. Proteolysis and Its Control Using Protease Inhibitors in Fish and Fish Products: A Review. Compr. Rev. Food Sci. Food Saf. 2018, 17(2), 496–509.
  • Gómez-Guillén, M. C.; Hurtado, J. L.; Montero, P. Autolysis and Protease Inhibition Effects on Dynamic Viscoelastic Properties during Thermal Gelation of Squid Muscle. J. Food Sci. 2002, 67(7), 2491–2496.
  • Ayensa, M.; Montero, M.; Borderías, A. J.; Hurtado, J. L. Influence of Some Protease Inhibitors on Gelation of Squid Muscle. J. Food Sci. 2002, 67(5), 1636–1641.
  • Buamard, N.; Benjakul, S. Combination Effect of High Pressure Treatment and Ethanolic Extract from Coconut Husk on Gel Properties of Sardine Surimi. LWT-Food Sci. Technol. 2018, 91, 361–367.
  • Singh, A.; Benjakul, S. Effect of Serine Protease Inhibitor from Squid Ovary on Gel Properties of Surimi from Indian Mackerel. J. Text. Stud. 2017, 48(6), 541–549.
  • Quan, T. H.; Benjakul, S. Impact of Salted Duck Egg Albumen Powder on Proteolysis and Gelling Properties of Sardine Surimi. J. Text. Stud. 2019, 50(5), 434–442.
  • Park, S.-H.; Cho, S.-Y.; Kimura, M.; Nozawa, H.; Seki, N. Effects of Microbial Transglutaminase and Starch on the Thermal Gelation of Salted Squid Muscle Paste. Fish. Sci. 2005, 71(4), 896–903.
  • Chanarat, S.; Benjakul, S.; H-Kittikun, A. Comparative Study on Protein Cross-Linking and Gel Enhancing Effect of Microbial Transglutaminase on Surimi from Different Fish. J. Sci. Food Agri. 2012, 92(4), 844–852.
  • Park, S.; Cho, S.; Yoshioka, T.; Kimura, M.; Nozawa, H.; Seki, N. Influence of Endogenous Proteases and Transglutaminase on Thermal Gelation of Salted Squid Muscle Paste. J. Food Sci. 2003, 68(8), 2473–2478.
  • Pérez-Mateos, M.; Montero, P.; Gómez-Guillén, C. M. Addition of Microbial Transglutaminase and Protease Inhibitors to Improve Gel Properties of Frozen Squid Muscle. Eur. Food Res. Technol. 2002, 214(5), 377–381.
  • Moreno, H. M.; Cardoso, C.; Solas, M. T.; Borderías, A. J. Improvement of Cold and Thermally Induced Gelation of Giant Squid (Dosidicus Gigas) Surimi. J. Aqua. Food Prod. Technol. 2009, 18(4), 312–330.
  • Sánchez-Alonso, I.; Solas, M. T.; Borderías, A. J. Technological Implications of Addition of Wheat Dietary Fibre to Giant Squid (Dosidicus Gigas) Surimi Gels. J. Food Eng. 2007, 81(2), 404–411.
  • Nagai, T.;. Collagen from Diamondback Squid (Thysanoteuthis Rhombus) Outer Skin. Z. Naturforsch. C. 2004, 59(3–4), 271–275.
  • Kittiphattanabawon, P.; Nalinanon, S.; Benjakul, S.; Kishimura, H. Characteristics of Pepsin-Solubilised Collagen from the Skin of Splendid Squid (Loligo Formosana). J. Chem. 2015, 2015, 1–8.
  • Nam, K. A.; You, S. G.; Kim, S. M. Molecular and Physical Characteristics of Squid (Todarodes Pacificus) Skin Collagens and Biological Properties of Their Enzymatic Hydrolysates. J. Food Sci. 2008, 73(4), C249–C255.
  • Yan, M.; Li, B.; Zhao, X. Isolation and Characterization of Collagen from Squid (Ommastrephes Bartrami) Skin. J. Ocean U. China. 2009, 8(2), 191–196.
  • Nakchum, L.; Kim, S. M. Preparation of Squid Skin Collagen Hydrolysate as an Antihyaluronidase, Antityrosinase, and Antioxidant Agent. Prep. Biochem. Biotechnol. 2016, 46(2), 123–130.
  • Giménez, B.; Alemán, A.; Montero, P.; Gómez-Guillén, M. C. Antioxidant and Functional Properties of Gelatin Hydrolysates Obtained from Skin of Sole and Squid. Food Chem. 2009, 114(3), 976–983.
  • Uriarte-Montoya, M. H.; Santacruz-Ortega, H.; Cinco-Moroyoqui, F. J.; Rouzaud-Sández, O.; Plascencia-Jatomea, M.; Ezquerra-Brauer, J. M. Giant Squid Skin Gelatin: Chemical Composition and Biophysical Characterization. Food Res. Int. 2011, 44(10), 3243–3249.
  • Abdelmalek, B. E.; Gómez-Estaca, J.; Sila, A.; Martinez-Alvarez, O.; Gómez-Guillén, M. C.; Chaabouni-Ellouz, S.; … Bougatef, A. Characteristics and Functional Properties of Gelatin Extracted from Squid (Loligo Vulgaris) Skin. LWT - Food Sci. Technol. 2016, 65, 924–931.
  • Lin, L.; Lv, S.; Li, B. Angiotensin-I-Converting Enzyme (Ace)-inhibitory and Antihypertensive Properties of Squid Skin Gelatin Hydrolysates. Food Chem. 2012, 131(1), 225–230.
  • Vate, N. K.; Benjakul, S. Enhancement of Gel Properties of Sardine Surimi Using Squid Ink Tyrosinase in Combination with Coconut Husk Extract. Int. J. Food Eng. 2017, 13(3), 20160163.
  • Vate, N. K.; Benjakul, S.; Prodpran, T. Improvement of Properties of Sardine Myofibrillar Protein Films Using Squid Ink Tyrosinasein Combination with Tannic Acid. Turk. J. Fish. Aqua. Sci. 2017, 17(5), 853–861.
  • Shirai, T.; Kikuchi, N.; Matsuo, S.; Inada, H.; Suzuki, T.; Hirano, T. Extractive Components of the Squid Ink. Fish. Sci. 1997, 63(6), 939–944.
  • Singh, A.; Benjakul, S. Serine Protease Inhibitors from Squid Ovary: Extraction and Its Effect on Proteolysis and Gel Properties of Surimi. J. Food Sci. Technol. 2017, 54(1), 267–275.
  • Singh, A.; Benjakul, S. Effect of Partial Enzymatic Hydrolysis on Physicochemical and Foaming Properties of Ovary from Squid Loligo Formosana. Waste Biomass Valorization. 2019, 10(11), 3351–3361.
  • Singh, A.; Benjakul, S.; Kijroongrojana, K. Effect of Ultrasonication on Physicochemical and Foaming Properties of Squid Ovary Powder. Food Hydrocoll. 2018, 77, 286–296.
  • Singh, A.; Benjakul, S.; Prodpran, T. Effect of Chitooligosaccharide from Squid Pen on Gel Properties of Sardine Surimi Gel and Its Stability during Refrigerated Storage. Int. J. Food Sci. Technol. 2019, 54(10), 2831–2838.
  • Singh, A.; Benjakul, S.; Prodpran, T. Chitooligosaccharides from Squid Pen Prepared Using Different Enzymes: Characteristics and the Effect on Quality of Surimi Gel during Refrigerated Storage. Food Prod. Proces. Nutr. 2019. DOI: https://doi.org/10.1186/s43014-019-0005-4.
  • Kang, K.-Y.; Ahn, D.-H.; Wilkinson, G. T.; Chun, B.-S. Extraction of Lipids and Cholesterol from Squid Oil with Supercritical Carbon Dioxide. Kor. J. Chem. Eng. 2005, 22(3), 399–405.
  • Raksakulthai, R.; Haard, N. F. Purification and Characterization of a Carboxypeptidase from Squid Hepatopancreas (Illex Illecebrosus). J. Agri. Food Chem. 2001, 49(10), 5019–5030.
  • Zhang, K.; Wei, R.; Song, R. Extraction of Cathepsin D-Like Protease from Neon Flying Squid (Ommastrephes Bartramii) Viscera and Application in Antioxidant Hydrolysate Production. Biomol. 2019, 9(6), 228.
  • Sukarno; Takahashi, K.; Hatano, M.; Sakurai, Y. Lipase from Neon Flying Squid Hepatopancreas: Purification and Properties. Food Chem. 1996, 57(4), 515–521.
  • Francisco, -C.-C.; Luis, C.-L. J.; Marina, E.-B. J.; Javier, C.-M. F.; Alexis, L.-Z. A.; Del Carmen, S.-O. H.; Alfredo, R.-E. I. Effect of Temperature and pH on the Secondary Structure and Denaturation Process of Jumbo Squid Hepatopancreas Cathepsin D. Prot. Pep. Lett. 2019, 26(7), 532–541.
  • Cardenas-Lopez, J. L.; Haard, N. F. Identification of a Cysteine Proteinase from Jumbo Squid (Dosidicus Gigas) Hepatopancreas as Cathepsin L. Food Chem. 2009, 112(2), 442–447.
  • Marquez-Rios, E.; Cota-Arriola, O.; Villalba-Villalba, A. G.; Ezquerra-Brauer, J. M.; Ocaño-Higuera, V. M.; Lopez-Corona, B. E.; Torres-Arreola, W. Chymotrypsin Isolation from Jumbo Squid (Dosidicus Gigas) Hepatopancreas: Partial Characterization and Effect on Muscle Collagen. Food Sci. Biotechnol. 2016, 25(4), 1011–1016.
  • Ezquerra-Brauer, J. M.; Haard, N. F.; Ramírez-Olivas, R.; Olivas-Burrola, H.; Velazquez-Sánchez, C. J. Influence of Harvest Season on the Proteolytic Activity of Hepatopancreas and Mantle Tissues from Jumbo Squid (Doswicus Gigas). J. Food Biochem. 2002, 26(5), 459–475.
  • Park, J.-W.; Cho, S.-Y.; Choi, S.-J. Purification and Characterization of Hepatic Lipase from Todarodes Pacificus. BMB Rep. 2008, 41(3), 254–258.
  • Sinthusamran, S.; Benjakul, S.; Kishimura, H. Comparative Study on Molecular Characteristics of Acid Soluble Collagens from Skin and Swim Bladder of Seabass (Lates Calcarifer). Food Chem. 2013, 138(4), 2435–2441.
  • Benjakul, S.; Muhammed, A.; Ali, M.; Singh, A. Application of Ultrasonication in Seafood Processing. In Innovative Technologies in Seafood Processing; Ozogul, Y., Ed.; CRC Press Taylor and Boca Raton: Florida, United States, 2019; Vol. 65, pp 131–154.
  • Singh, P.; Benjakul, S.; Maqsood, S.; Kishimura, H. Isolation and Characterisation of Collagen Extracted from the Skin of Striped Catfish (Pangasianodon Hypophthalmus). Food Chem. 2011, 124(1), 97–105.
  • Sinthusamran, S.; Benjakul, S.; Hemar, Y. Physical and Sensory Properties of Gelatin from Seabass (Lates Calcarifer) as Affected by Agar and Κ-carrageenan. J. Text. Stud. 2018, 49(1), 47–55.
  • Ali, A. M. M.; Benjakul, S.; Kishimura, H. Molecular Characteristics of Acid and Pepsin Soluble Collagens from the Scales of Golden Carp (Probarbus Jullieni). Emi. J. Food Agri. 2017, 29(6), 450–457.
  • Kołodziejska, I.; Sikorski, Z. E.; Niecikowska, C. Parameters Affecting the Isolation of Collagen from Squid (Illex Argentinus) Skins. Food Chem. 1999, 66(2), 153–157.
  • Sinthusamran, S.; Benjakul, S.; Kishimura, H. Characteristics and Gel Properties of Gelatin from Skin of Seabass (Lates Calcarifer) as Influenced by Extraction Conditions. Food Chem. 2014, 152, 276–284.
  • Gómez-Guillén, M. C.; Turnay, J.; Fernández-Dıaz, M.; Ulmo, N.; Lizarbe, M. A.; Montero, P. Structural and Physical Properties of Gelatin Extracted from Different Marine Species: A Comparative Study. Food Hydrocoll. 2002, 16(1), 25–34.
  • Uriarte-Montoya, M. H.; Arias-Moscoso, J. L.; Plascencia-Jatomea, M.; Santacruz-Ortega, H.; Rouzaud-Sández, O.; Cardenas-Lopez, J. L.; … Ezquerra-Brauer, J. M. Jumbo Squid (Dosidicus Gigas) Mantle Collagen: Extraction, Characterization, and Potential Application in the Preparation of Chitosan–Collagen Biofilms. Biores. Technol. 2010, 101(11), 4212–4219.
  • Kittiphattanabawon, P.; Benjakul, S.; Visessanguan, W.; Shahidi, F. Comparative Study on Characteristics of Gelatin from the Skins of Brownbanded Bamboo Shark and Blacktip Shark as Affected by Extraction Conditions. Food Hydrocoll. 2010, 24(2), 164–171.
  • Karnjanapratum, S.; Benjakul, S. Asian Bullfrog (Rana Tigerina) Skin Gelatin Extracted by Ultrasound-Assisted Process: Characteristics and in-Vitro Cytotoxicity. Int. J. Biol. Macromol. 2020. DOI: https://doi.org/10.1016/j.ijbiomac.2020.01.150.
  • Ali, A. M. M.; de la Caba, K.; Prodpran, T.; Benjakul, S. Quality Characteristics of Fried Fish Crackers Packaged in Gelatin Bags: Effect of Squalene and Storage Time. Food Hydrocoll. 2020, 99, 105378.
  • Djagny, K. B.; Wang, Z.; Xu, S. Gelatin: A Valuable Protein for Food and Pharmaceutical Industries: Review. Crit. Rev. Food Sci. Nutr. 2001, 41(6), 481–492.
  • Hong, H.; Fan, H.; Chalamaiah, M.; Wu, J. Preparation of Low-Molecular-Weight, Collagen Hydrolysates (Peptides): Current Progress, Challenges, and Future Perspectives. Food Chem. 2019, 301, 125222.
  • Sutthiwanjampa, C.; Kim, S. M. Production and Characterisation of Hyaluronidase and Elastase Inhibitory Protein Hydrolysates from Venus Clam. Nat. Prod. Res. 2015, 29(17), 1614–1623.
  • Schurink, M.; van Berkel, W. J.; Wichers, H. J.; Boeriu, C. G. Novel Peptides with Tyrosinase Inhibitory Activity. Peptides. 2007, 28(3), 485–495.
  • Alemán, A.; Gómez-Guillén, M. C.; Montero, P. Identification of Ace-Inhibitory Peptides from Squid Skin Collagen after in Vitro Gastrointestinal Digestion. Food Res. Int. 2013, 54(1), 790–795.
  • Benjakul, S.; Karnjanapratum, S.; Visessanguan, W. Production and Characterization of Odorless Antioxidative Hydrolyzed Collagen from Seabass (Lates Calcarifer) Skin without Descaling. Waste Biomass Valorization. 2018, 9(4), 549–559.
  • Quan, T. H.; Benjakul, S. Production and Characterisation of Duck Albumen Hydrolysate Using Enzymatic Process. Int. J. Food Sci. Technol. 2019, 54(11), 3015–3023.
  • Karnjanapratum, S.; Benjakul, S. Characteristics and Antioxidative Activity of Gelatin Hydrolysates from Unicorn Leatherjacket Skin as Affected by Autolysis-Assisted Process. J. Food Proces. Pres. 2015, 39(6), 915–926.
  • Giménez, B.; Gómez-Estaca, J.; Alemán, A.; Gómez-Guillén, M. C.; Montero, M. P. Improvement of the Antioxidant Properties of Squid Skin Gelatin Films by the Addition of Hydrolysates from Squid Gelatin. Food Hydrocoll. 2009, 23(5), 1322–1327.
  • Alemán, A.; Giménez, B.; Pérez-Santin, E.; Gómez-Guillén, M.; Montero, P. Contribution of Leu and Hyp Residues to Antioxidant and Ace-Inhibitory Activities of Peptide Sequences Isolated from Squid Gelatin Hydrolysate. Food Chem. 2011, 125(2), 334–341.
  • Alemán, A.; Pérez-Santín, E.; Bordenave-Juchereau, S.; Arnaudin, I.; Gómez-Guillén, M.; Montero, P. Squid Gelatin Hydrolysates with Antihypertensive, Anticancer and Antioxidant Activity. Food Res. Int. 2011, 44(4), 1044–1051.
  • Cortizo, M. S.; Berghoff, C. F.; Alessandrini, J. L. Characterization of Chitin from Illex Argentinus Squid Pen. Carb. Polym. 2008, 74(1), 10–15.
  • Kurita, K.; Tomita, K.; Tada, T.; Ishii, S.; Nishimura, S.-I.; Shimoda, K. Squid Chitin as a Potential Alternative Chitin Source: Deacetylation Behavior and Characteristic Properties. J. Polym. Sci. Part A: Polym. Chem. 1993, 31(2), 485–491.
  • Cuong, H. N.; Minh, N. C.; Van Hoa, N.; Trung, T. S. Preparation and Characterization of High Purity β-Chitin from Squid Pens (Loligo Chenisis). Int. J. Biol. Macromol. 2016, 93, 442–447.
  • Tolaimate, A.; Desbrieres, J.; Rhazi, M.; Alagui, A.; Vincendon, M.; Vottero, P. On the Influence of Deacetylation Process on the Physicochemical Characteristics of Chitosan from Squid Chitin. Polymer. 2000, 41(7), 2463–2469.
  • Lavall, R. L.; Assis, O. B. G.; Campana-Filho, S. P. Β-chitin from the Pens of Loligo Sp.: Extraction and Characterization. Biores. Technol. 2007, 98(13), 2465–2472.
  • Chandumpai, A.; Singhpibulporn, N.; Faroongsarng, D.; Sornprasit, P. Preparation and Physico-Chemical Characterization of Chitin and Chitosan from the Pens of the Squid Species, Loligo Lessoniana and Loligo Formosana. Carb. Polym. 2004, 58(4), 467–474.
  • Abdou, E. S.; Nagy, K. S.; Elsabee, M. Z. Extraction and Characterization of Chitin and Chitosan from Local Sources. Biores. Technol. 2008, 99(5), 1359–1367.
  • Elieh-Ali-Komi, D.; Hamblin, M. R. Chitin and Chitosan: Production and Application of Versatile Biomedical Nanomaterials. Int. J. Adv. Res. 2016, 4(3), 411.
  • Laokuldilok, T.; Potivas, T.; Kanha, N.; Surawang, S.; Seesuriyachan, P.; Wangtueai, S.; … Regenstein, J. M. Physicochemical, Antioxidant, and Antimicrobial Properties of Chitooligosaccharides Produced Using Three Different Enzyme Treatments. Food Biosci. 2017, 18, 28–33.
  • Liaqat, F.; Eltem, R. Chitooligosaccharides and Their Biological Activities: A Comprehensive Review. Carb. Polym. 2018, 184, 243–259.
  • Mourya, V. K.; Inamdar, N. N.; Choudhari, Y. M. Chitooligosaccharides: Synthesis, Characterization and Applications. Polym. Sci. Ser. A. 2011, 53(7), 583–612.
  • Peniston, Q. P.; Johnson, E. L., Method for Treating an Aqueous Medium with Chitosan and Derivatives of Chitin to Remove an Impurity. 1970, Google Patents.
  • Kumar, S.; Mukherjee, A.; Dutta, J. Chitosan Based Nanocomposite Films and Coatings: Emerging Antimicrobial Food Packaging Alternatives. Trends Food Sci. Technol. 2020, 97, 196–209
  • Shepherd, R.; Reader, S.; Falshaw, A. Chitosan Functional Properties. Glycoconj. J. 1997, 14(4), 535–542.
  • Olatunde, O. O.; Benjakul, S. Natural Preservatives for Extending the Shelf‐Life of Seafood: A Revisit. Comp. Rev. Food Sci. Food Saf. 2018, 17(6), 1595–1612.
  • Singh, A.; Benjakul, S.; Olatunde, O. O.; Xun, C.; Wu, P. The Impact of Squid Pen Chitooligosaccharide and High Voltage Cold Atmospheric Plasma on the Quality of Asian Sea Bass Slices Inoculated with Pseudomonas Aeruginosa. J. Sci. Food Agric. 2020. under review.
  • Singh, A.; Benjakul, S.; Xun, C.; Wu, P. The Combined Effect of Squid Pen Chitooligosaccharides and High Voltage Cold Atmospheric Plasma on the Shelf-Life Extension of Asian Sea Bass Slices Stored at 4 °C. Innov. Food Sci. Emerg. Technol. 2020. under review.
  • Zayas, J. F.;. Foaming Properties of Proteins. In Functionality of Proteins in Food; Springer: Berlin, Heidelberg, Germany, 1997; pp 260–309.
  • Jun, S.; Yaoyao, M.; Hui, J.; Obadi, M.; Zhongwei, C.; Bin, X. Effects of Single-and Dual-Frequency Ultrasound on the Functionality of Egg White Protein. J. Food Eng. 2020, 277, 109902.
  • Mune Mune, M. A.;. Influence of Degree of Hydrolysis on the Functional Properties of Cowpea Protein Hydrolysates. J. Food Proces.Pres. 2015, 39(6), 2386–2392.
  • Lin, M.; Tay, S. H.; Yang, H.; Yang, B.; Li, H. Replacement of Eggs with Soybean Protein Isolates and Polysaccharides to Prepare Yellow Cakes Suitable for Vegetarians. Food Chem. 2017, 229, 663–673.
  • Singh, A.; Benjakul, S.; Karnjanapratum, S. Use of Ultrasonicated Squid Ovary Powder as a Replacer of Egg White Powder in Cake. J. Food Sci. Technol. 2019, 56(4), 2083–2092.
  • Cardenas-Lopez, J. L.; Haard, N. F. Cysteine Proteinase Activity in Jumbo Squid (Dosidicus Gigas) Hepatopancreas Extracts. J. Food Biochem. 2005, 29(2), 171–186.
  • Hatate, H.; Tanaka, R.; Suzuki, N.; Hama, Y. Comparison of Protease Activity in Liver among Several Species of Squid and Cuttlefish. Fish. Sci. 2000, 66(1), 182–183.
  • Ha, J.-H.; Lee, E.-H.; Kim, J.-S. Refining of Squid Viscera Oil. Appl. Biol. Chem. 1997, 40(4), 294–300.
  • Kim, J.-S.;. Quality Improvement in Fish Burger by Addition of Squid Viscera Oil. App. Biol. Chem. 1997, 40(4), 318–322.
  • Chaitanya Lakshmi, G.;. Food Coloring: The Natural Way. Res. J. Chem. Sci. 2014, 2231(8), 606X.
  • Liu, H.; Luo, P.; Chen, S.; Shang, J. Effects of Squid Ink on Growth Performance, Antioxidant Functions and Immunity in Growing Broiler Chickens. Asian-Australas. J. Ani. Scie. 2011, 24(12), 1752–1756.
  • Takai, M.; Kawai, Y.; Inoeu, N.; Shinano, H. Comparative Studies on Microbiological and Chemical Characteristics Of” Ika-Shiokara Akazukuri”[Squid Meat Salted and Ripened with Liver] And” Ika-Shiokara Kurozukuri”[Squid Meat Salted Ripened with Liver and Ink]. Nippon Suisan Gakkai. 1992, 58(12), 2373–2378.
  • Sae-Leaw, T.; Buamard, N.; Vate, N. K.; Benjakul, S. Effect of Squid Melanin-Free Ink and Pre-Emulsification on Properties and Stability of Surimi Gel Fortified with Seabass Oil during Refrigerated Storage. J. Aqua. Food Prod. Technol. 2018, 27(8), 919–933.
  • Birdsall, T. C.;. Therapeutic Applications of Taurine. Altern. Med. Rev. 1998, 3(2), 128–136.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.