2,333
Views
8
CrossRef citations to date
0
Altmetric
Review

Dissecting Yogurt: the Impact of Milk Types, Probiotics, and Selected Additives on Yogurt Quality

, , &

References

  • Saad, N.; Delattre, C.; Urdaci, M.; Schmitter, J.M.; Bressollier, P. An Overview of the Last Advances in Probiotic and Prebiotic Field. LWT Food Sci. Technol. 2013, 50(1), 1–16.
  • Pala, V.; Sieri, S.; Berrino, F.; Vineis, P.; Sacerdote, C.; Palli, D.; Masala, G.; Panico, S.; Mattiello, A.; Tumino, R.; et al. Yogurt Consumption and Risk of Colorectal Cancer in the Italian European Prospective Investigation into Cancer and Nutrition Cohort. Int. J. Cancer. 2011, 129(11), 2712–2719.
  • Kok, C. R.; Hutkins, R. Yogurt and Other Fermented Foods as Sources of Health-promoting Bacteria. Nutr. Rev. 2018, 76(Suppl 1), 4–15. DOI: 10.1093/nutrit/nuy056.
  • Fernandez, M. A.; Panahi, S.; Daniel, N.; Tremblay, A.; Marette, A. Yogurt and Cardiometabolic Diseases: A Critical Review of Potential Mechanisms. Adv. Nutr. 2017, 8(6), 812–829.
  • Marshall, V. M.;. Starter Cultures for Milk Fermentation and Their Characteristics. Int. J. Dairy Technol. 1993, 46(2), 49–56. DOI: 10.1111/j.1471-0307.1993.tb00860.x.
  • Nagaoka, S.;. Yogurt Production. Methods Mol. Biol. 2019, 1887, 45–54.
  • Cho, Y. H.; Lucey, J. A.; Singh, H. Rheological Properties of Acid Milk Gels as Affected by the Nature of the Fat Globule Surface Material and Heat Treatment of Milk. Int. Dairy J. 1999, 9(8), 537–545. DOI: 10.1016/S0958-6946(99)00123-5.
  • Sieuwerts, S.; De Bok, F. A.; Hugenholtz, J.; van Hylckama Vlieg, J. E.  Unraveling Microbial Interactions in Food Fermentations: From Classical to Genomics Approaches. Appl. Environ. Microbiol. 2008, 74(16), 4997–5007.
  • Settachaimongkon, S.; Nout, M. J. R.; Antunes Fernandes, E. C.; Hettinga, K. A.; Vervoort, J. M.; van Hooijdonk, T. C. M.; Zwietering, M. H.; Smid, E. J.; van Valenberg, H. J. F. Influence of Different Proteolytic Strains of Streptococcus Thermophilus in Co-culture with Lactobacillus Delbrueckii Subsbulgaricus on the Metabolite Profile of Set-yoghurt. Int. J. Food Microbiol. 2014, 177, 29–36.
  • Sfakianakis, P.; Tzia, C. Conventional and Innovative Processing of Milk for Yogurt Manufacture; Development of Texture and Flavor: A Review. Foods. 2014, 3(1), 176–193. DOI: 10.3390/foods3010176.
  • Law, J.; Haandrikman, A. Proteolytic Enzymes of Lactic Acid Bacteria. Int. Dairy J. 1997, 7(1), 1–11. DOI: 10.1016/0958-6946(95)00073-9.
  • Soukoulis, C.; Aprea, E.; Biasioli, F.; Cappellin, L.; Schuhfried, E.; Märk, T. D.; Gasperi, F. Proton Transfer Reaction Time‐of‐flight Mass Spectrometry Monitoring of the Evolution of Volatile Compounds during Lactic Acid Fermentation of Milk. Rapid Commun. Mass Spectrom. 2010, 24(14), 2127–2134.
  • Kneifel, W.; Ulberth, F.; Erhard, F.; Jaros, D. Aroma Profiles and Sensory Properties of Yogurt and Yogurt-related Products. I. Screening of Commercially Available Starter Cultures. Milchwissenschaft (Germany). 1992, 47(6), 362–365.
  • Güler, Z.; Park, Y. W. Characteristics of Physico-chemical Properties, Volatile Compounds and Free Fatty Acid Profiles of Commercial Set-type Turkish Yoghurts. Open J. Animal Sci. 2011, 1(1), 1. DOI: 10.4236/ojas.2011.11001.
  • Cheng, H.;. Volatile Flavor Compounds in Yogurt: A Review. Crit. Rev. Food Sci. Nutr. 2010, 50(10), 938–950. DOI: 10.1080/10408390903044081.
  • Herve-Jimenez, L.; Guillouard, I.; Guedon, E.; Boudebbouze, S.; Hols, P.; Monnet, V.; Maguin, E.; Rul, F. Postgenomic Analysis of Streptococcus Thermophilus Cocultivated in Milk with Lactobacillus Delbrueckii Subsbulgaricus: Involvement of Nitrogen, Purine, and Iron Metabolism. Appl. Environ. Microbiol. 2009, 75(7), 2062–2073.
  • Flom, J. D.; Sicherer, S. H. Epidemiology of Cow’s Milk Allergy. Nutrients. 2019, 11(5), 1051. DOI: 10.3390/nu11051051.
  • Vargas, M.; Cháfer, M.; Albors, A.; Chiralt, A.; González-Martínez, C. Physicochemical and Sensory Characteristics of Yoghurt Produced from Mixtures of Cows‘ and Goats‘ Milk. Int. Dairy J. 2008, 18(12), 1146–1152. DOI: 10.1016/j.idairyj.2008.06.007.
  • Walstra, P.; Jenness, R. Química y física lactológica; Editorial Acribia: Zaragoza, Spain, 1986.
  • Donmez, O.; Mogol, B. A.; Gokmen, V. Syneresis and Rheological Behaviors of Set Yogurt Containing Green Tea and Green Coffee Powders. J. Dairy Sci. 2017, 100(2), 901–907. DOI: 10.3168/jds.2016-11262.
  • Dimitrellou, D.; Salamoura, C.; Kontogianni, A.; Katsipi, D.; Kandylis, P.; Zakynthinos, G.; Varzakas, T. Effect of Milk Type on the Microbiological, Physicochemical and Sensory Characteristics of Probiotic Fermented Milk. Microorganisms. 2019, 7(9), 274.
  • Costa, R. G.; Beltrão Filho, E. M.; De Sousa, S.; Da Cruz, G. R. B.; Queiroga, R. D. C. R. D. E.; Da Cruz, E. N. Physicochemical and Sensory Characteristics of Yoghurts Made from Goat and Cow Milk. Anim. Sci. J. 2016, 87(5), 703–709.
  • De Santis, D.; Giacinti, G.; Chemello, G.; Frangipane, M. T. Improvement of the Sensory Characteristics of Goat Milk Yogurt. J. Food Sci. 2019, 84(8), 2289–2296.
  • Machado, T. A. D. G.; De Oliveira, M. E. G.; Campos, M. I. F.; De Assis, P. O. A.; De Souza, E. L.; Madruga, M. S.; Pacheco, M. T. B.; Pintado, M. M. E.; Queiroga, R. D. C. R. D. E. Impact of Honey on Quality Characteristics of Goat Yogurt Containing Probiotic Lactobacillus Acidophilus. LWT. 2017, 80, 221–229. DOI: 10.1016/j.lwt.2017.02.013.
  • Silva, F. A.; De Oliveira, M. E. G.; De Figueirêdo, R. M. F.; Sampaio, K. B.; De Souza, E. L.; De Oliveira, C. E. V.; Pintado, M. M. E.; Ramos Do Egypto Queiroga, R. D. C. The Effect of Isabel Grape Addition on the Physicochemical, Microbiological and Sensory Characteristics of Probiotic Goat Milk Yogurt. Food Funct. 2017, 8(6), 2121–2132.
  • Vianna, F. S.; Canto, A. C. V. C. S.; Da Costa-lima, B. R. C.; Salim, A. P. A. A.; Costa, M. P.; Balthazar, C. F.; Oliveira, B. R.; Rachid, R. P.; Franco, R. M.; Conte-Junior, C. A. Development of New Probiotic Yoghurt with a Mixture of Cow and Sheep Milk: Effects on Physicochemical, Textural and Sensory Analysis. Small Ruminant Res. 2017, 149, 154–162. DOI: 10.1016/j.smallrumres.2017.02.013.
  • Nguyen, H. T. H.; Ong, L.; Lefèvre, C.; Kentish, S. E.; Gras, S. L. The Microstructure and Physicochemical Properties of Probiotic Buffalo Yoghurt during Fermentation and Storage: A Comparison with Bovine Yoghurt. Food Bioprocess. Technol. 2014, 7(4), 937–953.
  • Erkaya, T.; Şengül, M. A Comparative Study on Some Quality Properties and Mineral Contents of Yoghurts Produced from Different Type of Milks. Kafkas Universitesi Veteriner Fakultesi Dergisi. 2012, 18(2), 323–329.
  • Kaminarides, S.;. Comparison of the Characteristics of Set Type Yoghurt Made from Ovine Milk of Different Fat Content. Int. J. Food Sci. Technol. 2007, 42(9), 1019–1028.
  • Smit, G.;. Dairy Processing: Improving Quality; Elsevier: UK, 2003.
  • Sodini, I.;. The Relative Effect of Milk Base, Starter, and Process on Yogurt Texture: A Review. Crit. Rev. Food Sci. Nutr. 2004, 44(2), 113–137. DOI: 10.1080/10408690490424793.
  • Jumah, R.; Shaker, R. R.; Abu-Jdayil, B. Effect of Milk Source on the Rheological Properties of Yogurt during the Gelation Process. Int. J. Dairy Technol. 2001, 54(3), 89–93. DOI: 10.1046/j.1364-727x.2001.00012.x.
  • And, J. L.; Guo, M. Effects of Polymerized Whey Proteins on Consistency and Water‐holding Properties of Goat’s Milk Yogurt. J. Food Sci. 2006, 71(1), C34–C38. DOI: 10.1111/j.1365-2621.2006.tb12385.x.
  • De Renobales, M.; Amores, G.; Arranz, J.; Virto, M.; Barrón, L. J. R.; Bustamante, M. A.; Ruiz De Gordoa, J. C.; Nájera, A. I.; Valdivielso, I.; Abilleira, E. Part-time Grazing Improves Sheep Milk Production and Its Nutritional Characteristics. Food Chem. 2012, 130(1), 90–96. DOI: 10.1016/j.foodchem.2011.07.002.
  • Al-Zoreky, N. S.; Al-Otaibi, M. M. Suitability of Camel Milk for Making Yogurt. Food Sci. Biotechnol. 2015, 24(2), 601–606. DOI: 10.1007/s10068-015-0078-z.
  • Bornaz, S.; Sahli, A.; Attalah, A.; Attia, H. Physicochemical Characteristics and Renneting Properties of Camels’ Milk: A Comparison with Goats’, Ewes’ and Cows’ Milks. Int. J. Dairy Technol. 2009, 62(4), 505–513.
  • Al Haj, O. A.; Al Kanhal, H. A. Compositional, Technological and Nutritional Aspects of Dromedary Camel Milk. Int. Dairy J. 2010, 20(12), 811–821. DOI: 10.1016/j.idairyj.2010.04.003.
  • Dan, T.;. Profiles of Volatile Flavor Compounds in Milk Fermented with Different Proportional Combinations of Lactobacillus Delbrueckii Subsbulgaricus and Streptococcus Thermophilus. Molecules. 2017, 22(10), 1633.
  • Beshkova, D.; Simova, E.; Frengova, G.; Simov, Z. Production of Flavour Compounds by Yogurt Starter Cultures. J. Indus. Microbiol. Biotechnol. 1998, 20(3–4), 180–186. DOI: 10.1038/sj.jim.2900504.
  • Dan, T.; Wang, D.; Jin, R. L.; Zhang, H. P.; Zhou, T. T.; Sun, T. S. Characterization of Volatile Compounds in Fermented Milk Using Solid-phase Microextraction Methods Coupled with Gas Chromatography-mass Spectrometry. J. Dairy Sci. 2017, 100(4), 2488–2500. DOI: 10.3168/jds.2016-11528.
  • Gallardo, F.; Kelly, A. L.; Delahunty, C. M. Influence of Starter Culture on Flavor and Headspace Volatile Profiles of Fermented Whey and Whey Produced from Fermented Milk. J. Dairy Sci. 2005, 88(11), 3745–3753. DOI: 10.3168/jds.S0022-0302(05)73060-5.
  • Gurkan, H.; Hayaloglu, A. Volatiles and Sensory Characteristics of Yogurt Manufactured by Incorporating Basil (Ocimum Basilicum L. Int. J. Food Prop. 2017, 20(sup1), S779–S789. DOI: 10.1080/10942912.2017.1311344.
  • McSweeney, P. L.; Sousa, M. J. Biochemical Pathways for the Production of Flavour Compounds in Cheeses during Ripening: A Review. Le Lait. 2000, 80(3), 293–324. DOI: 10.1051/lait:2000127.
  • Farag, M. A.; Rasheed, D. M.; Kamal, I. M. Volatiles and Primary Metabolites Profiling in Two Hibiscus Sabdariffa (Roselle) Cultivars via Headspace SPME-GC-MS and Chemometrics. Food Res. Int. 2015, 78, 327–335. DOI: 10.1016/j.foodres.2015.09.024.
  • Ligor, M.; Jarmalaviciene, R.; Szumski, M.; Maruska, A.; Buszewski, B. Determination of Volatile and Non-volatile Products of Milk Fermentation Processes Using Capillary Zone Electrophoresis and Solid Phase Microextraction Coupled to Gas Chromatography. J. Sep. Sci. 2008, 31(14), 2707–2713.
  • Emwas, A. H.;. The Strengths and Weaknesses of NMR Spectroscopy and Mass Spectrometry with Particular Focus on Metabolomics Research. Methods Mol. Biol. 2015, 1277, 161–193.
  • De Koning, S.; Janssen, H.-G.; Udo, A. T. Modern Methods of Sample Preparation for GC Analysis. Chromatographia. 2009, 69(1), 33.
  • Audrain, B.; Farag, M. A.; Ryu, C.-M.; Ghigo, J.-M. Role of Bacterial Volatile Compounds in Bacterial Biology. FEMS Microbiol. Rev. 2015, 39(2), 222–233.
  • Vas, G.; Vekey, K. Solid‐phase Microextraction: A Powerful Sample Preparation Tool Prior to Mass Spectrometric Analysis. J. Mass Spectrom. 2004, 39(3), 233–254. DOI: 10.1002/jms.606.
  • Chaves, A. C.; Fernandez, M.; Lerayer, A. L. S.; Mierau, I.; Kleerebezem, M.; Hugenholtz, J. Metabolic Engineering of Acetaldehyde Production by Streptococcus Thermophilus. Appl. Environ. Microbiol. 2002, 68(11), 5656–5662.
  • Molimard, P.; Spinnler, H. Review: Compounds Involved in the Flavor of Surface Mold-Ripened Cheeses: Origins and Properties. J. Dairy Sci. 1996, 79(2), 169–184. DOI: 10.3168/jds.S0022-0302(96)76348-8.
  • Valero, E.; Villamiel, M.; Miralles, B.; Sanz, J.; Martı́nez-Castro, I. Changes in Flavour and Volatile Components during Storage of Whole and Skimmed UHT Milk. Food Chem. 2001, 72(1), 51–58. DOI: 10.1016/S0308-8146(00)00203-X.
  • Biasutti, M.; Venir, E.; Marchesini, G.; Innocente, N. Rheological Properties of Model Dairy Emulsions as Affected by High Pressure Homogenization. Innovative Food Sci. Emerg. Technol. 2010, 11(4), 580–586.
  • Nguyen, A. T.; Nigen, M.; Jimenez, L.; Ait-Abderrahim, H.; Marchesseau, S.; Picart-Palmade, L. Performances of Different Protocols for Exocellular Polysaccharides Extraction from Milk Acid Gels: Application to Yogurt. Food Chem. 2018, 239, 742–750. DOI: 10.1016/j.foodchem.2017.06.121.
  • Ale, E. C.; Perezlindo, M.J.; Pavón, Y.; Peralta, G.H.; Costa, S.; Sabbag, N.; Bergamini, C.; Reinheimer, J.A.; Binetti, A.G. Technological, Rheological and Sensory Characterizations of a Yogurt Containing an Exopolysaccharide Extract from Lactobacillus Fermentum Lf2, a New Food Additive. Food Res. Int. 2016, 90, 259–267.
  • Ale, E. C.; Perezlindo, M. J.; Burns, P.; Tabacman, E.; Reinheimer, J. A.; Binetti, A. G. Exopolysaccharide from Lactobacillus Fermentum Lf2 and Its Functional Characterization as a Yogurt Additive. J. Dairy Res. 2016, 83(4), 487–492.
  • Lorusso, A.; Coda, R.; Montemurro, M.; Rizzello, C. Use of Selected Lactic Acid Bacteria and Quinoa Flour for Manufacturing Novel Yogurt-Like Beverages. Foods. 2018, 7(4), 51.
  • Liu, W.; Chen, M.; Duo, L.; Wang, J.; Guo, S.; Sun, H.; Menghe, B.; Zhang, H. Characterization of Potentially Probiotic Lactic Acid Bacteria and Bifidobacteria Isolated from Human Colostrum. J. Dairy Sci. 2020, 7(4), 51.
  • Yuki, O.; Furutani, C.; Mizota, Y.; Wakita, A.; Mimura, S.; Kihara, T.; Ohara, M.; Okada, Y.; Okada, M.; Nikawa, H. Effect of Bovine Milk Fermented with Lactobacillus Rhamnosus L8020 on Periodontal Disease in Individuals with Intellectual Disability: A Randomized Clinical Trial. J. Appl. Oral Sci. 2019, 27, e20180564. DOI: 10.1590/1678-7757-2018-0564.
  • Burton, K. J.; Rosikiewicz, M.; Pimentel, G.; Bütikofer, U.; von Ah, U.; Voirol, M.-J.; Croxatto, A.; Aeby, S.; Drai, J.; McTernan, P. G.; et al. Probiotic Yogurt and Acidified Milk Similarly Reduce Postprandial Inflammation and Both Alter the Gut Microbiota of Healthy, Young Men. Br. J. Nutr. 2017, 117(9), 1312–1322.
  • Innocente, N.; Biasutti, M.; Rita, F.; Brichese, R.; Comi, G.; Iacumin, L. Effect of Indigenous Lactobacillus Rhamnosus Isolated from Bovine Milk on Microbiological Characteristics and Aromatic Profile of Traditional Yogurt. LWT Food Sci. Technol. 2016, 66, 158–164. DOI: 10.1016/j.lwt.2015.10.031.
  • Tian, H.; Shen, Y.; Yu, H.; He, Y.; Chen, C. Effects of 4 Probiotic Strains in Coculture with Traditional Starters on the Flavor Profile of Yogurt. J. Food Sci. 2017, 82(7), 1693–1701.
  • Jamyuang, C.; Phoonlapdacha, P.; Chongviriyaphan, N.; Chanput, W.; Nitisinprasert, S.; Nakphaichit, M. Characterization and Probiotic Properties of Lactobacilli from Human Breast Milk. 3 Biotech. 2019, 9(11), 398.
  • Saxami, G.; Papadopoulou, O.; Chorianopoulos, N.; Kourkoutas, Y.; Tassou, C.; Galanis, A. Molecular Detection of Two Potential Probiotic Lactobacilli Strains and Evaluation of Their Performance as Starter Adjuncts in Yogurt Production. Int. J. Mol. Sci. 2016, 17(5), 668.
  • Pan, D.; Wu, Z.; Peng, T.; Zeng, X. Q.; Li, H. Volatile Organic Compounds Profile during Milk Fermentation by Lactobacillus Pentosus and Correlations between Volatiles Flavor and Carbohydrate Metabolism. J. Dairy Sci. 2014, 97(2), 624–631.
  • Johansson, M. L.; Nobaek, S.; Berggren, A.; Nyman, M.; Björck, I.; Ahrné, S.; Jeppsson, B.; Molin, G. Survival of Lactobacillus Plantarum DSM 9843 (299v), and Effect on the Short-chain Fatty Acid Content of Faeces after Ingestion of a Rose-hip Drink with Fermented Oats. Int. J. Food Microbiol. 1998, 42(1–2), 29–38.
  • Nishimura, M.; Ohkawara, T.; Tetsuka, K.; Kawasaki, Y.; Nakagawa, R.; Satoh, H.; Sato, Y.; Nishihira, J. Effects of Yogurt Containing Lactobacillus Plantarum HOKKAIDO on Immune Function and Stress Markers. J. Tradit. Complement. Med. 2016, 6(3), 275–280.
  • Toshimitsu, T.; Gotou, A.; Sashihara, T.; Hachimura, S.; Shioya, N.; Suzuki, S.; Asami, Y. Effects of 12-Week Ingestion of Yogurt Containing Lactobacillus Plantarum OLL2712 on Glucose Metabolism and Chronic Inflammation in Prediabetic Adults: A Randomized Placebo-Controlled Trial. Nutrients. 2020, 12(2), 374.
  • Li, C.; Song, J.; Kwok, L.-Y.; Wang, J.; Dong, Y.; Yu, H.; Hou, Q.; Zhang, H.; Chen, Y. Influence of Lactobacillus Plantarum on Yogurt Fermentation Properties and Subsequent Changes during Postfermentation Storage. J. Dairy Sci. 2017, 100(4), 2512–2525. DOI: 10.3168/jds.2016-11864.
  • Tian, H.; Shi, Y.; Zhang, Y.; Yu, H.; Mu, H.; Chen, C. Screening of Aroma-producing Lactic Acid Bacteria and Their Application in Improving the Aromatic Profile of Yogurt. J. Food Biochem. 2019, 43(10), e12837.
  • Zhang, S. S.; Xu, Z.S.; Qin, L.H.; Kong, J. Low-sugar Yogurt Making by the Co-cultivation of Lactobacillus Plantarum WCFS1 with Yogurt Starter Cultures. J. Dairy Sci. 2020, 103(4), 3045–3054.
  • Hill, D.; Sugrue, I.; Tobin, C.; Hill, C.; Stanton, C.; Ross, R. P. The Lactobacillus Casei Group: History and Health Related Applications. Front Microbiol. 2018, 9, 2107.
  • Dimitrellou, D.; Kandylis, P.; Kourkoutas, Y. Assessment of Freeze-Dried Immobilized Lactobacillus Casei as Probiotic Adjunct Culture in Yogurts. Foods. 2019, 8(9), 374. DOI: 10.3390/foods8090374.
  • Dimitrellou, D.; Kandylis, P.; Petrović, T.; Dimitrijević-Branković, S.; Lević, S.; Nedović, V.; Kourkoutas, Y. Survival of Spray Dried Microencapsulated Lactobacillus Casei ATCC 393 in Simulated Gastrointestinal Conditions and Fermented Milk. LWT - Food Sci. Technol. 2016, 71, 169–174. DOI: 10.1016/j.lwt.2016.03.007.
  • Dias, P. G. I.; Sajiwani, J. W. A.; Rathnayaka, R. Consumer Perception and Sensory Profile of Probiotic Yogurt with Added Sugar and Reduced Milk Fat. Heliyon. 2020, 6(7), e04328. DOI: 10.1016/j.heliyon.2020.e04328.
  • Mohammadi, R.; Yousefi, M.; Sarlak, Z.; Shah, N. P.; Mortazavian, A. M.; Sadeghi, E.; Khajavi, M. Z. Influence of Commercial Culture Composition and Cow Milk to Soy Milk Ratio on the Biochemical, Microbiological, and Sensory Characteristics of a Probiotic Fermented Composite Drink. Food Sci. Biotechnol. 2017, 26(3), 749–757.
  • Jungersen, M.; Wind, A.; Johansen, E.; Christensen, J.; Stuer-Lauridsen, B.; Eskesen, D. The Science behind the Probiotic Strain Bifidobacterium Animalis Subslactis BB-12((R)). Microorganisms. 2014, 2(2), 92–110.
  • Tan, T. P.; Ba, Z.; Sanders, M. E.; D’Amico, F. J.; Roberts, R. F.; Smith, K. H.; Merenstein, D. J. Safety of Bifidobacterium Animalis SubsLactis (B. Lactis) Strain BB-12-Supplemented Yogurt in Healthy Children. J. Pediatr. Gastroenterol. Nutr. 2017, 64(2), 302–309.
  • Turgut, T.; Cakmakci, S. Probiotic Strawberry Yogurts: Microbiological, Chemical and Sensory Properties. Probiotics Antimicrob. Proteins. 2018, 10(1), 64–70. DOI: 10.1007/s12602-017-9278-6.
  • Dabija, A.; Codină, G. G.; Gâtlan, A.-M.; Rusu, L. Quality Assessment of Yogurt Enriched with Different Types of Fibers. CyTA-J. Food. 2018, 16(1), 859–867.
  • Staffolo, M. D.; Sato, A. C.; Cunha, R. L. Utilization of Plant Dietary Fibers to Reinforce Low-calorie Dairy Dessert Structure. Food Bioprocess. Technol. 2017, 10(5), 914–925. DOI: 10.1007/s11947-017-1872-9.
  • Sah, B.; Vasiljevic, T.; McKechnie, S.; Donkor, O. N. Physicochemical, Textural and Rheological Properties of Probiotic Yogurt Fortified with Fibre-rich Pineapple Peel Powder during Refrigerated Storage. LWT Food Sci. Technol. 2016, 65, 978–986. DOI: 10.1016/j.lwt.2015.09.027.
  • Tomic, N.; Dojnov, B.; Miocinovic, J.; Tomasevic, I.; Smigic, N.; Djekic, I.; Vujcic, Z. Enrichment of Yoghurt with Insoluble Dietary Fiber from triticale–A Sensory Perspective. LWT. 2017, 80, 59–66. DOI: 10.1016/j.lwt.2017.02.008.
  • Hashim, I.; Khalil, A.; Afifi, H. Quality Characteristics and Consumer Acceptance of Yogurt Fortified with Date Fiber. J. Dairy Sci. 2009, 92(11), 5403–5407. DOI: 10.3168/jds.2009-2234.
  • Glibowski, P.; Rybak, P. Rheological and Sensory Properties of Stirred Yoghurt with Inulin‐type Fructans. Int. J. Dairy Technol. 2016, 69(1), 122–128. DOI: 10.1111/1471-0307.12231.
  • Brückner-Gühmann, M.; Benthin, A.; Drusch, S. Enrichment of Yoghurt with Oat Protein Fractions: Structure Formation, Textural Properties and Sensory Evaluation. Food Hydrocolloids. 2019, 86, 146–153. DOI: 10.1016/j.foodhyd.2018.03.019.
  • Crispín-Isidro, G.; Lobato-Calleros, C.; Espinosa-Andrews, H.; Alvarez-Ramirez, J.; Vernon-Carter, E. J. Effect of Inulin and Agave Fructans Addition on the Rheological, Microstructural and Sensory Properties of Reduced-fat Stirred Yogurt. LWT Food Sci. Technol. 2015, 62(1), 438–444. DOI: 10.1016/j.lwt.2014.06.042.
  • Lazaridou, A.; Serafeimidou, A.; Biliaderis, C. G.; Moschakis, T.; Tzanetakis, N. Structure Development and Acidification Kinetics in Fermented Milk Containing Oat β-glucan, a Yogurt Culture and a Probiotic Strain. Food Hydrocolloids. 2014, 39, 204–214. DOI: 10.1016/j.foodhyd.2014.01.015.
  • Sanz, T.; Salvador, A.; Jiménez, A.; Fiszman, S. M. Yogurt Enrichment with Functional Asparagus Fibre. Effect of Fibre Extraction Method on Rheological Properties, Colour, and Sensory Acceptance. Eur. Food Res. Technol. 2008, 227(5), 1515–1521. DOI: 10.1007/s00217-008-0874-2.
  • Heydari, S.; Amiri-Rigi, A.; Ehsani, M. R.; Mohammadifar, M. A.; Khorshidian, N.; Koushki, M. R.; Mortazavian, A. M. Rheological Behaviour, Sensory Properties and Syneresis of Probiotic Yoghurt Supplemented with Various Prebiotics. Int. J. Dairy Technol. 2018, 71, 175–184. DOI: 10.1111/1471-0307.12491.
  • Cueva, O.; Aryana, K. J. Quality Attributes of a Heart Healthy Yogurt. LWT Food Sci. Technol. 2008, 41(3), 537–544. DOI: 10.1016/j.lwt.2007.04.002.
  • Hanson, A. L.; Metzger, L. E. Evaluation of Increased Vitamin D Fortification in High-temperature, Short-time-processed 2% Milk, UHT-processed 2% Fat Chocolate Milk, and Low-fat Strawberry Yogurt. J. Dairy Sci. 2010, 93(2), 801–807. DOI: 10.3168/jds.2009-2694.
  • El-Shibiny, S.; El-Gawad, M. A. E.-K. M. A.; Assem, F. M.; El-Sayed, S. M. The Use of Nano-sized Eggshell Powder for Calcium Fortification of Cow?s and Buffalo?s Milk Yogurts. Acta Sci. Pol. Technol. Aliment. 2018, 17(1), 37–49.
  • Szajnar, K.; Znamirowska, A.; Kalicka, D.; Kuźniar, P.; Najgebauer-Lejko, D. Quality of Yogurt Fortified with Magnesium Lactate. Acta Sci. Pol. Technol. Aliment. 2018, 17(3), 247–255.
  • Gaur, S.; Waller, A. W.; Andrade, J. E. Effect of Multiple Micronutrient Fortification on Physico-Chemical and Sensory Properties of Chhash (Traditional Indian Yogurt-Based Drink. Foods. 2018, 8(1), 5. DOI: 10.3390/foods8010005.
  • Molina, C. V.; Lima, J. G.; Moraes, I. C. F.; Pinho, S. C. Physicochemical Characterization and Sensory Evaluation of Yogurts Incorporated with Beta-carotene-loaded Solid Lipid Microparticles Stabilized with Hydrolyzed Soy Protein Isolate. Food Sci. Biotechnol. 2019, 28(1), 59–66.
  • Srinivasan, K.;. Spices as Nutraceuticals with Multi-beneficial Health Effects. J. Herbs Spices Med. Plants. 2004, 11, 137.
  • Tapsell, L. C.; Hemphill, I.; Cobiac, L.; Sullivan, D. R.; Fenech, M.; Patch, C. S.; Roodenrys, S.; Keogh, J. B.; Clifton, P. M.; Williams, P. G.;, et al. Health Benefits of Herbs and Spices: The Past, the Present, the Future. Medical Journal of Australia. 2006, 185. DOI: 10.5694/j.1326-5377.2006.tb00548.x.
  • Gonzalez, N. J.; Adhikari, K.; Sancho-Madriz, M. F. Sensory Characteristics of Peach-flavored Yogurt Drinks Containing Prebiotics and Synbiotics. LWT Food Sci. Technol. 2011, 44(1), 158–163. DOI: 10.1016/j.lwt.2010.06.008.
  • Adhikari, K.; Mustapha, A.; Grün, I. Survival and Metabolic Activity of Microencapsulated Bifidobacterium Longum in Stirred Yogurt. J. Food Sci. 2003, 68(1), 275–280. DOI: 10.1111/j.1365-2621.2003.tb14152.x.
  • Lubbers, S.; Decourcelle, N.; Vallet, N.; Guichard, E. Flavor Release and Rheology Behavior of Strawberry Fatfree Stirred Yogurt during Storage. J. Agric. Food Chem. 2004, 52(10), 3077–3082.
  • Illupapalayam, V. V.; Smith, S. C.; Gamlath, S. Consumer Acceptability and Antioxidant Potential of Probiotic-yogurt with Spices. LWT Food Sci. Technol. 2014, 55(1), 255–262. DOI: 10.1016/j.lwt.2013.09.025.
  • Amirdivani, S.; Baba, A. S. Changes in Yogurt Fermentation Characteristics, and Antioxidant Potential and in Vitro Inhibition of Angiotensin-1 Converting Enzyme upon the Inclusion of Peppermint, Dill and Basil. LWT Food Sci. Technol. 2011, 44(6), 1458–1464. DOI: 10.1016/j.lwt.2011.01.019.
  • Caleja, C.; Barros, L.; Antonio, A. L.; Carocho, M.; Oliveira, M. B. P. P.; Ferreira, I. C. F. R. Fortification of Yogurts with Different Antioxidant Preservatives: A Comparative Study between Natural and Synthetic Additives. Food Chem. 2016, 210, 262–268. DOI: 10.1016/j.foodchem.2016.04.114.
  • Abugoch James, L. E.;. Quinoa (Chenopodium Quinoa Willd.): Composition, Chemistry, Nutritional, and Functional Properties. Adv. Food Nutr. Res. 2009, 58, 1–31. DOI: 10.1016/S1043-4526(09)58001-1.
  • Obaroakpo, J. U.; Liu, L.; Zhang, S.; Lu, J.; Pang, X.; Lv, J. alpha-Glucosidase and ACE Dual Inhibitory Protein Hydrolysates and Peptide Fractions of Sprouted Quinoa Yoghurt Beverages Inoculated with Lactobacillus Casei. Food Chem. 2019, 299, 124985. DOI: 10.1016/j.foodchem.2019.124985.
  • Zannini, E.; Jeske, S.; Lynch, K. M.; Arendt, E. K. Development of Novel Quinoa-based Yoghurt Fermented with Dextran Producer Weissella Cibaria MG1. Int. J. Food Microbiol. 2018, 268, 19–26. DOI: 10.1016/j.ijfoodmicro.2018.01.001.
  • Curti, C. A.; Vidal, P. M.; Curti, R. N.; Ramón, A. N. Chemical Characterization, Texture and Consumer Acceptability of Yogurts Supplemented with Quinoa Flour. Food Sci. Technol. 2017, 37(4), 627–631. DOI: 10.1590/1678-457x.27716.
  • Daugsch, A.; Moraes, C. S.; Fort, P.; Park, Y. K. Brazilian Red Propolis–chemical Composition and Botanical Origin. Evid. Based Complement. Alternat. Med. 2008, 5(4), 435–441.
  • Santos, M. S.; Estevinho, L. M.; De Carvalho, C. A. L.; Da Silva Conceição, A. L.; De Castro Almeida, R. C. Rheological and Sensorial Evaluation of Yogurt Incorporated with Red Propolis. J. Food Sci. Technol. 2020, 57(3), 1080–1089.
  • Santos, M. S.; Estevinho, L. M.; Carvalho, C. A. L.; Morais, J. S.; Conceição, A. L. S.; Paula, V. B.; Magalhães‐Guedes, K.; Almeida, R. C. C. Probiotic Yogurt with Brazilian Red Propolis: Physicochemical and Bioactive Properties, Stability, and Shelf Life. J. Food Sci. 2019, 84(12), 3429–3436.
  • Voşgan, Z.; Dumuţa, A.; Mihali, C.; Mihalescu, L.; Dippong, T.; Moldovan, A. The Influence of the Fruits Addition on the Quality Characteristics of Yogurt. Scientif. Paper. Animal Sci. Biotechnol. Lucrari Stiintifice Zootehnie Si Biotehnologii.2016, 49(2), 86–90.
  • Kamber, U.; Harmankaya, S. The Effect of Fruits to the Characteristics of Fruit Yogurt. Pak. J. Agric. Sci. 2019, 56(2), 495–502.
  • Nongonierma, A. B.; Cayot, P.; Springett, M.; Le Quéré, J.-L.; Cachon, R.; Voilley, A. Transfers of Small Analytes in a Multiphasic Stirred Fruit Yoghurt Model. Food Hydrocolloids. 2007, 21(2), 287–296.
  • Mahmood, A.; Abbas, N.; Gilani, A. Quality of Stirred Buffalo Milk Yogurt Blended with Apple and Banana Fruits. Pak. J. Agric. Sci. 2008, 45(2), 275–279.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.