826
Views
13
CrossRef citations to date
0
Altmetric
Review

Locally Available African Complementary Foods: Nutritional Limitations and Processing Technologies to Improve Nutritional Quality—A Review

ORCID Icon & ORCID Icon

References

  • World Health Organization (WHO). Complementary Feeding: Report of Global Consultation, 10-13 December 2001 and Summary of Guiding Principles; World Health Organization: Geneva, 2001; pp p9–20.
  • Federal Ministry of Health (FMH). Saving New-born Lives in Nigeria: New Born Health in the Context of Maternal, New-born and Child Health Strategy, 2nd, Yaliam Press Ltd: Abuja, Nigeria, 2011; PP 11–35.
  • Chane, T.; Bitew, S.; Mekonnen, T.; Fekadu, W. Initiation of Complementary Feeding and Associated Factors among Children of Age 6-23 Months in Sodo Town, Southern Ethiopia: Cross-sectional Study. Pediatr. Rep. 2017, 9, 4. DOI: 10.4081/pr.2017.7240.
  • Siziba, L. P.; Jerling, J.; Hanekom, S. M.; Wentzel-Viljoen, E. Low Rates of Exclusive Breastfeeding are Still Evident in Four South African Provinces. South Afr. J. Clin. Nutr. 2015, 28(4), 170–179. DOI: 10.1080/16070658.2015.11734557.
  • Care, S. P.; Bollard, M. J.; Brady, M. B.; Cawley, M. T.; Delahunt, M. A.; Parade, R.; Flynn, S. M. F.; Flynn, M. Training Programme for Public Health Nurses and Doctors Growth Monitoring Module, October 2012.
  • Akombi, B. J.; Agho, K. E.; Merom, D.; Renzaho, A. M.; Hall, J. J. Child Malnutrition in sub-Saharan Africa: A Meta-analysis of Demographic and Health Surveys (2006-2016). PLoS One. 2017, 12(5), e0177338. DOI: 10.1371/journal.pone.0177338.
  • WHO/UNICEF. Complementary Feeding of Young Children in Developing Countries: A Review of Current Scientific Knowledge. (WHO/NUT/98.1); World Health Organization: Geneva, 1998.
  • United States Department of Agriculture (USDA). Complementary Feeding. U. S. (USDA), Ed. Infant Nutrition and Feeding. Washington, DC: United States Department of Agriculture (USDA), 2009, p101–128.
  • Rao, C. K.; Annadana, S. Nutrient Biofortification of Staple Food Crops: Technologies, Products and Prospects; John Wiley & Sons: Hoboken, NJ, 2017, pp 113–183. DOI: 10.1002/9781119079972.ch3.
  • Nuss, E. T.; Tanumihardjo, S. A. Quality Protein Maize for Africa: Closing the Protein Inadequacy Gap in Vulnerable Populations. Adv Nutr. 2011, 2(3), 217–224. DOI: 10.3945/an.110.000182.
  • Penda, C. I.; Moukoko, E. C.; Nolla, N. P.; Evindi, N. O.; Ndombo, P. K. Malnutrition among HIV Infected Children under 5 Years of Age at the Laquintinie Hospital Douala, Cameroon. Pan Afr. Med. J. 2018, 30, 1–7. DOI: 10.11604/pamj.2018.30.91.15832.
  • Bain, L. E.; Awah, P. K.; Geraldine, N.; Kindong, N. P.; Siga, Y.; Bernard, N.; Tanjeko, A. T. Malnutrition in Sub–Saharan Africa: Burden, Causes and Prospects. Pan Afr. Med. J. 2013, 15, 1. DOI: 10.11604/pamj.2013.15.120.2535.
  • Abeshu, M. A.; Lelisa, A.; Geleta, B. Complementary Feeding: Review of Recommendations, Feeding Practices, and Adequacy of Homemade Complementary Food Preparations in Developing Countries–lessons from Ethiopia. Front Nutr. 2016, 3, 41–49. DOI: 10.3389/fnut.2016.00041.
  • Brown, K.; Dewey, K.; Allen, L.; Saadeh, R. J. Complementary Feeding of Young Children in Developing Countries: A Review of Current Scientific Knowledge; World Health Organization [WHO], Programme of Nutrition: Geneva, 1998.
  • Pan American Health Organization (PAHO)/WHO. Guiding Principles for Complementary Feeding of the Breastfed Child. Division of Health Promotion and Protection/Food and Nutrition Program; Pan American Health Organization: Washington, D.C., USA, 2003.
  • Dewey, K. G.; Brown, K. H. Update on Technical Issues Concerning Complementary Feeding of Young Children in Developing Countries and Implications for Intervention Programs. Food Nutr. Bull. 2003, 24(1), 5–28. DOI: 10.1177/156482650302400102.
  • Dewey, K. G.; Cohen, R. J.; Rivera, L. L.; Canahuati, J.; Brown, K. H. Do Exclusively Breast-fed Infants Require Extra Protein? Pediatr. Res. 1996b, 39(2), 303–315. DOI: 10.1203/00006450-199602000-00019.
  • Demmelmair, H.; Koletzko, B. Lipids in Human Milk. Best Pract Res Clin Endocrinol Metab. 2018, 32(1), 57–68. DOI: 10.1016/j.beem.2017.11.002.
  • Adu‐Afarwuah, S.; Lartey, A.; Dewey, K. G. Meeting Nutritional Needs in the First 1000 Days: A Place for Small‐quantity Lipid‐based Nutrient Supplements. Ann. N Y Acad. Sci. 2017, 1392(1), 18–29. DOI: 10.1111/nyas.13328.
  • Prado, E. L.; Dewey, K. G. Nutrition and Brain Development in Early Life. Nutr. Rev. 2014, 72(4), 267–284. DOI: 10.1111/nure.12102.
  • Schwarzenberg, S. J.; Georgieff, M. K. Advocacy for Improving Nutrition in the First 1000 Days to Support Childhood Development and Adult Health. Academy of Paediatrics Policy Statement. 2018, 141, e20173716. DOI: 10.1542/peds.2017-3716.
  • Allen, L. H.;. Multiple Micronutrients in Pregnancy and Lactation: An Overview. Am. J. Clin. Nutr. 2005, 81, 1206S–1212S. DOI: 10.1093/ajcn/81.5.1206.
  • Dhaked, R.; Gupta, M. C. A Critical Review of Malnutrition and Its Management. Int. J. Med. Health Res. 2016, 2, 43–47.
  • Arsenault, J. E.; Brown, K. H. Effects of Protein or Amino-acid Supplementation on the Physical Growth of Young Children in Low-income Countries. Nutr. Rev. 2017, 75(9), 699–717. DOI: 10.1093/nutrit/nux027.
  • Dewey, K. G.;. Nutrition, Growth, and Complementary Feeding of the Breastfed Infant. Pediatr Clin North Am. 2001, 48(1), 87–104. DOI: 10.1016/S0031-3955(05)70287-X.
  • Hwalla, N.; Al Dhaheri, A.; Radwan, H.; Alfawaz, H.; Fouda, M.; Al‐Daghri, N.; Zaghloul, S.; Blumberg, J. The Prevalence of Micronutrient Deficiencies and Inadequacies in the Middle East and Approaches to Interventions. Nutrients. 2017, 9(3), 229–239. DOI: 10.3390/nu9030229.
  • Dewey, K. G.; Cohen, R. J.; Rollins, N. C. Feeding of Non-breastfed Children from 6 to 24 Months of Age in Developing Countries. Food Nutr. Bull. 2004, 25(4), 377–402. DOI: 10.1177/156482650402500407.
  • Akinsola, A. O.; Onabanjo, O. O.; Idowu, M. A.; Ade-Omowaye, B. I. O. Traditional Complementary Foods: A Critical Review. Global J. Agric. Sci. 2017, 7(9), 226–242.
  • Issaka, A. I.; Agho, K. E.; Page, A.; Burns, P.; Stevens, G. J.; Dibley, M. J. The Problem of Suboptimal Complementary Feeding Practices in West Africa: What Is the Way Forward? Matern Child Nutr. 2015, 11, 53–60. DOI: 10.1111/mcn.12195.
  • Gilani, G. S.; Cockell, K. A.; Sepehr, E. Effects of Anti-nutritional Factors on Protein Digestibility and Amino Acid Availability in Foods. J. AOAC Int. 2005, 88(3), 967–987. DOI: 10.1093/jaoac/88.3.967.
  • Tomé, D.;. Digestibility Issues of Vegetable versus Animal Proteins: Protein and Amino Acid requirements—Functional Aspects. Food Nutr. Bull. 2013, 34(2), 272–274. DOI: 10.1177/156482651303400225.
  • Food and Agriculture Organization (FAO). Roots, Tubers, Plantains and Bananas in Human Nutrition, Vol 24 of Food and Nutrition Series; Food and Agriculture Organization: Rome, Italy, 1990.
  • Galili, G.; Amir, R. Fortifying Plants with the Essential Amino Acids Lysine and Methionine to Improve Nutritional Quality. Plant Biotechnol. J. 2013, 11(2), 211–222. DOI: 10.1111/pbi.12025.
  • Chandrasekara, A.; Josheph Kumar, T. Roots and Tuber Crop as Functional Foods: A Review on Phytochemical Constituents and Their Potential Health Benefits. Int. J Food Sci. 2016, 1–15. DOI: 10.1155/2016/3631647.
  • van Goudoever, J. H. B.; Matthews, D. E. General Concepts of Protein Metabolism; Elsevier: Amsterdam, Netherlands, 2017; pp 436–444.
  • WHO/FAO/UNU (World Health Organization/Food and Agriculture Organization of the United Nations/United Nations University), 2007. Protein and Amino Acid Requirements in Human Nutrition. Report of a Joint WHO/FAO/UNU Expert Consultation, WHO Technical Report Series, No 935. Geneva.
  • Shewry, P. R.;. Improving the Protein Content and Composition of Cereal Grain. J. Cereal Sci. 2007, 46(3), 239–250. DOI: 10.1016/j.jcs.2007.06.006.
  • United States Department of Agriculture (USDA). USDA National Food and Nutrient Analysis Program Wave; USDA: Beltsville, MD, 2008.
  • Jood, S.; Singh, M. Amino Acid Composition and Biological Evaluation of the Protein Quality of High Lysine Barley Genotypes. Plant Food Hum Nutr. 2001, 56(2), 145–155. DOI: 10.1023/A:1011114604008.
  • Montagnac, J. A.; Davis, C. R.; Tanumihardjo, S. A. Nutritional Value of Cassava for Use as a Staple Food and Recent Advances for Improvement. Compr. Rev. Food Sci F. 2009, 8(3), 181–194. DOI: 10.1111/j.1541-4337.2009.00077x.
  • Amadou, I.; Gounga, M. E.; Le, G. W. Millets: Nutritional Composition, Some Benefits and Processing - A Review. Emir J. Food Agr. 2013, 501–508. DOI: 10.9755/ejfa.v25i7.12045.
  • FAO/WHO. Protein Quality Evaluation: Report of the Joint FAO/WHO Expert Consultation, FAO Food and Nutrition Paper 51. Rome: FAO. 1991
  • World Health Organization (WHO). Proceedings of the WHO UNICEF WFP UNHCR Informal Consultation on the Management of Moderate Malnutrition in Under-5 Children. Geneva. Food Nutri. Bull. 2009, 30(3), S464–474.
  • Anyango, J. O.; D Kock, H. L.; Taylor, J. R. Impact of Cowpea Addition on the Protein Digestibility Corrected Amino Acid Score and Other Protein Quality Parameters of Traditional African Foods Made from Non-tannin and Tannin Sorghum. Food Chem. 2011a, 124(3), 775–780. DOI: 10.1016/j.foodchem.2010.06.094.
  • Suri, D. J.; Tano-Debrah, K.; Ghosh, S. A. Optimization of the Nutrient Content and Protein Quality of Cereal—Legume Blends for Use as Complementary Foods in Ghana. Food Nutr. Bull. 2014, 35(3), 372–381. DOI: 10.1177/156482651403500309.
  • Elemo, G. N.; Elemo, B. O.; Okafor, J. N. C. Preparation and Nutritional Composition of a Weaning Food Formulated from Germinated Sorghum (Sorghum Bicolor) and Steamed Cooked Cowpea (Vigna Unguiculata Walp.). Am. J. Food Technol. 2011, 6(5), 413–421. DOI: 10.3923/ajft.2011.413.421.
  • Liu, Q.; Donner, E.; Tarn, R.; Singh, J.; Chung, H. J. Advanced Analytical Techniques to Evaluate the Quality of Potato and Potato Starch; Academic Press: Massachusetts, USA, 2009; pp 221–248.
  • Amagloh, F. K.; Mutukumira, A. N.; Brough, L.; Weber, J. L.; Hardacre, A.; Coad, J. Carbohydrate Composition, Viscosity, Solubility, and Sensory Acceptance of Sweet Potato-and Maize-based Complementary Foods. Food Nutr. Res. 2013, 57(1), 8717–8726. DOI: 10.3402/fnrv57i0.18717.
  • Muhimbula, H. S.; Issa-Zacharia, A. Persistent Child Malnutrition in Tanzania: Risks Associated with Traditional Complementary Foods (A Review). Afr. J. Food Sci. 2010, 4, 679–692.
  • Ogbonnaya, J. A.; Ketik, A. O.; Mojekwu, C. N.; Mojekwu, J. N.; Ogbonnaya, J. A. Energy, Iron and Zinc Densities of Commonly Consumed Traditional Complementary Foods in Nigeria. Br. J. Appl. Sci. Technol. 2012, 2(1), 48–58. DOI: 10.9734/BJAST/2012/553.
  • Mouquet-Rivier, C.; Icard-Vernière, C.; Guyot, J. P.; Hassane Tou, E.; Rochette, I.; Trêche, S. Consumption Pattern, Biochemical Composition and Nutritional Value of Fermented Pearl Millet Gruels in Burkina Faso. Int. J. Food Sci. Nutr. 2008, 59(7–8), 716–729. DOI: 10.1080/09637480802206389.
  • Kulwa, K. B.; Mamiro, P. S.; Kimanya, M. E.; Mziray, R.; Kolsteren, P. W. Feeding Practices and Nutrient Content of Complementary Meals in Rural Central Tanzania: Implications for Dietary Adequacy and Nutritional Status. BMC Pediatr. 2015, 15(1), 171–179. DOI: 10.1186/s12887-015-0489-2.
  • Mosha, A. C.; Svanberg, U. Preparation of Weaning Foods with High Nutrient Density Using Flour of Germinated Cereals. Food Nutr. Bull. 1983, 5(2), 10–14.
  • Millward, D. J.;. Macronutrient Intakes as Determinants of Dietary Protein and Amino Acid Adequacy. J. Nutr. 2004, 134(6), 1588S–1596S. DOI: 10.1093/jn/134.6.1588S.
  • Fewtrell, M.; Bronsky, J.; Campoy, C.; Domellöf, M.; Embleton, N.; Mis, N. F.; Hojsak, I.; Hulst, J. M.; Indrio, F.; Lapillonne, A.; et al. Complementary Feeding: A Position Paper by the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN) Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2017, 64(1), 119–132. DOI: 10.1097/MPG.0000000000001454.
  • Sampallo-Pedroza, R. M.; Cardona-López, L. F.; Ramírez-Gómez, K. E. Description of Oral-motor Development from Birth to Six Years of Age. Rev. Fac. Med. 2014, 62(4), 593–604. DOI: 10.15446/revfacmed.v62n4.45211.
  • Nicklaus, S.; Demonteil, L.; Tournier, C. Modifying the Texture of Foods for Infants and Young Children; Woodhead Publishing: Cambridge, UK, 2015; pp 187–222.
  • Butte, N.; Cobb, K.; Dwyer, J.; Graney, L.; Heird, W.; Rickard, K. The Start Healthy Feeding Guidelines for Infants and Toddlers. J. Am. Diet Assoc. 2004, 104(3), 442–454. DOI: 10.1016/j.jada.2004.01.027.
  • Ross, E.;. Eating Development in Young Children: Understanding the Complex Interplay of Developmental Domains; Woodhead Publishing: Cambridge, UK, 2017; pp 229–262.
  • Wilson, E. M.; Green, J. R. The Development of Jaw Motion for Mastication. Early Hum. Dev. 2009, 85(5), 303–311. DOI: 10.1016/j.earlhumdev.2008.12.003.
  • Cichero, J. A. Y.;. Introducing Solid Foods Using Baby‐led Weaning Vs. Spoon‐feeding: A Focus on Oral Development, Nutrient Intake and Quality of Research to Bring Balance to the Debate. Nutr. Bull. 2016, 41(1), 72–77. DOI: 10.1111/nbu.12191.
  • Ayano, R.; Tamura, F.; Ohtsuka, Y.; Mukai, Y. The Development of Normal Feeding and Swallowing: Showa University Study of the Feeding Function. Int. J. Orofacial Myol. 2000, 26, 24–32.
  • Rivera, J. A.; Hotz, C.; González-Cossío, T.; Neufeld, L.; García-Guerra, A. The Effect of Micronutrient Deficiencies on Child Growth: A Review of Results from Community-based Supplementation Trials. J. Nutr. 2003, 133(11), 4010S–4020S. DOI: 10.1093/jn/133.11.4010S.
  • Gibson, R. S.; Bailey, K. B.; Gibbs, M.; Ferguson, E. L. A Review of Phytate, Iron, Zinc, and Calcium Concentrations in Plant-based Complementary Foods Used in Low-income Countries and Implications for Bioavailability. Food Nutr. Bull. 2010, 31, S134–S146. DOI: 10.1177/15648265100312S206.
  • FAO/INFOODS/IZiNCG. Global Food Composition Database for Phytate Version 1.0 – Phy Food Comp 1.0.; FAO: Rome, Italy, 2018.
  • Lovegrove, A.; Edwards, C. H.; De Noni, I.; Patel, H.; El, S. N.; Grassby, T.; Zielke, C.; Ulmius, M.; Nilsson, L.; Butterworth, P. J.; et al. Role of Polysaccharides in Food, Digestion, and Health. Crit. Rev. Food Sci. Nutr. 2017, 57(2), 237–253. DOI: 10.1080/10408398.2014.939263.
  • Bouchenak, M.; Lamri-Senhadji, M. Nutritional Quality of Legumes, and Their Role in Cardiometabolic Risk Prevention: A Review. J. Med. Food. 2013, 16(3), 185–198. DOI: 10.1089/jmf.2011.0238.
  • Trehan, I.; Benzoni, N. S.; Wang, A. Z.; Bollinger, L. B.; Ngoma, T. N.; Chimimba, U. K.; Stephenson, K. B.; Agapova, S. E.; Maleta, K. M.; Manary, M. J. Common Beans and Cowpeas as Complementary Foods to Reduce Environmental Enteric Dysfunction and Stunting in Malawian Children: Study Protocol for Two Randomized Controlled Trials. Trials. 2015, 16(1), 520–531. DOI: 10.1186/s13063-015-1027-0.
  • Duranti, M.;. Grain Legume Proteins and Nutraceutical Properties. Fitoterapia. 2006, 77(2), 67–82. DOI: 10.1016/j.fitote.2005.11.008.
  • Egounlety, M.;. Production of Legume-fortified Weaning Foods. Food Res. Int. 2002, 35(2–3), 233–237. DOI: 10.1016/S0963-9969(01)00190-9.
  • Kannan, S.; Nielsen, S. S.; Mason, A. C. Protein Digestibility-corrected Amino Acid Scores for Bean and Bean− Rice Infant Weaning Food Products. J. Agric. Food Chem. 2001, 49(10), 5070–5074. DOI: 10.1021/jf010323u.
  • WHO/FAO/UNU (World Health Organization/Food and Agriculture Organization of the United Nations/United Nations University). Protein and Amino Acid Requirements in Human Nutrition. Report of a Joint WHO/FAO/UNU Expert Consultation, WHO Technical Report Series, No 935. Geneva. 2007
  • Ejigui, J.; Savoie, L.; Marin, J.; Desrosiers, T. Improvement of the Nutritional Quality of a Traditional Complementary Porridge Made of Fermented Yellow Maize (Zea Mays): Effect of Maize–legume Combinations and Traditional Processing Methods. Food Nutr. Bull. 2007, 28(1), 23–34. DOI: 10.1177/156482650702800103.
  • Amagloh, F. K.; Chiridza, T.; Lemercier, M. E.; Broomfield, A.; Morel, P. C.; Coad, J. Sweet Potato-and Cereal-based Infant Foods: Protein Quality Assessment, and Effect on Body Composition Using Sprague Dawley Rats as a Model. PLoS One. 2015, 10(4), e0120121–e012033. DOI: 10.1371/journal.pone.0120121.
  • Mensa-Wilmot, Y.; Phillips, R. D.; Hargrove, J. L. Protein Quality Evaluation of Cowpea-based Extrusion Cooked Cereal/legume Weaning Mixtures. Nutri Res. 2001, 21(6), 849–857. DOI: 10.1016/S0271-5317(01)00302-5.
  • Mosha, T. C.; Vincent, M. M. Nutritional Quality, Storage Stability and Acceptability of Home‐processed Ready‐to‐eat Composite Foods for Rehabilitating Undernourished Preschool Children in Low‐income Countries. J. Food Process Preserv. 2005, 29(5‐6), 331–356. DOI: 10.1111/j.1745-4549.2005.00032x.
  • Food and Agricultural Organization (FAO). Energy and Protein Requirements: Report of a Joint FAO/WHO/UNU Expert Consultation; In Energy and Protein Requirements: Report of a Joint FAO/WHO/UNU Expert Consultation; FAO: Rome, Italy, 1985.
  • Muoki, P. N.; de Kock, H. L.; Emmambux, M. N. Effect of Soy Flour Addition and Heat‐processing Method on Nutritional Quality and Consumer Acceptability of Cassava Complementary Porridges. J. Sci. Food Agric. 2012, 92(8), 1771–1779. DOI: 10.1002/jsfa.554.
  • Temba, M. C.; Njobeh, P.; Ndinteh, D.; Kayitesi, E. Nutritional Quality of Maize–groundnut Composite Flours and Resultant Porridges. Nutr Food Sci. 2017, 47(3), 318–331. DOI: 10.1108/NFS-07-2016-0100.
  • Ejigui, J.; Desrosiers, T. Contribution to the Improvement of a Porridge Made with Fermented Maize: Effect of Selected Foods and Lemon on Energy Density, pH, Viscosity and Nutritional Quality. Int. J. Food Sci. Nutr. 2011, 62(5), 484–497. DOI: 10.3109/09637486.2010.547461.
  • Okonjibola, E. T.;. Synthesis of High-quality Complementary Food from Locally Available Crops. Glob. J. Food Sci. Technol. 2017, 5, 251–257.
  • Terefe, N. S.;. Emerging Trends and Opportunities in Food Fermentation; Elsevier publishers: Amsterdam, Netherlands, 2016, pp 1–9. DOI: 10.1016/B978-0-08-100596-5.21087-1.
  • Steinkraus, K. H.;. Classification of Fermented Foods: Worldwide Review of Household Fermentation Techniques. Food Control. 1997, 8(5–6), 311–317. DOI: 10.1016/S0956-7135(97)00050-9.
  • Lücke, F. K.;. Lactic Acid Bacteria Involved in Food Fermentations and Their Present and Future Uses in Food Industry. In Lactic Acid Bacteria, Bozglu, T.F.; Ray, S. Eds.; Springer: Berlin, Heidelberg, 1996; pp 81–99.
  • Muyanja, C. M.; Narvhus, J. A.; Langsrud, T. Organic Acids and Volatile Organic Compounds Produced during Traditional and Starter Culture Fermentation of Bushera, a Ugandan Fermented Cereal Beverage. Food Biotechnol. 2012, 26(1), 1–28. DOI: 10.1080/08905436.2011.617252.
  • Xiao, Z.; Lu, J. R. Generation of Acetoin and Its Derivatives in Foods. J. Agric. Food Chem. 2014, 62(28), 6487–6497. DOI: 10.1021/jf5013902.
  • Bokulich, N. A.; Bamforth, C. W. The Microbiology of Malting and Brewing. Microbiol. Mol. Biol. Rev. 2013, 77(2), 157–172. DOI: 10.1128/MMBR.00060-12.
  • Nout, M. J. R.; Ngoddy, P. O. Technological Aspects of Preparing Affordable Fermented Complementary Foods. Food Control. 1997, 8(5–6), 279–287. DOI: 10.1016/S0956-7135(97)00001-7.
  • Sandhu, K. S.; Punia, S.; Kaur, M. Fermentation of Cereals: A Tool to Enhance Bioactive Compounds; Springer: NY, USA, 2017; pp 155–170.
  • Van Boekel, M.; Fogliano, V.; Pellegrini, N.; Stanton, C.; Scholz, G.; Lalljie, S.; Somoza, V.; Knorr, D.; Jasti, P. R.; Eisenbrand, G. A Review on the Beneficial Aspects of Food Processing. Mol. Nutr. Food Res. 2010, 54(9), 1215–1247. DOI: 10.1002/mnfr.200900608.
  • Mukherjee, R.; Chakraborty, R.; Dutta, A. Role of Fermentation in Improving Nutritional Quality of Soybean Meal—a Review. Asian-Australas J. Anim. Sci. 2016, 29(11), 1523.-1531. DOI: 10.5713/ajas.15.0627.
  • Rasane, P.; Jha, A.; Kumar, A.; Sharma, N. Reduction in Phytic Acid Content and Enhancement of Antioxidant Properties of Nutri-cereals by Processing for Developing a Fermented Baby Food. J. Food Sci. Technol. 2015, 52(6), 3219–3234. DOI: 10.1007/s13197-014-1375-x.
  • Nnam, N. M.;. Chemical, Sensory and Rheological Properties of Porridges from Processed Sorghum (Sorghum Bicolor, Bambara Groundnut (Vigna Subterranea L. Verdc) and Sweet Potato (Ipomoea Batatas) Flours. Plant Foods Hum. 2001, 56(3), 251–264. DOI: 10.1023/A:1011193727687.
  • Amankwah, E. A.; Barimah, J.; Acheampong, R.; Addai, L. O.; Nnaji, C. O. Effect of Fermentation and Malting on the Viscosity of Maize-soyabean Weaning Blends. Pak. J. Nutr. 2009, 8(10), 1671–1675. DOI: 10.3923/pjn.2009.1671.1675.
  • Gernah, D. I.; Ariahu, C. C.; Ingbian, E. K. Effects of Malting and Lactic Fermentation on Some Chemical and Functional Properties of Maize (Zea Mays). Am. J. Food Technol. 2011, 6(5), 404–412. DOI: 10.3923/ajft.2011.404.412.
  • Falmata, A. S.; Modu, S.; Badau, H. D.; Babagana, M.; Bintu, B. P. Formulation and Evaluation of Complementary Weaning Food Prepared from Single and Combined Sprouted/fermented Local Red Sorghum (S. Bicolor) Variety Blended with Cowpea (Vigna Unguiculata) and Groundnut (Arachis Hypogea). Int. J. Biotechnol. Food Sci. 2014, 2(8), 49–55.
  • Ntso, A. S.; Njintang, Y. N.; Mbofung, C. M. Physicochemical and Pasting Properties of Maize Flour as a Function of the Interactive Effect of Natural-fermentation and Roasting. J. Food Meas. Charact. 2017, 11(2), 451–459. DOI: 10.1007/s11694-016-9413-1.
  • Welman, A. D.; Maddox, I. S. Exopolysaccharides from Lactic Acid Bacteria: Perspectives and Challenges. Trends Biotechnol. 2003, 21(6), 269–274. DOI: 10.1016/S0167-7799(03)00107-0.
  • Sundarram, A.; Murthy, T. P. α-amylase Production and Applications: A Review. J Appl Environ. Microbiol. 2014, 2(4), 166–175. DOI: 10.12691/jaem-2-4-10.
  • de Souza, P. M.; Magalhães, P. D. Application of Microbial α-amylase in industry-A Review. Braz. J. Microbiol. 2010, 41(4), 850–861. DOI: 10.1590/S1517-83822010000400004.
  • Onweluzo, J. C.; Nnamuchi, O. M. Production and Evaluation of Porridge-type Breakfast Product from Treculia Africana and Sorghum Bicolor Flours. Pak J. Nutr. 2009, 8(6), 731–736. DOI: 10.3923/pjn.2009.731.736.
  • Muoki, P. N.; (2013). Nutritional, rheological and sensory properties of extruded cassava-soy complementary porridges (Doctoral dissertation, University of Pretoria).
  • Ochanda, S. O.; Onyango, C. A.; Mwasaru, A. M.; Ochieng, J. K.; Mathooko, F. M. Effects of Malting and Fermentation Treatments on Group B-vitamins of Red Sorghum, White Sorghum and Pearl Millets in Kenya. J. Appl. Biosci. 2010, 34, 2128–2134.
  • Mohiedeen, I. E.; Tinay, A. H., .; Elkhalifa, A. E., .; Babiker, E. E., .; Mallasy, L. O. Effect of Fermentation and Cooking on Protein Quality of Maize (Zea Mays Linnaus) Cultivars. Int. J. Food Sci. Technol. 2010, 45(6), 1284–1290. DOI: 10.1111/j.1365-2621.2010.02272.x.
  • Alka, S.; Neelam, Y.; Shruti, S. Effect of Fermentation on Physicochemical Properties and in Vitro Starch and Protein Digestibility of Selected Cereals. Int. J. Agric. Food Sci. 2012, 2, 66–70.
  • Elyas, S. H.; El Tinay, A. H.; Yousif, N. E.; Elsheikh, E. A. Effect of Natural Fermentation on Nutritive Value and in Vitro Protein Digestibility of Pearl Millet. Food Chem. 2002, 78(1), 75–79. DOI: 10.1016/S0308-8146(01)00386-7.
  • Taylor, J.; Taylor, J. R. Alleviation of the Adverse Effect of Cooking on Sorghum Protein Digestibility through Fermentation in Traditional African Porridges. Int. J. Food Sci Technol. 2002, 37(2), 129–137. DOI: 10.1046/j.1365-2621.2002.00549.x.
  • Saleh, A. S.; Zhang, Q.; Chen, J.; Shen, Q. Millet Grains: Nutritional Quality, Processing, and Potential Health Benefits. Compr. Rev. Food Sci. Food Saf. 2013, 12(3), 281–295. DOI: 10.1111/1541-4337.12012.
  • Teucher, B.; Olivares, M.; Cori, H. Enhancers of Iron Absorption: Ascorbic Acid and Other Organic Acids. Int. J. Vitam. Nutri. Res. 2004, 74(6), 403–419. DOI: 10.1024/0300-9831.74.6.403.
  • Hotz, C.; Gibson, R. S. Traditional Food-processing and Preparation Practices to Enhance the Bioavailability of Micronutrients in Plant-based Diets. J. Nutr. 2007, 137(4), 1097–1100. DOI: 10.1093/jn/137.4.1097.
  • Coulibaly, A.; Kouakou, B.; Chen, J. Phytic Acid in Cereal Grains: Structure, Healthy or Harmful Ways to Reduce Phytic Acid in Cereal Grains and Their Effects on Nutritional Quality. Am. J. Plant Nutr. Fertiliz. Technol. 2011, 1(1), 1–22. DOI: 10.3923/ajpnft.2011.1.22.
  • Nkhata, S. G.; Ayua, E.; Kamau, E. H.; Shingiro, J. B. Fermentation and Germination Improve Nutritional Value of Cereals and Legumes through Activation of Endogenous Enzymes. Food Sci. Nutr. 2018, 6(8), 2446–2458. DOI: 10.1002/fsn3.846.
  • Fernández García, M.; Hudson, J. A.; Korpela, R.; González de Los Reyes-gavilán, C. Impact on Human Health of Microorganisms Present in Fermented Dairy Products: An Overview. Biomed. Res. Int. 2015, 1–13. DOI: 10.1155/2015/412714.
  • Hübner, F.; Arendt, E. K. Germination of Cereal Grains as a Way to Improve the Nutritional Value: A Review. Crit. Rev. Food Sci. Nutr. 2013, 53(8), 853–861. DOI: 10.1080/10408398.2011.562060.
  • Urbano, G.; Aranda, P.; Vılchez, A.; Aranda, C.; Cabrera, L.; Porres, J. M.; López-Jurado, M. Effects of Germination on the Composition and Nutritive Value of Proteins in Pisum Sativum. L. Food Chem. 2005, 93(4), 671–679. DOI: 10.1016/j.foodchem.2004.10.045.
  • Mensah, P.; Tomkins, A. Household-level Technologies to Improve the Availability and Preparation of Adequate and Safe Complementary Foods. Food Nutr. Bull. 2003, 24(1), 104–125. DOI: 10.1177/156482650302400106.
  • Ocheme, O. B.; Adedeji, O. E.; Lawal, G.; Zakari, U. M. Effect of Germination on Functional Properties and Degree of Starch Gelatinization of Sorghum Flour. J Food Res. 2015, 4(2), 59. DOI: 10.5539/jfr.v4n2p159.
  • Bohoua, G. L.; Yelakan, C. K. Effect of Germinated Sorghum Flour on the Performance of Laying Hens (Warren). Int. J. Poult Sci. 2007, 6(2), 122–124. DOI: 10.3923/ijps.2007.122.124.
  • Abbas, T. E.; Musharaf, N. A. The Effects of Germination of Low-Tannin Sorghum Grains on Its. Pak. J. Nutr. 2008, 7(3), 470–474. DOI: 10.3923/pjn.2008.470.474.
  • Hu, S.; Dong, J.; Fan, W.; Yu, J.; Yin, H.; Huang, S.; Liu, J.; Huang, S.; Zhang, X. The Influence of Proteolytic and Cytolytic Enzymes on Starch Degradation during Mashing. J. I Brewing. 2014, 120(4), 379–384. DOI: 10.1002/jib.172.
  • Izydorczyk, M. S.; Edney, M. J. Malting: Chemistry of malting. In Encyclopedia of Food Sciences and Nutrition, 2nd, Caballero, B. Ed; Academic Press: Cambridge, MA, 2003, p. 3677–3685.
  • Crow, R. R.; Kumar, S.; Varela, M. F. Maltose Chemistry and Biochemistry; Royal Society of Chemistry: London, UK, 2012.
  • Harris, G.;. The Enzyme Content and Enzymic Transformation of Malt; Academic Press: Massachusetts, USA, 2013; pp 583–694.
  • Correia, I.; Nunes, A.; Barros, A. S.; Delgadillo, I. Protein Profile and Malt Activity during Sorghum Germination. J. Sci. Food Agri. 2008, 88(15), 2598–2605. DOI: 10.1002/jsfa.3348.
  • Hnilička, F.; Hejtmánková, A.; ORSáK, M.; Hniličková, H. Influence of Germination Temperatures on the Chemical Composition of Wheat (Triticum Aestivum L.) Seeds. Czech J. Food Sci. 2017, 35(2), 143–148. DOI: 10.17221/391/2016-CJFS.
  • Ikujenlola, V. A.; Oguntuase, S. O.; Vincent, O. S. Physico-chemical Properties of Complementary Food from Malted Quality Protein Maize (Zea Mays L.) And Defatted Fluted Pumpkin Flour (Telfairia Occidentalis Hook, F). Food Publ. Health. 2013, 3(6), 323–328. DOI: 10.5923/j.fph.20130306.09.
  • Addis, G.; Singh, V.; Pratape, V.; Srivastava, A.; Gowda, L.; Asha, M.; Bhattacharya, S. Development and Functional Properties of Low-cost Complementary Food. Afr. J. Food Sci. 2013, 7(9), 274–284. DOI: 10.5897/AJFS12.143.
  • Arora, S.; Jood, S.; Khetarpaul, N. Effect of Germination and Probiotic Fermentation on Nutrient Profile of Pearl Millet-based Food Blends. Br. Food J. 2011, 113(4), 470–481. DOI: 10.1108/00070701111123952.
  • Arora, S.; Jood, S.; Khetarpaul, N. Effect of Germination and Probiotic Fermentation on Nutrient Composition of Barley-based Food Mixtures. Food Chem. 2010, 119(2), 779–784. DOI: 10.1016/j.foodchem.2009.07.035.
  • Tizazu, S.; Urga, K.; Abuye, C.; Retta, N. Improvement of Energy and Nutrient Density of Sorghum Based Complementary Foods Using Germination. Afr. J. Food, Agric Nutr. Dev. 2010, 10(8), 2927–2942.
  • Afify, A. E.; El-Beltagi, H. S.; El-Salam, S. M.; Omran, A. A. Protein Solubility, Digestibility and Fractionation after Germination of Sorghum Varieties. PLoS One. 2012, 7(2), e31154.-e31159. DOI: 10.1371/journal.pone.0031154.
  • Bazaz, R.; Baba, W. N.; Masoodi, F. A. Development and Quality Evaluation of Hypoallergic Complementary Foods from Rice Incorporated with Sprouted Green Gram Flour. Cogent Food Agric. 2016, 2(1), 1154714–1154730. DOI: 10.1080/23311932.2016.1154714.
  • Onyango, C.; Henle, T.; Hofmann, T.; Bley, T. Production of High Energy Density Fermented Uji Using a Commercial Alpha-amylase or by Single-screw Extrusion. LWT-Food Sci. Technol. 2004b, 37(4), 401–407. DOI: 10.1016/j.lwt.2003.10.010.
  • Symes, S.; Goldsmith, P.; Microbiological Safety, H. H. Food Handling Practices of Seed Sprout Products in the Australian State of Victoria. J. Food Prot. 2015, 78(7), 1387–1391. DOI: 10.4315/0362-028X.JFP-14-566.
  • Awopetu, O. O.; Aderibigbe, A. F. Development of a Manually Operated Multi-Purpose Roasting Machine. Br. J. Sci. Technol. 2017, 20, 1–7. DOI: 10.9734/BJAST/2017/31679.
  • Parker, J. K.;. Thermal Generation or Aroma; Woodhead Publishing: Cambridge, UK, 2015; pp 151–185.
  • Ma, Z.; Boye, J. I.; Simpson, B. K.; Prasher, S. O.; Monpetit, D.; Malcolmson, L. Thermal Processing Effects on the Functional Properties and Microstructure of Lentil, Chickpea, and Pea Flours. Food Res. Int. 2011, 44(8), 2534–2544. DOI: 10.1016/j.foodres.2010.12.017.
  • Wang, N.; Hatcher, D. W.; Toews, R.; Gawalko, E. J. Influence of Cooking and Dehulling on Nutritional Composition of Several Varieties of Lentils (Lens Culinaris). LWT—Food Sci. Technol. 2009, 42(4), 842–848. DOI: 10.1016/j.lwt.2008.10.007.
  • Oboh, G.; Ademiluyi, A. O.; Akindahunsi, A. A. The Effect of Roasting on the Nutritional and Antioxidant Properties of Yellow and White Maize Varieties. Int. J. Food Sci. Technol. 2010, 45(6), 1236–1242. DOI: 10.1111/j.1365-2621.2010.02263.x.
  • Nkundabombi, M. G.; Nakimbugwe, D.; Muyonga, J. H. Effect of Processing Methods on Nutritional, Sensory, and Physicochemical Characteristics of Biofortified Bean Flour. Food Sci. Nutr. 2016, 4(3), 384–397. DOI: 10.1002/fsn3.301.
  • Agume, A.; Njintang, N.; Mbofung, C. Effect of Soaking and Roasting on the Physicochemical and Pasting Properties of Soybean Flour. Foods. 2017, 6(2), 12–21. DOI: 10.3390/foods6020012.
  • Temesgen, M.;. Nutritional Status of Ethiopian Weaning and Complementary Foods: A Review. Sci. Rep. 2013, 2(2), 1–9. DOI: 10.4172/scientificreports.621.
  • Alam, M. S.; Pathania, S.; Sharma, A. Optimization of the Extrusion Process for Development of High Fibre Soybean-rice Ready-to-eat Snacks Using Carrot Pomace and Cauliflower Trimmings. LWT—Food Sci. Technol. 2016, 74, 135–144. DOI: 10.1016/j.lwt.2016.07.031.
  • Navale, S. A.; Swami, S. B.; Thakor, N. J. Extrusion Cooking Technology for Foods: A Review. J. Ready to Eat Food. 2015, 2(3), 66–80.
  • Fallahi, P.; Muthukumarappan, K.; Rosentrater, K. A. Functional and Structural Properties of Corn, Potato, and Cassava Starches as Affected by a Single-Screw Extruder. Int. J. Food Prop. 2016, 19(4), 768–788. DOI: 10.1080/10942912.2015.1042112.
  • Mesquita, C. D.; Leonel, M.; Mischan, M. M. Effects of Processing on Physical Properties of Extruded Snacks with Blends of Sour Cassava Starch and Flaxseed Flour. Food Sci. Technol. 2013, 33(3), 404–410. DOI: 10.1590/S0101-20612013005000073.
  • Singh, J.; Dartois, A.; Kaur, L. Starch Digestibility in Food Matrix: A Review. Trends Food Sci. Technol. 2010, 21, 168–180. DOI: 10.1016/j.tifs.2009.12.001.
  • Jenkins, P. J.; Donald, A. M. Gelatinisation of Starch: A Combined SAXS/WAXS/DSC and SANS Study. Carbohydr. Res. 1998, 308(1–2), 133–147. DOI: 10.1016/S0008-6215(98)00079-2.
  • Tester, R. F.; Karkalas, J.; Qi, X. Starch—composition, Fine Structure and Architecture. J. Cereal Sci. 2004, 39(2), 151–165. DOI: 10.1016/j.jcs.2003.12.001.
  • Li, M.; Hasjim, J.; Xie, F.; Halley, P. J.; Gilbert, R. G. Shear Degradation of Molecular, Crystalline, and Granular Structures of Starch during Extrusion. Starch‐Stärke. 2014, 66(7–8), 595–605. DOI: 10.1002/star.201300201.
  • Liu, W. C.; Halley, P. J.; Gilbert, R. G. Mechanism of Degradation of Starch, a Highly Branched Polymer, during Extrusion. Macromolecules. 2010, 43(6), 2855–2864. DOI: 10.1021/ma100067x.
  • Tiwari, A.; Jha, S. K. Extrusion Cooking Technology: Principal Mechanism and Effect on Direct Expanded snacks–An Overview. Int. J. Food Stud. 2017, 6(1), 113–128. DOI: 10.7455/ijfs/6.1.2017.a10.
  • Gbenyi, D.; Nkama, I.; Badau, M.; Idakwo, P. Effect of Extrusion Conditions on Nutrient Status of Ready-to-eat Breakfast Cereals from Sorghum-cowpea Extrudates. J. Food Process Bev. 2016, 4(2), 8–15.
  • Ghumman, A.; Kaur, A.; Singh, N.; Singh, B. Effect of Feed Moisture and Extrusion Temperature on Protein Digestibility and Extrusion Behaviour of Lentil and Horsegram. LWT-Food Sci. Technol. 2016, 70, 349–357. DOI: 10.1016/j.lwt.2016.02.032.
  • Bastos, D. M.; Monaro, É.; Siguemoto, É.; Séfora, M. Maillard Reaction Products in Processed Food: Pros and Cons; IntechOpen: London, UK, 2012; pp 1–23.
  • Llopart, E. E.; Drago, S. R.; De Greef, D. M.; Torres, R. L.; González, R. J. Effects of Extrusion Conditions on Physical and Nutritional Properties of Extruded Whole Grain Red Sorghum (Sorghum Spp). Int. J. Food Sci. Nutr. 2014, 65(1), 34–41. DOI: 10.3109/09637486.2013.836737.
  • Iwe, M. O.; Van Zuilichem, D. J.; Stolp, W.; Ngoddy, P. O. Effect of Extrusion Cooking of Soy–sweet Potato Mixtures on Available Lysine Content and Browning Index of Extrudates. J. Food Eng. 2004, 62(2), 143–150. DOI: 10.1016/S0260-8774(03)00212-7.
  • Gulati, P.; Li, A.; Holding, D.; Santra, D.; Zhang, Y.; Rose, D. J. Heating Reduces Proso Millet Protein Digestibility via Formation of Hydrophobic Aggregates. J. Agric. Food Chem. 2017, 65(9), 1952–1959. DOI: 10.1021/acs.jafc.6b05574.
  • Camire, M. E.;. Extrusion and Nutritional Quality; Woodhead Publishing: Cambridge, UK, 2001.
  • Patil, S.; Brennan, M.; Mason, S.; Brennan, C. The Effects of Fortification of Legumes and Extrusion on the Protein Digestibility of Wheat-based Snack. Foods. 2016, 5(2), 26. DOI: 10.3390/foods5020026.
  • de Oliveira, F. C.; Coimbra, J. S.; de Oliveira, E. B.; Zuñiga, A. D. G.; Rojas, E. E. G. Food Protein-polysaccharide Conjugates Obtained via the Maillard Reaction: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56(7), 1108–1125. DOI: 10.1080/10408398.2012.755669.
  • Moughan, P. J.; Rutherfurd, S. M. Available Lysine in Foods: A Brief Historical Overview. J. AOAC Int. 2008, 91(4), 901–906. DOI: 10.1093/jaoac/91.4.901.
  • Omosebi, M. O.; Osundahunsi, O. F.; Fagbemi, T. N. Effect of Extrusion on Protein Quality, Anti-nutritional Factors, and Digestibility of Complementary Diet from Quality Protein Maize and Soybean Protein Concentrate. J. Food Biochem. 2018, 12508–12518. DOI: 10.1111/jfbc.12508.
  • Omwamba, M.; Mahungu, S. M. Development of a Protein-rich Ready-to-eat Extruded Snack from a Composite Blend of Rice, Sorghum and Soybean Flour. Food Nutr. Sci. 2014, 5(14), 1309–1317. DOI: 10.4236/fns.2014.514142.
  • Anuonye, J. C.; Jigam, A. A.; Ndaceko, G. M. Effects of Extrusion-cooking on the Nutrient and Anti-nutrient Composition of Pigeon Pea and Unripe Plantain Blends. J. Appl. Pharm. Sci. 2012, 2(5), 158–162. DOI: 10.7324/JAPS.2012.2533.
  • Saalia, F. K.; Phillips, R. D. Degradation of Aflatoxins by Extrusion Cooking: Effects on Nutritional Quality of Extrudates. LWT-Food Sci. Technol. 2011, 44(6), 1496–1501. DOI: 10.1016/j.lwt.2011.01.021.
  • Anuonye, J. C.; Onuh, J. O.; Egwim, E.; Adeyemo, S. O. Nutrient and Antinutrient Composition of Extruded Acha/soybean Blends. J. Food Process. Preserv. 2010, 34, 680–691. DOI: 10.1111/j.1745-4549.2009.00425.x.
  • Camire, M. E.; King, C. C. Protein and Fibre Supplementation Effects on Extruded Cornmeal Snack Quality. J. Food Sci. 1991, 56(3), 760–763. DOI: 10.1111/j.1365-2621.1991.tb05376.x.
  • Singh, S.; Gamlath, S.; Wakeling, L. Nutritional Aspects of Food Extrusion: A Review. Int. J. Food Sci. Technol. 2007, 42(8), 916–929. DOI: 10.1111/j.1365-2621.2006.01309.x.
  • Aryee, A. N. A.; Agyei, D.; Udenigwe, C. C. Impact of Processing on the Chemistry and Functionality of Food Proteins; Woodhead Publishing: Cambridge, UK, 2018; pp 27–45.
  • Embaby, H. E. S.;. Effect of Heat Treatments on Certain Antinutrients and in Vitro Protein Digestibility of Peanut and Sesame Seeds. Food Sci. Technol. Res. 2010, 17(1), 31–38. DOI: 10.3136/fstr.17.31.
  • Hernández-Nava, R. G.; Bello-Pérez, L. A.; San Martín-Martínez, E.; Hernández-Sánchez, H.; Mora-Escobedo, R. Effect of Extrusion Cooking on the Functional Properties and Starch Components of Lentil/banana Blends: Response Surface Analysis. Revista Mexicana de Ingeniería Química. 2011, 10, 3.
  • Pérez, A. A.; Drago, S. R.; Carrara, C. R.; De Greef, D. M.; Torres, R. L.; González, R. J. Extrusion Cooking of a Maize/soybean Mixture: Factors Affecting Expanded Product Characteristics and Flour Dispersion Viscosity. J. Food Eng. 2008, 87(3), 333–340. DOI: 10.1016/j.jfoodeng.2007.12.008.
  • Bukusuba, J.; Muranga, F. I.; Nampala, P. Effect of Processing Technique on Energy Density and Viscosity of Cooking Banana: Implication for Weaning Foods in Uganda. Int. J. Food Sci. Technol. 2008, 43(8), 1424–1429. DOI: 10.1111/j.1365-2621.2007.01670.x.
  • Camire, M. E.;. Chemical Changes during Extrusion Cooking; Plenum Publishing Corp: New York, USA, 1998; pp 109–121.
  • Elobeid, T.; Berghofer, E.; Kerkadi, A. Production and Determination of Bioavailable Iron in Sorghum and White Bean Noodles. Curr. Res. Nutr. Food Sci. 2014, 2(1), 20–25. DOI: 10.12944/CRNFSJ.2.1.03.
  • Egal, A.; Oldewage-Theron, W. Extruded Food Products and Their Potential Impact on Food and Nutrition Security. South Afr. J. Clin. Nutr. 2019, 3, 1–2. DOI: 10.1080/16070658.2019.1583043.
  • Owino, V. O.; Sinkala, M.; Amadi, B.; Tomkins, A. M.; Filteau, S. M. Acceptability, Storage Stability and Costing of α‐amylase‐treated Maize–beans–groundnuts–bambaranuts Complementary Blend. J. Science Food Agric. 2007, 87(6), 1021–1029. DOI: 10.1002/jsfa.2799.
  • Uvere, P. O.; Ngoddy, P. O.; Nnanyelugo, D. O. Effect of Amylase-rich Flour (ARF) Treatment on the Viscosity of Fermented Complementary Foods. Food Nutri. Bull. 2002, 23(2), 190–195. DOI: 10.1177/156482650202300208.
  • Rahman, M. M.; Mitra, A. K.; Mahalanabis, D.; Wahed, M. A.; Khatun, M.; Majid, N. Absorption of Nutrients from an Energy-dense Diet Liquefied with Amylase from Germinated Wheat in Infants with Acute Diarrhoea. J. Pediatr. Gastroenterol Nutr. 1997, 24(2), 119–123. DOI: 10.1097/00005176-199702000-00001.
  • Moursi, M.; Mbemba, F.; Trèche, S. Does the Consumption of Amylase-containing Gruels Impact on the Energy Intake and Growth of Congolese Infants? Public Health Nutr. 2003, 6(3), 249–257. DOI: 10.1079/PHN2002428.
  • Van Hoan, N.; Mouquet‐Rivier, C.; Eymard‐Duvernay, S.; Treche, S. Effect of Extrusion Cooking and Amylase Addition to Gruels to Increase Energy Density and Nutrient Intakes by Vietnamese Infants. Asia Pac. J. Clin. Nutr. 2010, 19(3), 308‐315.
  • Phu, P. V.; Hoan, N. V.; Salvignol, B.; Treche, S.; Wieringa, F. T.; Dijkhuizen, M. A.; Khan, N. C.; Tuong, P. D.; Schwartz, H.; Berger, J. Six-Month Intervention with Two Different Types of Micronutrient-Fortified Complementary Foods Had Distinct Short-and Long-Term Effects on Linear and Ponderal Growth of Vietnamese Infants. J. Nutr. 2012, 142(9), 1735–1740. DOI:10.3945/jn.111.154211.
  • Kampstra, N. A.; Van Hoan, N.; Koenders, D. J.; Schoop, R.; Broersen, B. C.; Mouquet‐Rivier, C.; Traoré, T.; Bruins, M. J.; de Pee, S. Energy and Nutrient Intake Increased by 47–67% When Amylase Was Added to Fortified Blended Foods—a Study among 12 to 35‐month‐old Burkinabe Children. Matern Child Nutr. 2018, 14(1), e12459.- 12471. DOI: 10.1111/mcn.12459.
  • Trèche, S.; Mbemba, F.; Dop, M. C. Effect of the Use of Amylase-containing Gruel on Energy Intake and Growth of Congolese Infants between 4 and 8 Months of Age: Poster Presented at the 6th International Congress of Nutrition. 27 July – 1st August. Montreal: Canada, 1997.
  • Wahed, M. A.; Mahalanabis, D.; Begum, M.; Rahman, M.; Islam, M. S. Energy-dense Weaning Foods Liquefied by Germinated-wheat Amylase: Effects on Viscosity, Osmolality, Macronutrients, and Bacterial Growth. Food Nutr. Bull. 1994, 15(3), 1–6. DOI: 10.1177/156482659401500307.
  • Hossain, M. I.; Wahed, M. A.; Ahmed, S. Increased Food Intake after the Addition of Amylase-rich Flour to Supplementary Food for Malnourished Children in Rural Communities of Bangladesh. Food Nutr. Bull. 2005, 26(4), 323–329. DOI: 10.1177/156482650502600401.
  • Chavan, R. S.; Chavan, S. R. Microwave Baking in Food Industry: A Review. Int. J. Dairy Sci. 2010, 5(3), 113–127. DOI: 10.3923/ijds.2010.113.127.
  • Kalla, A. M.; Devaraju, R. Microwave Energy and Its Application in Food Industry: A Reveiw. Asian J. Dairy Food Res. 2017, 36(1), 37–44. DOI: 10.18805/ajdfr.v0iOF.7303.
  • Ibrahim, G. E.; El-Ghorab, A. H.; El-Massry, K. F.; Osman, F. Effect of Microwave Heating on Flavour Generation and Food Processing; IntechOpen: London, UK, 2012; pp 35–51.
  • Anwar, J.; Shafique, U.; Rehman, R.; Salman, M.; Dar, A.; Anzano, J. M.; Ashraf, U.; Ashraf, S. Microwave Chemistry: Effect of Ions on Dielectric Heating in Microwave Ovens. Arab J. Chem. 2015, 8(1), 100–104. DOI: 10.1016/j.arabjc.2011.01.014.
  • Oomah, B. D.; Kotzeva, L.; Allen, M.; Bassinello, P. Z. Microwave and Micronization Treatments Affect Dehulling Characteristics and Bioactive Contents of Dry Beans (Phaseolus Vulgaris L.). J. Sci. Food Agric. 2014, 94(7), 1349–1358. DOI: 10.1002/jsfa.6418.
  • Hefnawy, T. H.;. Effect of Processing Methods on Nutritional Composition and Anti-nutritional Factors in Lentils (Lens Culinaris). Ann. Agric. Sci. 2011, 56(2), 57–61. DOI: 10.1016/j.aoas.2011.07.001.
  • Marconi, E.; Ruggeri, S.; Cappelloni, M.; Leonardi, D.; Carnovale, E. Physicochemical, Nutritional, and Microstructural Characteristics of Chickpeas (Cicer Arietinum L.) And Common Beans (Phaseolus Vulgaris L.) Following Microwave Cooking. J. Agric. Food Chem. 2000, 48(12), 5986–5994. DOI: 10.1021/jf0008083.
  • Divekar, M. T.; Karunakaran, C.; Lahlali, R.; Kumar, S.; Chelladurai, V.; Liu, X.; Borondics, F.; Shanmugasundaram, S.; Jayas, D. S. Effect of Microwave Treatment on the Cooking and Macronutrient Qualities of Pulses. Int. J. Food Prop. 2017, 20(2), 409–422. DOI: 10.1080/10942912.2016.1163578.
  • Arab, E. A.; Helmy, I. M. F.; Bareh, G. F. Nutritional Evaluation and Functional Properties of Chickpea (Cicer Arietinum L.) Flour and the Improvement of Spaghetti Produced from Its. J. Am Sci. 2010, 6(10), 1055–1072.
  • Gurumoorthi, P.; Janardhanan, K.; Kalavathy, G. Improving Nutritional Value of Velvet Bean, Mucuna Pruriens (L.) DC. Var. Utilis (Wall. Ex. Wight) LH Bailey, an Under-utilized Pulse, Using Microwave Technology. Indian J. Tradit. Know. 2013, 12, 677–681.
  • Alajaji, S. A.; El-Adawy, T. A. Nutritional Composition of Chickpea (Cicer Arietinum L.) As Affected by Microwave Cooking and Other Traditional Cooking Methods. J. Food Compos Anal. 2006, 19(8), 806–812. DOI: 10.1016/j.jfca.2006.03.015.
  • Negi, A.; Boora, P.; Khetarpaul, N. Effect of Microwave Cooking on the Starch and Protein Digestibility of Some Newly Released Moth Bean (Phaseolus Aconitifolius Jacq.) Cultivars. J. Food Compos Anal. 2001, 14(5), 541–546. DOI: 10.1006/jfca.2001.1013.
  • Wandsnider, L.;. The Roasted and the Boiled: Food Composition and Heat Treatment with Special Emphasis on Pit-hearth Cooking. J. Anthropol Archaeol. 1997, 16(1), 1–48. DOI: 10.1006/jaar.1997.0303.
  • Shimelis, E. A.; Rakshit, S. Effect of Microwave Heating on Solubility and Digestibility of Proteins and Reduction of Antinutrients of Selected Common Bean (Phaseolus Vulgaris L.) Varieties Grown in Ethiopia. Ital J. Food Sci. 2005, 17(4), 407–418.
  • Hernandez-Infante, M.; Sousa, V.; Montalvo, I.; Tena, E. Impact of Microwave Heating on Hemagglutinins, Trypsin Inhibitors and Protein Quality of Selected Legume Seeds. Plant Food Hum Nutri. 1998, 52(3), 199–208. DOI: 10.1023/A:1008033610737.
  • Rastogi, N. K.;. Recent Trends and Developments in Infrared Heating in Food Processing. Crit. Rev. Food Sci. Nutr. 2012, 52(9), 737–760. DOI: 10.1080/10408398.2010.508138.
  • Cenkowski, S.; Hong, J. T.; Scanlon, M. G.; Arntfield, S. D. Development of a Mathematical Model for High Intensity Infrared Processing (Micronization) of Peas. Trans. ASAE. 2003, 46(3), 705–717. DOI: 10.13031/2013.13571.
  • Sharma, G. K.;. Micronization. DRDO Science Spectrum. 2009, 3, 169–171.
  • Krishnamurthy, K.; Khurana, H. K.; Soojin, J.; Irudayaraj, J.; Demirci, A. Infrared Heating in Food Processing: An Overview. Compr Rev Food Sci Food Saf. 2008, 7(1), 2–13. DOI: 10.1111/j.1541-4337.2007.00024.x.
  • Picot, A.; Lacroix, C. Effects of Micronization on Viability and Thermotolerance of Probiotic Freeze-dried Cultures. Int. Dairy J. 2003, 13(6), 455–462. DOI: 10.1016/S0958-6946(03)00050-5.
  • Bellido, G.; Arntfield, S. D.; Cenkowski, S.; Scanlon, M. Effects of Micronization Pretreatments on the Physicochemical Properties of Navy and Black Beans (Phaseolus Vulgaris L.). LWT-Food Sci. Technol. 2006, 39(7), 779–787. DOI: 10.1016/j.lwt.2005.05.009.
  • Scanlon, M. G.; Malcolmson, L. J.; Arntfield, S. D.; Watts, B.; Ryland, D.; Prokopowich, D. J. Micronization Pre-treatments for Reducing the Cooking Time of Lentils. J. Sci. Food Agric. 1998, 76(1), 23–30. DOI: 10.1002/(SICI)1097-0010(199801)76:1<23::AID-JSFA913>3.0.CO;2-9.
  • Kayitesi, E.; Duodu, K. G.; Minnaar, A.; de Kock, H. L. Effect of Micronisation of Pre‐conditioned Cowpeas on Cooking Time and Sensory Properties of Cooked Cowpeas. J. Sci. Food Agric. 2013, 93(4), 838–845. DOI: 10.1002/jsfa.5805.
  • Mwangwela, A. M.; Waniska, R. D.; Minnaar, A. Hydrothermal Treatments of Two Cowpea (Vigna Unguiculata L. Walp) Varieties: Effect of Micronisation on Physicochemical and Structural Characteristics. J. Sci. Food Agric. 2006, 86(1), 35–45. DOI: 10.1002/jsfa.2275.
  • Ogundele, O. M.; Emmambux, M. N. Effect of Infrared Heating of Pre-soaked Whole and Dehulled Bambara Groundnut (Vigna Subterranea) Seeds on Their Cooking Characteristics and Microstructure. LWT—Food Sci. Technol. 2018, 97, 581–587. DOI: 10.1016/j.lwt.2018.07.059.
  • Cenkowski, S.; Sosulski, F. W. Cooking Characteristics of Split Peas Treated with Infrared Heat. Trans. ASAE. 1998, 41(3), 715–726. DOI: 10.13031/2013.17198.
  • Emami, S.; Meda, V.; Pickard, M. D.; Tyler, R. T. Impact of Micronization on Rapidly Digestible, Slowly Digestible, and Resistant Starch Concentrations in Normal, High-amylose, and Waxy Barley. J. Agric. Food Chem. 2010, 58(17), 9793–9799. DOI: 10.1021/jf101702e.
  • Ogundele, O. M.; Minnaar, A.; Emmambux, M. N. Effects of Micronization and Dehulling of Pre-soaked Bambara Groundnut Seeds on Microstructure and Functionality of the Resulting Flours. Food Chem. 2017, 214, 655–663. DOI: 10.1016/j.foodchem.2016.07.022.
  • Mwangwela, A. M.; Waniska, R. D.; McDonough, C.; Minnaar, A. Cowpea Cooking Characteristics as Affected by Micronisation Temperature: A Study of the Physicochemical and Functional Properties of Starch. J. Sci. Food Agric. 2007a, 87(3), 399–410. DOI: 10.1002/jsfa.2711.
  • Vilakati, N.; Taylor, J. R.; MacIntyre, U.; Kruger, J. Effects of Processing and Addition of a Cowpea Leaf Relish on the Iron and Zinc Nutritive Value of a Ready-to-eat Sorghum-cowpea Porridge Aimed at Young Children. LWT—Food Sci. Technol. 2016, 73, 467–472. DOI: 10.1016/j.lwt.2016.06.022.
  • Mouquet-Rivier, C.; Trèche, S. Viscosity of Gruels for Infants: A Comparison of Measurement Procedures. Int J. Food Sci. Nutr. 2001, 52(5), 389–400. DOI: 10.1080/09637480120078276.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.