612
Views
5
CrossRef citations to date
0
Altmetric
Review

Hesperidin-An Emerging Bioactive Compound against Metabolic Diseases and Its Potential Biosynthesis Pathway in Microorganism.

ORCID Icon, ORCID Icon, & ORCID Icon

References

  • Roberts, C. K.; Hevener, A. L.; Barnard, R. J. Metabolic Syndrome and Insulin Resistance: Underlying Causes and Modification by Exercise Training. Compr. Physiol. 2013, 3, 1–58. DOI: 10.1002/cphy.c110062.
  • Alberti, G.; Zimmet, P.; Shaw, J.; Grundy, S. M. The IDF Consensus Worldwide Definition of the Metabolic Syndrome. Brussels: Int. Diabetes Fed. 2006, 23, 469–480.
  • Mozumdar, A.; Liguori, G. Persistent Increase of Prevalence of Metabolic Syndrome among U.S. Adults: NHANES III to NHANES 1999-2006. Diabetes Care. 2011, 34, 216–219. DOI: 10.2337/dc10-0879.
  • Beltran-Sanchez, H.; Harhay, M. O.; Harhay, M. M.; McElligott, S. Prevalence and Trends of Metabolic Syndrome in the Adult U.S. Population, 1999-2010. J. Am. Coll. Cardiol. 2013, 62, 697–703. DOI: 10.1016/j.jacc.2013.05.064.
  • Sliem, H. A.; Ahmed, S.; Nemr, N.; El-Sherif, I. Metabolic Syndrome in the Middle East. Indian J. Endocrinol. Metab. 2012, 16, 67–71. DOI: 10.4103/2230-8210.91193.
  • Osei-Yeboah, J.; Owiredu, W. K. B. A.; Norgbe, G. K.; Yao Lokpo, S.; Gyamfi, J.; Alote Allotey, E.;, et al. The Prevalence of Metabolic Syndrome and Its Components among People with Type 2 Diabetes in the Ho Municipality, Ghana: A Cross-Sectional Study. Int. J. Chronic. Dis. 2017, 2017, 8. doi:10.1155/2017/8765804.
  • Nolan, P. B.; Carrick-Ranson, G.; Stinear, J. W.; Reading, S. A.; Dalleck, L. C. Prevalence of Metabolic Syndrome and Metabolic Syndrome Components in Young Adults: A Pooled Analysis. Prev. Med. Rep. 2017, 7, 211–215. DOI: 10.1016/j.pmedr.2017.07.004.
  • Koskinen, J.; Magnussen, C. G.; Sinaiko, A.; Woo, J.; Urbina, E.; Jacobs, D. R.; Steinberger, J.; Prineas, R.; Sabin, M. A.; Burns, T.;, et al. Childhood Age and Associations between Childhood Metabolic Syndrome and Adult Risk for Metabolic Syndrome, Type 2 Diabetes Mellitus and Carotid Intima Media Thickness: The International Childhood Cardiovascular Cohort Consortium. J. Am. Heart Assoc. 2017, 6, e005632. DOI: 10.1161/JAHA.117.005632.
  • Guo, H.; Gao, X.; Ma, R.; Liu, J.; Ding, Y.; Zhang, M.; Zhang, J.; Mu, L.; He, J.; Yan, Y.;, et al. Prevalence of Metabolic Syndrome and Its Associated Factors among Multi-ethnic Adults in Rural Areas in Xinjiang, China. Sci. Rep. 2017, 7, 017–17870. DOI: 10.1038/s41598-017-17870-5.
  • Veeresham, C.;. Natural Products Derived from Plants as a Source of Drugs. J. Adv. Pharm. Technol. Res. 2012, 3, 200–201. DOI: 10.4103/2231-4040.104709.
  • Sahoo, N.; Manchikanti, P.; Dey, S. Herbal Drugs: Standards and Regulation. Fitoterapia. 2010, 81, 462–471. DOI: 10.1016/j.fitote.2010.02.001.
  • Gowd, V.; Karim, N.; Xie, L.; Shishir, M. R. I.; Xu, Y.; Chen, W. In Vitro Study of Bioaccessibility, Antioxidant, and α-glucosidase Inhibitory Effect of pelargonidin-3-O-glucoside after Interacting with Beta-lactoglobulin and Chitosan/pectin. Int. J. Biol. Macromol. 2020, 154, 380–389. DOI: 10.1016/j.ijbiomac.2020.03.126.
  • Gowd, V.; Bao, T.; Wang, L.; Huang, Y.; Chen, S.; Zheng, X.; Cui, S.; Chen, W.;, et al. Antioxidant and Antidiabetic Activity of Blackberry after Gastrointestinal Digestion and Human Gut Microbiota Fermentation. Food Chem. 2018, 269, 618–627. DOI: 10.1016/j.foodchem.2018.07.020.
  • Su, H.; Li, Y.; Hu, D.; Xie, L.; Ke, H.; Zheng, X.; Chen, W.;, et al. Procyanidin B2 Ameliorates Free Fatty Acids-induced Hepatic Steatosis through Regulating TFEB-mediated Lysosomal Pathway and Redox State. Free Radic. Biol. Med. 2018, 126, 269–286. DOI: 10.1016/j.freeradbiomed.2018.08.024.
  • Hu, D.; Xu, Y.; Xie, J.; Sun, C.; Zheng, X.; Chen, W. Systematic Evaluation of Phenolic Compounds and Protective Capacity of a New Mulberry Cultivar J33 against Palmitic Acid-induced Lipotoxicity Using a Simulated Digestion Method. Food Chem. 2018, 258, 43–50. DOI: 10.1016/j.foodchem.2018.03.049.
  • Xu, Y.; Xie, L.; Xie, J.; Liu, Y.; Chen, W. Pelargonidin-3-O-rutinoside as a Novel α-glucosidase Inhibitor for Improving Postprandial Hyperglycemia. Chem. Comm. 2019, 55, 39–42. DOI: 10.1039/C8CC07985D.
  • Bao, T.; Xu, Y.; Gowd, V.; Zhao, J.; Xie, J.; Liang, W.; Chen, W.;, et al. Systematic Study on Phytochemicals and Antioxidant Activity of Some New and Common Mulberry Cultivars in China. J. Funct. Foods 2016, 25, 537–547. DOI: 10.1016/j.jff.2016.07.001.
  • Zamora-Ros, R.; Rabassa, M.; Cherubini, A.; Urpí-Sardà, M.; Bandinelli, S.; Ferrucci, L.; Andres-Lacueva, C.;, et al. High Concentrations of a Urinary Biomarker of Polyphenol Intake are Associated with Decreased Mortality in Older Adults. J. Nutr. 2013, 143, 1445–1450. DOI: 10.3945/jn.113.177121.
  • Martin, K. R.; Appel, C. L. Polyphenols as Dietary Supplements: A Double-edged Sword. Nutr. Diet Suppl. 2010, 2, 1–12. DOI: 10.2147/NDS.S6422.
  • Nogata, Y.; Sakamoto, K.; Shiratsuchi, H.; Ishii, T.; Yano, M.; Ohta, H. Flavonoid Composition of Fruit Tissues of Citrus Species. Biosci. Biotechnol. Biochem. 2006, 70, 178–192. DOI: 10.1271/bbb.70.178.
  • Iwashina, T.;. The Structure and Distribution of the Flavonoids in Plants. J. Plant Res. 2000, 113, 287–299. DOI: 10.1007/PL00013940.
  • Panche, A. N.; Diwan, A. D.; Chandra, S. R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 5, e47. DOI: 10.1017/jns.2016.41.
  • Shishir, M. R. I.; Karim, N.; Gowd, V.; Xie, J.; Zheng, X.; Chen, W. Pectin-chitosan Conjugated Nanoliposome as a Promising Delivery System for Neohesperidin: Characterization, Release Behavior, Cellular Uptake, and Antioxidant Property. Food Hydrocoll. 2019, 95, 432–444. DOI: 10.1016/j.foodhyd.2019.04.059.
  • Chen, W.; Shen, Y.; Su, H.; Zheng, X. Hispidin Derived from Phellinus Linteus Affords Protection against Acrylamide-induced Oxidative Stress in Caco-2 Cells. Chem. Biol. Interact. 2014, 219, 83–89. DOI: 10.1016/j.cbi.2014.05.010.
  • Li, Y.; Bao, T.; Chen, W. Comparison of the Protective Effect of Black and White Mulberry against Ethyl Carbamate-induced Cytotoxicity and Oxidative Damage. Food Chem. 2018, 243, 65–73. DOI: 10.1016/j.foodchem.2017.09.106.
  • Chen, W.; Su, H.; Xu, Y.; Jin, C. In Vitro Gastrointestinal Digestion Promotes the Protective Effect of Blackberry Extract against Acrylamide-induced Oxidative Stress. Sci. Rep. 2017, 7, 40514. DOI: 10.1038/srep40514.
  • Xu, Y.; Li, Y.; Bao, T.; Zheng, X.; Chen, W.; Wang, J. A Recyclable Protein Resource Derived from Cauliflower By-products: Potential Biological Activities of Protein Hydrolysates. Food Chem. 2017, 221, 114–122. DOI: 10.1016/j.foodchem.2016.10.053.
  • Chen, W.; Su, H.; Xu, Y.; Bao, T.; Zheng, X. Protective Effect of Wild Raspberry (Rubus Hirsutus Thunb.) Extract against Acrylamide-induced Oxidative Damage Is Potentiated after Simulated Gastrointestinal Digestion. Food Chem. 2016, 196, 943–952. DOI: 10.1016/j.foodchem.2015.10.024.
  • Xie, L.; Su, H.; Sun, C.; Zheng, X.; Chen, W. Recent Advances in Understanding the Anti-obesity Activity of Anthocyanins and Their Biosynthesis in Microorganisms. Trends Food Sci. Tech. 2018, 72, 13–24. DOI: 10.1016/j.tifs.2017.12.002.
  • Alvarez-Alvarez, R.; Botas, A.; Albillos, S. M.; Rumbero, A.; Martin, J. F.; Liras, P. Molecular Genetics of Naringenin Biosynthesis, a Typical Plant Secondary Metabolite Produced by Streptomyces Clavuligerus. Microb. Cell Fact. 2015, 14, 015–0373. DOI: 10.1186/s12934-015-0373-7.
  • Wu, J.; Zhou, T.; Du, G.; Zhou, J.; Chen, J. Modular Optimization of Heterologous Pathways for De Novo Synthesis of (2s)-naringenin in Escherichia Coli. Plos One. 2014, 9. DOI: 10.1371/journal.pone.0101492.
  • Koopman, F.; Beekwilder, J.; Crimi, B.; van Houwelingen, A.; Hall, R. D.; Bosch, D.; van Maris, A. J.; Pronk, J. T.; Daran, J.-M.;, et al. De Novo Production of the Flavonoid Naringenin in Engineered Saccharomyces Cerevisiae. Microb. Cell Fact. 2012, 11, 1475–2859. DOI: 10.1186/1475-2859-11-155.
  • Ganesan, V.; Li, Z.; Wang, X.; Zhang, H. Heterologous Biosynthesis of Natural Product Naringenin by Co-culture Engineering. Synth. Syst. Biotechnol. 2017, 2, 236–242. DOI: 10.1016/j.synbio.2017.08.003.
  • Lyu, X.; Ng, K. R.; Lee, J. L.; Mark, R.; Chen, W. N. Enhancement of Naringenin Biosynthesis from Tyrosine by Metabolic Engineering of Saccharomyces Cerevisiae. J. Agric. Food Chem. 2017, 65, 6638–6646. DOI: 10.1021/acs.jafc.7b02507.
  • Moriguchi, T.; Kita, M.; Tomono, Y.; Endo-Inagaki, T.; Omura, M. Gene Expression in Flavonoid Biosynthesis: Correlation with Flavonoid Accumulation in Developing Citrus Fruit. Physiol. Plantarum 2001, 111, 66–74. DOI: 10.1034/j.1399-3054.2001.1110109.x.
  • Del Bano, M. J.; Lorente, J.; Castillo, J.; Benavente-Garcia, O.; Marin, M. P.; Del Rio, J. A.; Ortuño, A.; Ibarra, I.;, et al. Flavonoid Distribution during the Development of Leaves, Flowers, Stems, and Roots of Rosmarinus Officinalis. Postulation of a Biosynthetic Pathway. J. Agric. Food Chem. 2004, 52, 4987–4992. DOI: 10.1021/jf040078p.
  • Bar-Peled, M.; Lewinsohn, E.; Fluhr, R.; Gressel, J. UDP-rhamnose:flavanone-7-O-glucoside-2ʹ’-O-rhamnosyltransferase. Purification and Characterization of an Enzyme Catalyzing the Production of Bitter Compounds in Citrus. J. Biol. Chem. 1991, 266, 20953–20959.
  • Lewinsohn, E.; Britsch, L.; Mazur, Y.; Gressel, J. Flavanone Glycoside Biosynthesis in Citrus: Chalcone Synthase, UDP-glucose: Flavanone-7-O-glucosyl-transferase And-rhamnosyl-transferase Activities in Cell-free Extracts. Plant Physiol. 1989, 91, 1323–1328. DOI: 10.1104/pp.91.4.1323.
  • Garg, A.; Garg, S.; Zaneveld, L. J.; Singla, A. K. Chemistry and Pharmacology of the Citrus Bioflavonoid Hesperidin. Phytother Res. 2001, 15, 655–669. DOI: 10.1002/ptr.1074.
  • Manthey, J. A.; Grohmann, K. Flavonoids of the Orange Subfamily Aurantioideae. Adv. Exp. Med. Biol. 1998, 439, 85–101. DOI: 10.1007/978-1-4615-5335-9_7.
  • Tomás-Navarro, M.; Vallejo, F.; Tomás-Barberán, F. A. Chapter 40 - Bioavailability and Metabolism of Citrus Fruit Beverage Flavanones in Humans. in Polyphenols in Human Health and Disease; Academic press: San Diego, 2014; 537–551. DOI:10.1016/B978-0-12-398456-2.00040-2.
  • Aghel, N.; Ramezani, Z.; Beiranvand, S. Hesperidin from Citrus Sinensis Cultivated in Dezful, Iran. Pak. J. Biol. Sci. 2008, 11, 2451–2453. DOI: 10.3923/pjbs.2008.2451.2453.
  • Chanet, A.; Milenkovic, D.; Manach, C.; Mazur, A.; Morand, C. Citrus Flavanones: What Is Their Role in Cardiovascular Protection? J. Agric. Food Chem. 2012, 60, 8809–8822. DOI: 10.1021/jf300669s.
  • Knekt, P.; Kumpulainen, J.; Jarvinen, R.; Rissanen, H.; Heliovaara, M.; Reunanen, A.;, et al. Flavonoid Intake and Risk of Chronic Diseases. Am. J. Clin. Nutr. 2002, 76, 560–568. DOI: 10.1093/ajcn/76.3.560.
  • Li, Y. M.; Li, X. M.; Li, G. M.; Du, W. C.; Zhang, J.; Li, W. X.; Xu, J.; Hu, M.; Zhu, Z.;, et al. In Vivo Pharmacokinetics of Hesperidin are Affected by Treatment with Glucosidase-like BglA Protein Isolated from Yeasts. J. Agric. Food Chem. 2008, 56, 5550–5557. DOI: 10.1021/jf800105c.
  • Jin, M. J.; Kim, U.; Kim, I. S.; Kim, Y.; Kim, D. H.; Han, S. B.; Kim, D. H.; Kwon, O.-S.; Yoo, H. H.;, et al. Effects of Gut Microflora on Pharmacokinetics of Hesperidin: A Study on Non-antibiotic and Pseudo-germ-free Rats. J. Toxicol. Environ. Health A 2010, 73, 1441–1450. DOI: 10.1080/15287394.2010.511549.
  • Manach, C.; Morand, C.; Gil-Izquierdo, A.; Bouteloup-Demange, C.; Remesy, C. Bioavailability in Humans of the Flavanones Hesperidin and Narirutin after the Ingestion of Two Doses of Orange Juice. Eur. J. Clin. Nutr. 2003, 57, 235–242. DOI: 10.1038/sj.ejcn.1601547.
  • Thilakarathna, S. H.; Rupasinghe, H. P. V. Flavonoid Bioavailability and Attempts for Bioavailability Enhancement. Nutrients. 2013, 5, 3367–3387. DOI: 10.3390/nu5093367.
  • Nielsen, I. L.; Chee, W. S.; Poulsen, L.; Offord-Cavin, E.; Rasmussen, S. E.; Frederiksen, H.;, et al. Bioavailability Is Improved by Enzymatic Modification of the Citrus Flavonoid Hesperidin in Humans: A Randomized, Double-blind, Crossover Trial. J. Nutr. 2006, 136, 404–408. DOI: 10.1093/jn/136.2.404.
  • Kanaze, F. I.; Bounartzi, M. I.; Georgarakis, M.; Niopas, I. Pharmacokinetics of the Citrus Flavanone Aglycones Hesperetin and Naringenin after Single Oral Administration in Human Subjects. Eur. J. Clin. Nutr. 2007, 61, 472–477. DOI: 10.1038/sj.ejcn.1602543.
  • Boonpawa, R.; Spenkelink, A.; Punt, A.; Rietjens, I. Physiologically Based Kinetic Modeling of Hesperidin Metabolism and Its Use to Predict in Vivo Effective Doses in Humans. Mol. Nutr. Food Res. 2017, 61, 21. DOI: 10.1002/mnfr.201600894.
  • Pereira-Caro, G.; Polyviou, T.; Ludwig, I. A.; Nastase, A. M.; Moreno-Rojas, J. M.; Garcia, A. L.;, et al. Bioavailability of Orange Juice (Poly)phenols: The Impact of Short-term Cessation of Training by Male Endurance Athletes. Am. J. Clin. Nutr. 2017, 106, 791–800. DOI: 10.3945/ajcn.116.149898.
  • Zeng, X.; Su, W.; Bai, Y.; Chen, T.; Yan, Z.; Wang, J.;, et al. Urinary Metabolite Profiling of Flavonoids in Chinese Volunteers after Consumption of Orange Juice by UFLC-Q-TOF-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1, 1061–1062. DOI: 10.1016/j.jchromb.2017.07.015.
  • Morand, C.; Dubray, C.; Milenkovic, D.; Lioger, D.; Martin, J. F.; Scalbert, A.; Mazur, A.;, et al. Hesperidin Contributes to the Vascular Protective Effects of Orange Juice: A Randomized Crossover Study in Healthy Volunteers. Am. J. Clin. Nutr. 2011, 93, 73–80. DOI: 10.3945/ajcn.110.004945.
  • Perche, O.; Vergnaud-Gauduchon, J.; Morand, C.; Dubray, C.; Mazur, A.; Vasson, M. P. Orange Juice and Its Major Polyphenol Hesperidin Consumption Do Not Induce Immunomodulation in Healthy Well-nourished Humans. Clin. Nutr. 2014, 33, 130–135. DOI: 10.1016/j.clnu.2013.03.012.
  • Haidari, F.; Heybar, H.; Jalali, M. T.; Ahmadi Engali, K.; Helli, B.; Shirbeigi, E. Hesperidin Supplementation Modulates Inflammatory Responses following Myocardial Infarction. J. Am. Coll. Nutr. 2015, 34, 205–211. DOI: 10.1080/07315724.2014.891269.
  • Giannini, I.; Amato, A.; Basso, L.; Tricomi, N.; Marranci, M.; Pecorella, G.; Tafuri, S.; Pennisi, D.; Altomare, D. F.;, et al. Flavonoids Mixture (Diosmin, Troxerutin, Hesperidin) in the Treatment of Acute Hemorrhoidal Disease: A Prospective, Randomized, Triple-blind, Controlled Trial. Tech. Coloproctol. 2015, 19, 339–345. doi:10.1007/s10151-015-1302-9.
  • Martin, B. R.; McCabe, G. P.; McCabe, L.; Jackson, G. S.; Horcajada, M. N.; Offord-Cavin, E.;, et al. Effect of Hesperidin with and without a Calcium (Calcilock) Supplement on Bone Health in Postmenopausal Women. J. Clin. Endocrinol. Metab. 2016, 101, 923–927. DOI: 10.1210/jc.2015-3767.
  • Salden, B. N.; Troost, F. J.; de Groot, E.; Stevens, Y. R.; Garces-Rimon, M.; Possemiers, S.; Winkens, B.; Masclee, A. A.;, et al. Randomized Clinical Trial on the Efficacy of Hesperidin 2S on Validated Cardiovascular Biomarkers in Healthy Overweight Individuals. Am. J. Clin. Nutr. 2016, 104, 1523–1533. DOI: 10.3945/ajcn.116.13696.
  • Homayouni, F.; Haidari, F.; Hedayati, M.; Zakerkish, M.; Ahmadi, K. Hesperidin Supplementation Alleviates Oxidative Dna Damage and Lipid Peroxidation in Type 2 Diabetes: A Randomized Double-blind Placebo-controlled Clinical Trial. Phytother Res. 2017, 31, 1539–1545. DOI: 10.1002/ptr.5881.
  • Yamada, M.; Tanabe, F.; Arai, N.; Mitsuzumi, H.; Miwa, Y.; Kubota, M.;, et al. Bioavailability of Glucosyl Hesperidin in Rats. Biosci. Biotechnol. Biochem. 2006, 70, 1386–1394. DOI: 10.1271/bbb.50657.
  • Li, C.; Zug, C.; Qu, H.; Schluesener, H.; Zhang, Z. Hesperidin Ameliorates Behavioral Impairments and Neuropathology of Transgenic APP/PS1 Mice. Behav. Brain Res. 2015, 281, 32–42. DOI: 10.1016/j.bbr.2014.12.012.
  • Kim, H. Y.; Park, M.; Kim, K.; Lee, Y. M.; Rhyu, M. R. Hesperetin Stimulates Cholecystokinin Secretion in Enteroendocrine Stc-1 Cells. Biomol. Ther. 2013, 21, 121–125. DOI: 10.4062/biomolther.2012.077.
  • Sugasawa, N.; Katagi, A.; Kurobe, H.; Nakayama, T.; Nishio, C.; Takumi, H.; Higashiguchi, F.; Aihara, K.-I.; Shimabukuro, M.; Sata, M.;, et al. Inhibition of Atherosclerotic Plaque Development by Oral Administration of Alpha-glucosyl Hesperidin and Water-dispersible Hesperetin in Apolipoprotein E Knockout Mice. J. Am. Coll. Nutr. 2019, 38, 15–22. DOI: 10.1080/07315724.2018.1468831.
  • Kakadiya, J.; Mulani, H.; Shah, N. Protective Effect of Hesperidin on Cardiovascular Complication in Experimentally Induced Myocardial Infarction in Diabetes in Rats. J. Basic Clin. Pharm. 2010, 1, 85.
  • Agrawal, Y. O.; Sharma, P. K.; Shrivastava, B.; Arya, D. S.; Goyal, S. N. Hesperidin Blunts Streptozotocin-isoproternol Induced Myocardial Toxicity in Rats by Altering of PPAR-γ Receptor. Chem. Biol. Interact. 2014, 219, 211–220. DOI: 10.1016/j.cbi.2014.06.010.
  • Parmar, M. S.; Syed, I.; Gray, J. P.; Ray, S. D. Curcumin, Hesperidin, and Rutin Selectively Interfere with Apoptosis Signaling and Attenuate Streptozotocin-induced Oxidative Stress-mediated Hyperglycemia. Curr. Neurovasc. Res. 2015, 12, 363–374. DOI: 10.2174/1567202612666150812150249.
  • Gowd, V.; Jia, Z.; Chen, W. Anthocyanins as Promising Molecules and Dietary Bioactive Components against Diabetes – A Review of Recent Advances. Trends Food Sci. Technol. 2017, 68, 1–13. DOI: 10.1016/j.tifs.2017.07.015.
  • Liu, W. Y.; Liou, S. S.; Hong, T. Y.; Liu, I. M. Protective Effects of Hesperidin (Citrus Flavonone) on High Glucose Induced Oxidative Stress and Apoptosis in a Cellular Model for Diabetic Retinopathy. Nutrients. 2017, 9, 1312. DOI: 10.3390/nu9121312.
  • Zareei, S.; Boojar, M. M. A.; Amanlou, M. Inhibition of Liver Alanine Aminotransferase and Aspartate Aminotransferase by Hesperidin and Its Aglycone Hesperetin: An in Vitro and in Silico Study. Life Sci. 2017, 178, 49–55. DOI: 10.1016/j.lfs.2017.04.001.
  • Homayouni, F.; Haidari, F.; Hedayati, M.; Zakerkish, M.; Ahmadi, K. Blood Pressure Lowering and Anti-inflammatory Effects of Hesperidin in Type 2 Diabetes; A Randomized Double-blind Controlled Clinical Trial. Phytother Res. 2018, 32, 1073–1079. DOI: 10.1002/ptr.6046.
  • Dokumacioglu, E.; Iskender, H.; Musmul, A. Effect of Hesperidin Treatment on alpha-Klotho/FGF-23 Pathway in Rats with Experimentally-induced Diabetes. Biomed. Pharmacother. 2019, 109, 1206–1210. DOI: 10.1016/j.biopha.2018.10.192.
  • Bok, S. H.; Lee, S. H.; Park, Y. B.; Bae, K. H.; Son, K. H.; Jeong, T. S.; Choi, M. S. Plasma and Hepatic Cholesterol and Hepatic Activities of 3-hydroxy-3-methyl-glutaryl-CoA Reductase and Acyl CoA: Cholesterol Transferase are Lower in Rats Fed Citrus Peel Extract or a Mixture of Citrus Bioflavonoids. J. Nutr. 1999, 129, 1182–1185. DOI: 10.1093/jn/129.6.1182.
  • Mahmoud, A. M.; Ashour, M. B.; Abdel-Moneim, A.; Ahmed, O. M. Hesperidin and Naringin Attenuate Hyperglycemia-mediated Oxidative Stress and Proinflammatory Cytokine Production in High Fat Fed/streptozotocin-induced Type 2 Diabetic Rats. J. Diabetes Complications. 2012, 26, 483–490. DOI: 10.1016/j.jdiacomp.2012.06.001.
  • Agrawal, Y. O.; Sharma, P. K.; Shrivastava, B.; Ojha, S.; Upadhya, H. M.; Arya, D. S.; Goyal, S. N.;, et al. Hesperidin Produces Cardioprotective Activity via ppar-γ Pathway in Ischemic Heart Disease Model in Diabetic Rats. Plos One 2014, 9, e111212. DOI: 10.1371/journal.pone.0111212.
  • Shi, X.; Liao, S.; Mi, H.; Guo, C.; Qi, D.; Li, F.; Zhang, C.; Yang, Z.;, et al. Hesperidin Prevents Retinal and Plasma Abnormalities in Streptozotocin-induced Diabetic Rats. Molecules 2012, 17, 12868–12881. DOI: 10.3390/molecules171112868.
  • Kumar, B.; Gupta, S. K.; Srinivasan, B. P.; Nag, T. C.; Srivastava, S.; Saxena, R.; Jha, K. A.;, et al. Hesperetin Rescues Retinal Oxidative Stress, Neuroinflammation and Apoptosis in Diabetic Rats. Microvasc Res. 2013, 87, 65–74. DOI: 10.1016/j.mvr.2013.01.002.
  • Chen, M. C.; Ye, Y. Y.; Ji, G.; Liu, J. W. Hesperidin Upregulates Heme Oxygenase-1 to Attenuate Hydrogen Peroxide-induced Cell Damage in Hepatic L02 Cells. J. Agric. Food Chem. 2010, 58, 3330–3335. DOI: 10.1021/jf904549s.
  • Ansar, S.; Abudawood, M.; Alaraj, A. S. A.; Hamed, S. S. Hesperidin Alleviates Zinc Oxide Nanoparticle Induced Hepatotoxicity and Oxidative Stress. BMC Pharmacol. Toxicol. 2018, 19, 6. DOI: 10.1186/s40360-018-0256-8.
  • Wang, J.; Zhu, H.; Yang, Z.; Liu, Z. Antioxidative Effects of Hesperetin against Lead Acetate-induced Oxidative Stress in Rats. Indian J. Pharmacol. 2013, 45, 395–398. DOI: 10.4103/0253-7613.115015.
  • Pari, L.; Karthikeyan, A.; Karthika, P.; Rathinam, A. Protective Effects of Hesperidin on Oxidative Stress, Dyslipidaemia and Histological Changes in Iron-induced Hepatic and Renal Toxicity in Rats. Toxicol. Rep. 2014, 2, 46–55. DOI: 10.1016/j.toxrep.2014.11.003.
  • Turk, E.; Kandemir, F. M.; Yildirim, S.; Caglayan, C.; Kucukler, S.; Kuzu, M. Protective Effect of Hesperidin on Sodium Arsenite-induced Nephrotoxicity and Hepatotoxicity in Rats. Biol. Trace Elem. Res. 2019, 189, 95–108. DOI: 10.1007/s12011-018-1443-6.
  • Kumar, M.; Dahiya, V.; Kasala, E. R.; Bodduluru, L. N.; Lahkar, M. The Renoprotective Activity of Hesperetin in Cisplatin Induced Nephrotoxicity in Rats: Molecular and Biochemical Evidence. Biomed. Pharmacother. 2017, 89, 1207–1215. DOI: 10.1016/j.biopha.2017.03.008.
  • El-Sisi, A. E. E.; Sokar, S. S.; Shebl, A. M.; Mohamed, D. Z. Antifibrotic Effect of Diethylcarbamazine Combined with Hesperidin against Ethanol Induced Liver Fibrosis in Rats. Biomed. Pharmacother. 2017, 89, 1196–1206. DOI: 10.1016/j.biopha.2017.03.013.
  • Wang, H. W.; Shi, L.; Xu, Y. P.; Qin, X. Y.; Wang, Q. Z. Hesperetin Alleviates Renal Interstitial Fibrosis by Inhibiting Tubular Epithelial-mesenchymal Transition in Vivo and in Vitro. Exp. Ther. Med. 2017, 14, 3713–3719. DOI: 10.3892/etm.2017.4968.
  • Hanedan, B.; Ozkaraca, M.; Kirbas, A.; Kandemir, F. M.; Aktas, M. S.; Kilic, K.; Comakli, S.; Kucukler, S.; Bilgili, A.;, et al. Investigation of the Effects of Hesperidin and Chrysin on Renal Injury Induced by Colistin in Rats. Biomed. Pharmacother. 2018, 108, 1607–1616. DOI: 10.1016/j.biopha.2018.10.001.
  • Ikemura, M.; Sasaki, Y.; Giddings, J. C.; Yamamoto, J. Preventive Effects of Hesperidin, Glucosyl Hesperidin and Naringin on Hypertension and Cerebral Thrombosis in Stroke-prone Spontaneously Hypertensive Rats. Phytother Res. 2012, 26, 1272–1277. DOI: 10.1002/ptr.3724.
  • Wunpathe, C.; Potue, P.; Maneesai, P.; Bunbupha, S.; Prachaney, P.; Kukongviriyapan, U.; Kukongviriyapan, V.; Pakdeechote, P.;, et al. Hesperidin Suppresses Renin-angiotensin System Mediated NOX2 Over-expression and Sympathoexcitation in 2K-1C Hypertensive Rats. Am. J. Chin. Med. 2018, 46, 751–767. DOI: 10.1142/S0192415X18500398.
  • Maneesai, P.; Bunbupha, S.; Potue, P.; Berkban, T.; Kukongviriyapan, U.; Kukongviriyapan, V.; Prachaney, P.; Pakdeechote, P.;, et al. Hesperidin Prevents Nitric Oxide Deficiency-induced Cardiovascular Remodeling in Rats via Suppressing TGF-1 and MMPs Protein Expression. Nutrients 2018, 10, 15. DOI: 10.3390/nu10101549.
  • Li, X.; Hu, X.; Wang, J.; Xu, W.; Yi, C.; Ma, R.; Jiang, H.;, et al. Short-term Hesperidin Pretreatment Attenuates Rat Myocardial Ischemia/reperfusion Injury by Inhibiting High Mobility Group Box 1 Protein Expression via the PI3K/Akt Pathway. Cell. Physiol. Biochem. 2016, 39, 1850–1862. DOI: 10.1159/000447884.
  • Chen, M.; Gu, H.; Ye, Y.; Lin, B.; Sun, L.; Deng, W.; Zhang, J.; Liu, J.;, et al. Protective Effects of Hesperidin against Oxidative Stress of Tert-butyl Hydroperoxide in Human Hepatocytes. Food Chem. Toxicol. 2010, 48, 2980–2987. DOI: 10.1016/j.fct.2010.07.037.
  • Wang, B.; Li, L.; Jin, P.; Li, M.; Li, J. Hesperetin Protects against Inflammatory Response and Cardiac Fibrosis in Postmyocardial Infarction Mice by Inhibiting Nuclear Factor kappaB Signaling Pathway. Exp. Ther. Med. 2017, 14, 2255–2260. DOI: 10.3892/etm.2017.4729.
  • Bhargava, P.; Verma, V. K.; Malik, S.; Khan, S. I.; Bhatia, J.; Arya, D. S. Hesperidin Regresses Cardiac Hypertrophy by Virtue of PPAR-gamma Agonistic, Anti-inflammatory, Antiapoptotic, and Antioxidant Properties. J. Biochem. Mol. Toxicol. 2019, 33, e22283. DOI: 10.1002/jbt.22283.
  • Huang, S. M.; Tsai, S. Y.; Lin, J. A.; Wu, C. H.; Yen, G. C. Cytoprotective Effects of Hesperetin and Hesperidin against Amyloid Beta-induced Impairment of Glucose Transport through Downregulation of Neuronal Autophagy. Mol. Nutr. Food Res. 2012, 56, 601–609. DOI: 10.1002/mnfr.201100682.
  • Menze, E. T.; Tadros, M. G.; Abdel-Tawab, A. M.; Khalifa, A. E. Potential Neuroprotective Effects of Hesperidin on 3-nitropropionic Acid-induced Neurotoxicity in Rats. Neurotoxicology. 2012, 33, 1265–1275. DOI: 10.1016/j.neuro.2012.07.007.
  • Li, C. F.; Chen, S. M.; Chen, X. M.; Mu, R. H.; Wang, S. S.; Geng, D.;, et al. ERK-dependent Brain-derived Neurotrophic Factor Regulation by Hesperidin in Mice Exposed to Chronic Mild Stress. Brain Res. Bull. 2016, 124, 40–47. DOI: 10.1016/j.brainresbull.2016.03.016.
  • Justin-Thenmozhi, A.; Dhivya Bharathi, M.; Kiruthika, R.; Manivasagam, T.; Borah, A.; Essa, M. M. Attenuation of Aluminum Chloride-induced Neuroinflammation and Caspase Activation through the AKT/GSK-3β Pathway by Hesperidin in Wistar Rats. Neurotox. Res. 2018, 34, 463–476. DOI: 10.1007/s12640-018-9904-4.
  • Ansar, S.; Abudawood, M.; Hamed, S. S.; Aleem, M. M. Exposure to Zinc Oxide Nanoparticles Induces Neurotoxicity and Proinflammatory Response: Amelioration by Hesperidin. Biol. Trace Elem. Res. 2017, 175, 360–366. DOI: 10.1007/s12011-016-0770-8.
  • Abdel-Raheem, I. T.; Abdel-Ghany, A. A. Hesperidin Alleviates Doxorubicin-induced Cardiotoxicity in Rats. J. Egypt Natl. Cancer Inst. 2009, 21, 175–184.
  • Pari, L.; Shagirtha, K. Hesperetin Protects against Oxidative Stress Related Hepatic Dysfunction by Cadmium in Rats. Exp. Toxicol. Pathol. 2012, 64, 513–520. DOI: 10.1016/j.etp.2010.11.007.
  • Omar, H. A.; Mohamed, W. R.; Arafa El, S. A.; Shehata, B. A.; El Sherbiny, G. A.; Arab, H. H.; Elgendy, A. N. A. M.;, et al. Hesperidin Alleviates Cisplatin-induced Hepatotoxicity in Rats without Inhibiting Its Antitumor Activity. Pharmacol. Rep. 2016, 68, 349–356. DOI: 10.1016/j.pharep.2015.09.007.
  • Oguzturk, H.; Ciftci, O.; Cetin, A.; Kaya, K.; Disli, O. M.; Turtay, M. G.; Gürbüz, S.; Basak, N.;, et al. Beneficial Effects of Hesperidin following Cis. Diamminedichloroplatinum. Induced Damage in Heart of Rats. Niger. J. Clin. Pract. 2016, 19, 99–103. DOI: 10.4103/1119-3077.173707.
  • Yang, Z.; Liu, Y.; Deng, W.; Dai, J.; Li, F.; Yuan, Y.;, et al. Hesperetin Attenuates Mitochondria-dependent Apoptosis in Lipopolysaccharide-induced H9C2 Cardiomyocytes. Mol. Med. Rep. 2014, 9, 1941–1946. DOI: 10.3892/mmr.2014.2002.
  • Ciftci, O.; Ozcan, C.; Kamisli, O.; Cetin, A.; Basak, N.; Aytac, B. Hesperidin, a Citrus Flavonoid, Has the Ameliorative Effects against Experimental Autoimmune Encephalomyelitis (Eae) in a C57BL/J6 Mouse Model. Neurochem. Res. 2015, 40, 1111–1120. DOI: 10.1007/s11064-015-1571-8.
  • Haghmorad, D.; Mahmoudi, M. B.; Salehipour, Z.; Jalayer, Z.; Momtazi Brojeni, A. A.; Rastin, M.; Kokhaei, P.; Mahmoudi, M.;, et al. Hesperidin Ameliorates Immunological Outcome and Reduces Neuroinflammation in the Mouse Model of Multiple Sclerosis. J. Neuroimmunol. 2017, 302, 23–33. DOI: 10.1016/j.jneuroim.2016.11.009.
  • Hemanth Kumar, B.; Dinesh Kumar, B.; Diwan, P. V. Hesperidin, a Citrus Flavonoid, Protects against L-methionine-induced Hyperhomocysteinemia by Abrogation of Oxidative Stress, Endothelial Dysfunction and Neurotoxicity in Wistar Rats. Pharm. Biol. 2017, 55, 146–155. DOI: 10.1080/13880209.2016.1231695.
  • Fowler, Z. L.; Koffas, M. A. Biosynthesis and Biotechnological Production of Flavanones: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2009, 83, 799–808. DOI: 10.1007/s00253-009-2039-z.
  • Zhang, B.; Chen, T.; Chen, Z.; Wang, M.; Zheng, D.; Wu, J.; Jiang, X.; Li, X.;, et al. Synthesis and Anti-hyperglycemic Activity of Hesperidin Derivatives. Bioorg. Med. Chem. Lett. 2012, 22, 7194–7197. DOI: 10.1016/j.bmcl.2012.09.049.
  • Omidbaigi, R.; Nasiri, M. F. Quantitative Distribution of Hesperidin in Citrus Species, during Fruit Maturation and Optimal Harvest Time. Nat. Prod. Radiance 2004, 3, 12–15.
  • Kim, D. H.; Kim, B. G.; Lee, Y.; Ryu, J. Y.; Lim, Y.; Hur, H. G.;, et al. Regiospecific Methylation of Naringenin to Ponciretin by Soybean O-methyltransferase Expressed in Escherichia Coli. J. Biotechnol. 2005, 119, 155–162. DOI: 10.1016/j.jbiotec.2005.04.004.
  • Amor, I. L.; Salem, N.; Guedon, E.; Engasser, J. M.; Chekir-Ghedrira, L.; Ghoul, M. Preliminary Investigation of Naringenin Hydroxylation with Recombinant E. Coli Expressing Plant Flavonoid Hydroxylation Gene. Nat. Prod. Commun. 2010, 5, 777–782.
  • Miwa, Y.; Mitsuzumi, H.; Sunayama, T.; Yamada, M.; Okada, K.; Kubota, M.; Chaen, H.; Mishima, Y.; Kibata, M. Glucosyl hesperidin lowers serum triglyceride level in hypertriglyceridemic subjects through the improvement of very low-density lipoprotein metabolic abnormality. J Nutr Sci Vitaminol. 2005, 51, 460-470. DOI: 10.3177/jnsv.51.460.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.