167
Views
0
CrossRef citations to date
0
Altmetric
Review

Aerosol-based Pulmonary Delivery of Therapeutic Molecules from Food Sources: Delivery Mechanism, Research Trends, and the Way Forward

, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Otvos, R. A.; Still, K. B. M.; Somsen, G. W.; Smit, A. B.; Kool, J. Drug Discovery on Natural Products: From Ion Channels to nAChRs, from Nature to Libraries, from Analytics to Assays. SLAS Discov Adv Life Sci R&D. 2019, 24, 362–385.
  • Ackova, D. G.; Smilkov, K.; Bosnakovski, D. Contemporary Formulations for Drug Delivery of Anticancer Bioactive Compounds. Recent Pat Anticancer Drug Discov. 2019, 14(1), 19–31. DOI: 10.2174/1574892814666190111104834.
  • Dias, D. A.; Urban, S.; Roessner, U. A Historical Overview of Natural Products in Drug Discovery. Metabolites. 2012, 2(2), 303–336. DOI: 10.3390/metabo2020303.
  • Veeresham, C.;. Natural Products Derived from Plants as a Source of Drugs. Journal of Advanced Pharmaceutical Technology & Research. 2012, 3(4), 200. DOI: 10.4103/2231-4040.104709.
  • Davison, E. K.; Brimble, M. A. Natural Product Derived Privileged Scaffolds in Drug Discovery. Curr. Opin. Chem. Biol. 2019, 52, 1–8. DOI: 10.1016/j.cbpa.2018.12.007.
  • Morozov, V. N.; Kanev, I. L.; Mikheev, A. Y.; Shlyapnikova, E. A.; Shlyapnikov, Y. M.; Nikitin, M. P.; Nwabueze, A. O.; van Hoek, M. L. Generation and Delivery of Nanoaerosols from Biological and Biologically Active Substances. J. Aerosol Sci. 2014, 69, 48–61. DOI: 10.1016/j.jaerosci.2013.12.003.
  • Kandil, R.; Merkel, O. M. Pulmonary Delivery of siRNA as a Novel Treatment for Lung Diseases. Therapeutic delivery. 2019, 10(4), DOI: 10.4155/tde-2019-0009
  • Salomon, C.; Goycoolea, F. M.; Moerschbacher, B. Recent Trends in the Development of Chitosan-based Drug Delivery Systems, 2017, 18, 933–935. DOI: 10.1208/s12249-017-0764-72017.
  • Sakagami, M.;. In Vivo, in Vitro and Ex Vivo Models to Assess Pulmonary Absorption and Disposition of Inhaled Therapeutics for Systemic Delivery. Adv. Drug Deliv. Rev. 2006, 58(9–10), 1030–1060. DOI: 10.1016/j.addr.2006.07.012.
  • Ungaro, F.; Di Villa Bianca, R. D. E.; Giovino, C.; Miro, A.; Sorrentino, R.; Quaglia, F.; La Rotonda, M. I. Insulin-loaded PLGA/cyclodextrin Large Porous Particles with Improved Aerosolization Properties: In Vivo Deposition and Hypoglycaemic Activity after Delivery to Rat Lungs. J. Control. Release. 2009, 135, 25–34. DOI: 10.1016/j.jconrel.2008.12.011.
  • Tewes, F.; Gobbo, O. L.; Ehrhardt, C.; Healy, A. M. Amorphous Calcium Carbonate Based-microparticles for Peptide Pulmonary Delivery. ACS Appl. Mater. Interfaces. 2016, 8(2), 1164–1175. DOI: 10.1021/acsami.5b09023.
  • Wu, W. H.; Yuan, P.; Zhang, S. J.; Jiang, X.; Wu, C.; Li, Y.; Liu, S. F.; Liu, Q. Q.; Li, J. H.; Pudasaini, B.; Hu, Q. H. Impact of Pituitary–Gonadal Axis Hormones on Pulmonary Arterial Hypertension in Men. Hypertension. 2018, 72(1), 151–158.
  • Schrom, E.; Huber, M.; Aneja, M.; Dohmen, C.; Emrich, D.; Geiger, J.; Hasenpusch, G.; Herrmann-Janson, A.; Kretzschmann, V.; Mykhailyk, O.; Pasewald, T. Translation of Angiotensin-converting Enzyme 2 upon Liver-and Lung-targeted Delivery of Optimized Chemically Modified mRNA. Mol Ther Acids. 2017, 7, 350–365. DOI: 10.1016/j.omtn.2017.04.006.
  • Wu, L.; Miao, X.; Shan, Z.; Huang, Y.; Li, L.; Pan, X.; Yao, Q.; Li, G.; Wu, C. Studies on the Spray Dried Lactose as Carrier for Dry Powder Inhalation. Asian J. Pharm. Sci. 2014, 9, 336–341. DOI: 10.1016/j.ajps.2014.07.006.
  • Biesalski, H.; Reifen, R.; Fürst, P.; Edris, M. Retinyl Palmitate Supplementation by Inhalation of an Aerosol Improves Vitamin A Status of Preschool Children in Gondar (Ethiopia). Br. J. Nutr. 1999, 82(3), 179–182. DOI: 10.1017/S000711459900135X.
  • Yu, H.; Tran, -T.-T.; Teo, J.; Hadinoto, K. Dry Powder Aerosols of Curcumin-chitosan Nanoparticle Complex Prepared by Spray Freeze Drying and Their Antimicrobial Efficacy against Common Respiratory Bacterial Pathogens. Colloids Surfaces A Physicochem. Eng. Asp. 2016, 504, 34–42. DOI: 10.1016/j.colsurfa.2016.05.053.
  • Xia, Y.; Su, Y.; Wang, Q.; Yang, C.; Tang, B.; Zhang, Y.; Tu, J.; Shen, Y. Preparation, Characterization, and Pharmacodynamics of Insulin-loaded Fumaryl Diketopiperazine Microparticle Dry Powder Inhalation. Drug. Deliv. 2019, 26(1), 650–660.
  • AFREZZA® n.d. https://www.afrezza.com/afrezza-life (accessed April 13, 2020).
  • Secor Jr, E. R.; Carson IV, W. F.; Cloutier, M. M.; Guernsey, L.A.; Schramm, C. M.; Wu, C. A.; Thrall, R. S. Bromelain Exerts Anti-inflammatory Effects in an Ovalbumin-induced Murine Model of Allergic Airway Disease. Cell. Immunol. 2005, 237, 68–75. DOI: 10.1016/j.cellimm.2005.10.002.
  • Omenn, G. S.; Goodman, G. E.; Thornquist, M. D.; Balmes, J.; Cullen, M. R.; Glass, A.; Keogh, J. P.; Meyskens Jr, F. L.; Valanis, B.; Williams Jr, J. H.; et al. Effects of A Combination of Beta Carotene and Vitamin A on Lung Cancer and Cardiovascular Disease. N. Engl. J. Med. 1996, 334(18), 1150–1155.
  • Ungaro, F.; De Rosa, G.; Miro, A.; Quaglia, F.; La Rotonda, M. I. Cyclodextrins in the Production of Large Porous Particles: Development of Dry Powders for the Sustained Release of Insulin to the Lungs. Eur. J. Pharm. Sci. 2006, 28(5), 423–432. DOI: 10.1016/j.ejps.2006.05.005.
  • Liang, W.; Kwok, P. C.; Chow, M. Y.; Tang, P.; Mason, A. J.; Chan, H. K.; Lam, J. K. Formulation of pH Responsive Peptides as Inhalable Dry Powders for Pulmonary Delivery of Nucleic Acids. Eur. J. Pharm. Biopharm. 2014, 86(1), 64–73.
  • Liang, W.; Chan, A. Y.; Chow, M. Y.; Lo, F. F.; Qiu, Y.; Kwok, P. C.; Lam, J. K. Spray Freeze Drying of Small Nucleic Acids as Inhaled Powder for Pulmonary Delivery. Asian J. Pharm. Sci. 2018, 13(2), 163–172. DOI: 10.1016/j.ajps.2017.10.002.
  • Bouche, M. P. L. A.; Vanlandschoot, P.; Sablon, E.; Depla, E.; De Buck, S.; Saelens, X.; Schepens, B.; Silence, K.; Vaeck, M.; Henegouwen, P. M. V. B. E.; et al. Pulmonary Administration of Immunoglobulin Single Variable Domains and Constructs Thereof. U.S. Patent No. 9,320,792. July 22, 2010.
  • Hoboken, N.;. Pulmonary Delivery of Drugs for Bone Disorders. 42. 2005. DOI: 10.1016/S0169-409X(00)00064-8.
  • Patil-Gadhe, A. A.; Kyadarkunte, A. Y.; Pereira, M.; Jejurikar, G.; Patole, M. S.; Risbud, A.; Pokharkar, V. B. Rifapentine-proliposomes for Inhalation: In Vitro and in Vivo Toxicity. Toxicol. Int. 2014, 21, 275. DOI: 10.4103/0971-6580.155361.
  • Zhu, L.; Li, M.; Liu, X.; Jin, Y. Drug-loaded PLGA Electrospraying Porous Microspheres for the Local Therapy of Primary Lung Cancer via Pulmonary Delivery. ACS Omega. 2017, 2(5), 2273–2279. DOI: 10.1021/acsomega.7b00456.
  • Thakur, A. K.; Chellappan, D. K.; Dua, K.; Mehta, M.; Satija, S.; Singh, I. Patented Therapeutic Drug Delivery Strategies for Targeting Pulmonary Diseases. Expert Opin. Ther. Pat. 2020, 30(5), 375–387. DOI: 10.1080/13543776.2020.1741547.
  • Sonia, T. A.; Sharma, C. P. Oral Delivery of Insulin; Elsevier Science: Netherlands, 2014; 59-112.
  • Smith, M. J.; Thurm, C.; Shah, S. S.; Patel, S. J.; Kronman, M. P.; Gerber, J. S.; Courter, J. D.; Lee, B. R.; Newland, J. G.; Hersh, A. L. Route of Administration for Antibiotics with High Oral Bioavailability. Infect Control Hosp Epidemiol. 2019, 40(2), 248–249.
  • Lavanya, M. N.; Preethi., R.; Moses, J. A.; Anandharamakrishnan, C. Production of Bromelain Aerosols Using Spray-freeze-drying Technique for Pulmonary Supplementation. Dry. Technol. 2020, 1–13. doi:10.1080/07373937.2020.1832514.
  • Kim, Y.; Pritts, T. A. The Gastrointestinal Tract. In Geriatr. Trauma Crit. Care; Springer: New York, 2017; pp 35–43.
  • Homayun, B.; Lin, X.; Choi, H.-J. Challenges and Recent Progress in Oral Drug Delivery Systems for Biopharmaceuticals. Pharmaceutics. 2019, 11(3), 129. DOI: 10.3390/pharmaceutics11030129.
  • Aggarwal, B.; Knight, J. Aerosol Delivery of Curcumin. US 2005/0181036A1, 2005.
  • Lowry, M.;. Rectal Drug Administration in Adults: How, When, Why. Nurs Times. 2016, 112, 12–14.
  • Havaldar, V. D.; Yadav, A. V.; Dias, R. J.; Mali, K. K.; Ghorpade, V. S.; Salunkhe, N. H. Rectal Suppository as an Effective Alternative for Oral Administration. Res. J. Pharm. Technol. 2015, 8(6), 759–766. DOI: 10.5958/0974-360X.2015.00122.5.
  • Weers, J.; Lipid-based Compositions of Antiinfectives for Treating Pulmonary Infections and Methods of Use Thereof 2017.
  • Bind, A. K.; Gnanarajan, G.; Kothiyal, P. A Review: Sublingual Route for Systemic Drug Delivery. Int J Drug Res Technol. 2017, 3, 5.
  • Prittie, J.; Barton, L. Route of Nutrient Delivery. Clin Tech Small Anim Pract. 2004, 19(1), 6–8. DOI: 10.1053/S1096-2867(03)00078-1.
  • Kaur, I. P.; Verma, M. K. Process for Preparing Solid Lipid Sustained Release Nanoparticles for Delivery of Vitamins. US 9, 907, 758 B2, 2018.
  • Ho, D.-K.; Nichols, B. L. B.; Edgar, K. J.; Murgia, X.; Loretz, B.; Lehr, C.-M. Challenges and Strategies in Drug Delivery Systems for Treatment of Pulmonary Infections. Eur. J. Pharm. Biopharm. 2019, 144, 110–124. DOI: 10.1016/j.ejpb.2019.09.002.
  • Tanwar, H.; Sachdeva, R. Transdermal Drug Delivery System: A Review. Int. J. Pharm. Sci. Res. 2016, 7, 2274–2290.
  • Gupta, K. C.; Haider, A.; Choi, Y.; Kang, I. Nanofibrous Scaffolds in Biomedical Applications. Biomater. Res. 2014, 18(1), 5. DOI: 10.1186/2055-7124-18-5.
  • Stinson, J. A.; Raja, W. K.; Lee, S,; Kim, H. B.; Diwan, I.; Tutunjian, S.; Panilaitis, B.; Omenetto, F. G.; Tzipori, S.; Kaplan, D.L. Silk Fibroin Microneedles for Transdermal Vaccine Delivery. ACS Biomater. Sci. Eng. 2017, 3(3), 360–369.
  • Mangal, S.; Gao, W.; Li, T.; Zhou, Q. T. Pulmonary Delivery of Nanoparticle Chemotherapy for the Treatment of Lung Cancers: Challenges and Opportunities. Acta Pharmacol. Sin. 2017, 38, 782–797.
  • Chen, L.; Zhao, X. Characterization of Air Flow and Lung Function in the Pulmonary Acinus by Fluid-structure Interaction in Idiopathic Interstitial Pneumonias. PLoS One. 2019, 14(3), e0214441. DOI: 10.1371/journal.pone.0214441.
  • Deb, P. K.; Al-Attraqchi, O.; Chandrasekaran, B.; Paradkar, A.; Tekade, R. K. Protein/Peptide Drug Delivery Systems: Practical Considerations in Pharmaceutical Product Development. In Basic Fundam. Drug Deliv.; Elsevier Science: United Kingdom, 2019; pp 651–684.
  • Ensign, L. M.; Cone, R.; Hanes, J. Oral Drug Delivery with Polymeric Nanoparticles: The Gastrointestinal Mucus Barriers. Adv. Drug Deliv. Rev. 2012, 64(6), 557–570. DOI: 10.1016/j.addr.2011.12.009.
  • Battaglia, L.; Panciani, P. P.; Muntoni, E.; Capucchio, M. T.; Biasibetti, E.; De Bonis, P.; Mioletti, S.; Fontanella, M.; Swaminathan, S. Lipid Nanoparticles for Intranasal Administration: Application to Nose-to-brain Delivery. Expert Opin. Drug Deliv. 2018, 15(4), 369–378.
  • Goldberg, M.; Gomez-Orellana, I. Challenges for the Oral Delivery of Macromolecules. Nat. Rev. Drug Discov. 2003, 2(4), 289–295. DOI: 10.1038/nrd1067.
  • Donovan, M. D.; Flynn, G. L.; Amidon, G. L. Absorption of Polyethylene Glycols 600 through 2000: The Molecular Weight Dependence of Gastrointestinal and Nasal Absorption. Pharm. Res. 1990, 7(8), 863–868. DOI: 10.1023/A:1015921101465.
  • Camenisch, G.; Alsenz, J.; Van De Waterbeemd, H.; Folkers, G. Estimation of Permeability by Passive Diffusion through Caco-2 Cell Monolayers Using the Drugs’ Lipophilicity and Molecular Weight. Eur. J. Pharm. Sci. 1998, 6(4), 313–319. DOI: 10.1016/S0928-0987(97)10019-7.
  • Griffin, B. T.; O’Driscoll, C. M. Opportunities and Challenges for Oral Delivery of Hydrophobic versus Hydrophilic Peptide and Protein-like Drugs Using Lipid-based Technologies. Ther Deliv. 2011, 2(12), 1633–1653. DOI: 10.4155/tde.11.128.
  • Sudareva, N.; Suvorova, O.; Saprykina, N.; Vilesov, A.; Bel'tiukov, P.; Petunov, S.; Radilov, A. Two-level Delivery Systems for Oral Administration of Peptides and Proteins Based on Spore Capsules of Lycopodium Clavatum. J. Mater. Chem. B. 2017, 5(37), 7711–7720.
  • He, S.; Liu, Z.; Xu, D. Advance in Oral Delivery Systems for Therapeutic Protein. J. Drug Target. 2019, 27(3), 283–291. DOI: 10.1080/1061186X.2018.1486406.
  • Koziolek, M.; Carrière, F.; Porter, C. J. H. Lipids in the Stomach–implications for the Evaluation of Food Effects on Oral Drug Absorption. Pharm. Res. 2018, 35, 55. DOI: 10.1007/s11095-017-2289-x.
  • Amara, S.; Bourlieu, C.; Humbert, L.; Rainteau, D.; Carrière, F. Variations in Gastrointestinal Lipases, pH and Bile Acid Levels with Food Intake, Age and Diseases: Possible Impact on Oral Lipid-based Drug Delivery Systems. Adv. Drug Deliv. Rev. 2019, 142, 3–15. DOI: 10.1016/j.addr.2019.03.005.
  • Gul, K.; Tak, A.; Singh, A. K.; Singh, P.; Yousuf, B.; Wani, A. A. Chemistry, Encapsulation, and Health Benefits of β-carotene - A Review. Cogent Food Agric. 2015, 1(1), 1018696. DOI: 10.1080/23311932.2015.1018696.
  • Purohit, T. J.; Hanning, S. M.; Wu, Z. Advances in Rectal Drug Delivery Systems. Pharm. Dev. Technol. 2018, 23(10), 942–952. DOI: 10.1080/10837450.2018.1484766.
  • Ruiz, M. E.; Montoto, S. S. Routes of Drug Administration. In ADME Process. Pharm. Sci.; Springer International Publishing: Germany, 2018; pp 97–133.
  • Singh, C. K.; Saxena, S.; Yadav, M.; Samson, A. L. A Review on Novel Approaches for Colon Targeted Drug Delivery Systems. PharmaTutor. 2018, 6(7), 11–22. DOI: 10.29161/PT.v6.i7.2018.11.
  • Hua, S.;. Physiological and Pharmaceutical Considerations for Rectal Drug Formulations. Front. Pharmacol. 2019, 10, 1196. DOI: 10.3389/fphar.2019.01196.
  • Linakis, M. W.; Roberts, J. K.; Lala, A. C.; Spigarelli, M. G.; Medlicott, N. J.; Reith, D. M.; Ward, R. M.; Sherwin, C. M. Challenges Associated with Route of Administration in Neonatal Drug Delivery. Clin Pharmacokinet. 2016, 55, 185–196. DOI: 10.1007/s40262-015-0313-z.
  • Nunes, R.; Sarmento, B.; Das Neves, J. Formulation and Delivery of anti-HIV Rectal Microbicides: Advances and Challenges. J. Control. Release. 2014, 194, 278–294. DOI: 10.1016/j.jconrel.2014.09.013.
  • Mathur, P.; Rana, A.; Saroha, K.; Mathur, K. Sublingual Route: An Approach to Administered Drugs in Systemic Circulation. Int J Pharma Res Heal Sci. 2019, 7, 2869–2873. DOI: 10.21276/ijprhs.2019.01.01.
  • Pawar, P. P.; Ghorpade, H. S.; Kokane, B. A. Sublingual Route for Systemic Drug Delivery. J Drug Deliv Ther. 2018, 8(6–s), 340–343. DOI: 10.22270/jddt.v8i6-s.2097.
  • Morales, J. O.; Fathe, K. R.; Brunaugh, A.; Ferrati, S.; Li, S.; Montenegro-Nicolini, M.; Mousavikhamene, Z.; McConville, J.T.; Prausnitz, M. R.; Smyth, H. D. Challenges and Future Prospects for the Delivery of Biologics: Oral Mucosal, Pulmonary, and Transdermal Routes. Aaps J. 2017, 19(3), 652–668.
  • Doyle, G. R.; McCutcheon, J. A. Clinical Procedures for Safer Patient Care. Campus Manitoba. 2016, 225, 979-980.
  • Khan, A. R.; Liu, M.; Khan, M. W.; Zhai, G. Progress in Brain Targeting Drug Delivery System by Nasal Route. J. Control. Release. 2017, 268, 364–389.
  • Ozsoy, Y.; Güngör, S. Nasal Route: An Alternative Approach for Antiemetic Drug Delivery. Expert Opin. Drug Deliv. 2011, 8(11), 1439–1453. DOI: 10.1517/17425247.2011.607437.
  • Fasiolo, L. T.; Manniello, M. D.; Tratta, E.; Buttini, F.; Rossi, A.; Sonvico, F.; Bortolotti, F.; Russo, P.; Colombo, G. Opportunity and Challenges of Nasal Powders: Drug Formulation and Delivery. Eur. J. Pharm. Sci. 2018, 113, 2–17. DOI: 10.1016/j.ejps.2017.09.027.
  • Ghori, M. U.; Mahdi, M. H.; Smith, A. M.; Conway, B. R. Nasal Drug Delivery Systems: An Overview. Am. J. Pharmacol. Sci. 2015, 3, 110–119.
  • Martignoni, I.; Trotta, V.; Lee, W. H.; Loo, C. Y.; Pozzoli, M.; Young, P. M.; Scalia, S.; Traini, D. Resveratrol Solid Lipid Microparticles as Dry Powder Formulation for Nasal Delivery, Characterization and in Vitro Deposition Study. J. Microencapsul. 2016, 33(8), 735–742.
  • Sosnowski, T. R.; Rapiejko, P.; Sova, J.; Dobrowolska, K. Impact of Physicochemical Properties of Nasal Spray Products on Drug Deposition and Transport in the Pediatric Nasal Cavity Model. Int. J. Pharm. 2020, 574, 118911. DOI: 10.1016/j.ijpharm.2019.118911.
  • Gizurarson, S.;. The Effect of Cilia and the Mucociliary Clearance on Successful Drug Delivery. Biol. Pharm. Bull. 2015, 38(4), 497-506.
  • Brunaugh, A. D.; Smyth, H. D. C.; Williams, R. O. Essential Pharmaceutics; Springer International Publishing: Germany, 2019.
  • Agu, R. U.;. Challenges in Nasal Drug Absorption: How Far Have We Come? Ther Deliv. 2016, 7(7), 495–510. DOI: 10.4155/tde-2016-0022.
  • Warnken, Z. N.; Smyth, H. D. C.; Davis, D. A.; Weitman, S.; Kuhn, J. G.; Williams III, R. O. Personalized Medicine in Nasal Delivery: The Use of Patient-specific Administration Parameters to Improve Nasal Drug Targeting Using 3D-printed Nasal Replica Casts. Mol. Pharm. 2018, 15, 1392–1402. DOI: 10.1021/acs.molpharmaceut.7b00702.
  • Illum, L.;. Nasal Drug Delivery—possibilities, Problems and Solutions. J. Control. Release. 2003, 87(1–3), 187–198. DOI: 10.1016/S0168-3659(02)00363-2.
  • Alkilani, A.; McCrudden, M. T.; Donnelly, R. Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the Stratum Corneum. Pharmaceutics. 2015, 7(4), 438–470. DOI: 10.3390/pharmaceutics7040438.
  • Han, S. B.; Kwon, S. S.; Jeong, Y. M.; Yu, E. R.; Park, S. N. Physical Characterization and in Vitro Skin Permeation of Solid Lipid Nanoparticles for Transdermal Delivery of Quercetin. Int. J. Cosmet. Sci. 2014, 36(6), 588–597. DOI: 10.1111/ics.12160.
  • Alsaqr, A.; Rasoully, M.; Musteata, F. M. Investigating Transdermal Delivery of Vitamin D 3. AAPS PharmSciTech. 2015, 16(4), 963–972. DOI: 10.1208/s12249-015-0291-3.
  • Park, S. N.; Jo, N. R.; Jeon, S. H. Chitosan-coated Liposomes for Enhanced Skin Permeation of Resveratrol. J. Ind. Eng. Chem. 2014, 20(4), 1481–1485. DOI: 10.1016/j.jiec.2013.07.035.
  • Prausnitz, M. R.; Langer, R. Transdermal Drug Delivery. Nat. Biotechnol. 2008, 26(11), 1261. DOI: 10.1038/nbt.1504.
  • Ashim K.; Mitra.; Cholkar K.; Mandal A. In Micro and Nano Technologies, Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices, Elsevier Science: Netherlands, 2017; 331-353. DOI: 10.1016/B978-0-323-42978-8.00013-9.
  • Das Kurmi, B.; Tekchandani, P.; Paliwal, R.; Rai Paliwal, S. Transdermal Drug Delivery: Opportunities and Challenges for Controlled Delivery of Therapeutic Agents Using Nanocarriers. Curr. Drug Metab. 2017, 18(5), 481–495. DOI: 10.2174/1389200218666170222150555.
  • Van Gele, M.; Geusens, B.; Brochez, L.; Speeckaert, R.; Lambert, J. Three-dimensional Skin Models as Tools for Transdermal Drug Delivery: Challenges and Limitations. Expert Opin. Drug Deliv. 2011, 8(6), 705–720. DOI: 10.1517/17425247.2011.568937.
  • Bhowmick, M.; Sengodan, T.; Thangavel, S. Challenges Facing Transdermal Drug Delivery Systems: A Conceptual Approach. Res J Sci Technol. 2012, 4(5), 197-200.
  • Geusens, B.; Sanders, N.; Prow, T.; Van Gele, M.; Lambert, J. Cutaneous Short-interfering RNA Therapy. Expert Opin. Drug Deliv. 2009, 6(12), 1333–1349. DOI: 10.1517/17425240903304032.
  • Javadzadeh, Y.; Yaqoubi, S. Therapeutic Nanostructures for Pulmonary Drug Delivery. In Nanostructures Drug Deliv.; Elsevier: Netherlands, 2017; pp 619–638.
  • Patil, T. S.; Deshpande, A. S.; Deshpande, S.; Shende, P. Targeting Pulmonary Tuberculosis Using Nanocarrier-based Dry Powder Inhalation: Current Status and Futuristic Need. J. Drug Target. 2019, 27(1), 12–27. DOI: 10.1080/1061186X.2018.1455842.
  • Machira, E. P. M.; Obimbo, E. M.; Wamalwa, D.; Gachare, L. N. Assessment of Inhalation Technique among Asthmatic Children and Their Carers at the Kenyatta National Hospital, Kenya. African J Respir Med, 2011, 7, 19–22.
  • Deng, Q.; Deng, L.; Miao, Y.; Guo, X.; Li, Y. Particle Deposition in the Human Lung: Health Implications of Particulate Matter from Different Sources. Environ. Res. 2019, 169, 237–245. DOI: 10.1016/j.envres.2018.11.014.
  • Edwards, D. A.; Ben-Jebria, A.; Langer, R. Recent Advances in Pulmonary Drug Delivery Using Large, Porous Inhaled Particles. J. Appl. Physiol. 1998, 85, 379–385. DOI: 10.1152/jappl.1998.85.2.379.
  • Ungaro, F.; Giovino, C.; Coletta, C.; Sorrentino, R.; Miro, A.; Quaglia, F. Engineering Gas-foamed Large Porous Particles for Efficient Local Delivery of Macromolecules to the Lung. Eur. J. Pharm. Sci. 2010, 41, 60–70.
  • Watanabe, J.; Watanabe, M. Anatomical Factors of Human Respiratory Tract Influencing Volume Flow Rate and Number of Particles Arriving at Each Bronchus. Biocybern Biomed Eng. 2019. DOI: 10.1016/j.bbe.2019.03.004.
  • Amulya, C.; Gupta, M. E.; Babu, I. S. A Review on Alternative Routes for Insulin Administration. World J. Pharm. Res, 2019, 8, 1471-1479.
  • Tena, A. F.; Clarà, P. C. Deposition of Inhaled Particles in the Lungs. Curr Biol. 2019, 27(14), 713-715.
  • Nahar, K.; Gupta, N.; Gauvin, R.; Absar, S.; Patel, B.; Gupta, V.; Khademhosseini, A.; Ahsan, F. In Vitro, in Vivo and Ex Vivo Models for Studying Particle Deposition and Drug Absorption of Inhaled Pharmaceuticals. Eur. J. Pharm. Sci. 2013, 49(5), 805–818.
  • Verma, R. K.; Ibrahim, M.; Garcia-Contreras, L. Lung Anatomy and Physiology and Their Implications for Pulmonary Drug Delivery. In Pulm Drug Deliv Adv Challenges, Wiley: United Kingdom, 2015; pp 1–18.
  • Puisney, C.; Baeza-Squiban, A.; Boland, S. Mechanisms of Uptake and Translocation of Nanomaterials in the Lung. In Cell. Mol. Toxicol. Nanoparticles; Springer: Germany, 2018; pp 21–36.
  • Sosnowski, T. R.;. Particles on the Lung Surface-physicochemical and Hydrodynamic Effects. Curr. Opin. Colloid Interface Sci. 2018, 36, 1–9. DOI: 10.1016/j.cocis.2017.12.003.
  • Sosnowski, T. R.;. Influence of Insoluble Aerosol Deposits on the Surface Activity of the Pulmonary Surfactant: A Possible Mechanism of Alveolar Clearance Retardation? Aerosol Sci. Technol. 2000, 32(1), 52–60. DOI: 10.1080/027868200303920.
  • Rogueda, P. G. A.; Traini, D. The Nanoscale in Pulmonary Delivery. Part 1: Deposition, Fate, Toxicology and Effects. Expert Opin. Drug Deliv. 2007, 4(6), 595–606. DOI: 10.1517/17425247.4.6.595.
  • Chen, Q.; Hu, C.; Yu, H.; Shen, K.; Assam, P.N.; Gillen, M.; Liu, Y.; Dorinsky, P. Pharmacokinetics and Tolerability of Budesonide/Glycopyrronium/Formoterol Fumarate Dihydrate and Glycopyrronium/Formoterol Fumarate Dihydrate Metered Dose Inhalers in Healthy Chinese Adults: A Randomized, Double-Blind, Parallel-Group Study. Clin. Ther. 2019, 41(5), 897-909.
  • Clark, S.; Pawlyn, J. Inhaler and Nebuliser Technique for People with a Learning Disability. Learn Disabil Res Pract. 2019, 22(1), 58384. DOI: 10.7748/ldp.2019.e1941.
  • Cheng, Y. S.;. Mechanisms of Pharmaceutical Aerosol Deposition in the Respiratory Tract. AAPS PharmSciTech. 2014, 15(3), 630–640. DOI: 10.1208/s12249-014-0092-0.
  • Khan, I.; Elhissi, A.; Shah, M.; Alhnan, M. A.; Ahmed, W. Liposome-based Carrier Systems and Devices Used for Pulmonary Drug Delivery. In Biomater. Med. Tribol.; Elsevier Science: United Kingdom, 2013; pp 395–443.
  • Sinsuebpol, C.; Chatchawalsaisin, J.; Kulvanich, P. Preparation and in Vivo Absorption Evaluation of Spray Dried Powders Containing Salmon Calcitonin Loaded Chitosan Nanoparticles for Pulmonary Delivery. Drug Des. Devel. Ther. 2013, 7, 861. DOI: 10.2147/DDDT.S47681.
  • Falcon-Rodriguez, C. I.; Osornio-Vargas, A. R.; Sada-Ovalle, I.; Segura-Medina, P. Aeroparticles, Composition, and Lung Diseases. Front. Immunol. 2016, 7, 3. DOI: 10.3389/fimmu.2016.00003.
  • Chen, X.; Feng, Y.; Zhong, W.; Sun, B.; Tao, F. Numerical Investigation of Particle Deposition in a Triple Bifurcation Airway Due to Gravitational Sedimentation and Inertial Impaction. Powder Technol. 2018, 323, 284–293. DOI: 10.1016/j.powtec.2017.09.050.
  • Khajeh-Hosseini-Dalasm, N.; Longest, P. W. Deposition of Particles in the Alveolar Airways: Inhalation and Breath-hold with Pharmaceutical Aerosols. J. Aerosol Sci. 2015, 79, 15–30. DOI: 10.1016/j.jaerosci.2014.09.003.
  • Darquenne, C.;. Aerosol Deposition in Health and Disease. J Aerosol Med Pulm Drug Deliv. 2012, 25(3), 140–147. DOI: 10.1089/jamp.2011.0916.
  • Hickey, A. J.; Pharmaceutical Inhalation Aerosol Technology. 2003. DOI: 10.1201/9780203912898.
  • Hofemeier, P.; Sznitman, J. Revisiting Pulmonary Acinar Particle Transport: Convection, Sedimentation, Diffusion, and Their Interplay. J. Appl. Physiol. 2015, 118(11), 1375–1385. DOI: 10.1152/japplphysiol.01117.2014.
  • Murgia, X.; Pawelzyk, P.; Schaefer, U. F.; Wagner, C.; Willenbacher, N.; Lehr, C.-M. Size-limited Penetration of Nanoparticles into Porcine Respiratory Mucus after Aerosol Deposition. Biomacromolecules. 2016, 17(4), 1536–1542. DOI: 10.1021/acs.biomac.6b00164.
  • Asgharian, B.; Owen, T. P.; Kuempel, E. D.; Jarabek, A. M. Dosimetry of Inhaled Elongate Mineral Particles in the Respiratory Tract: The Impact of Shape Factor. Toxicol. Appl. Pharmacol. 2018, 361, 27–35. DOI: 10.1016/j.taap.2018.05.001.
  • Asgharian, B.; Yu, C. P. Deposition of Inhaled Fibrous Particles in the Human Lung. J Aerosol Med. 1988, 1(1), 37–50. DOI: 10.1089/jam.1988.1.37.
  • Koullapis, P. G.; Kassinos, S. C.; Bivolarova, M. P.; Melikov, A. K. Particle Deposition in a Realistic Geometry of the Human Conducting Airways: Effects of Inlet Velocity Profile, Inhalation Flowrate and Electrostatic Charge. J. Biomech. 2016, 49(11), 2201–2212. DOI: 10.1016/j.jbiomech.2015.11.029.
  • Johnson, T. J.; Irwin, M.; Symonds, J. P. R.; Olfert, J. S.; Boies, A. M. Measuring Aerosol Size Distributions with the Aerodynamic Aerosol Classifier. Aerosol Sci. Technol. 2018, 52, 655–665. DOI: 10.1080/02786826.2018.1440063.
  • Wilson, E. M.; Luft, J. C.; DeSimone, J. M. Formulation of High-Performance Dry Powder Aerosols for Pulmonary Protein Delivery. Pharm. Res. 2018, 35(10), 195. DOI: 10.1007/s11095-018-2452-z.
  • Longest, P. W.; Jr, M.; James, T.; Hindle, M. Characterization of Nano-aerosol Size Change during Enhanced Condensational Growth. Aerosol Sci. Technol. 2010, 44, 473–483. DOI: 10.1080/02786821003749525.
  • Chalvatzaki, E.; Lazaridis, M. A Dosimetry Model of Hygroscopic Particle Growth in the Human Respiratory Tract. Air Qual Atmos Heal. 2018, 11, 471–482. DOI: 10.1007/s11869-018-0555-7.
  • Ching, J.; Kajino, M. Aerosol Mixing State Matters for Particles Deposition in Human Respiratory System. Sci. Rep. 2018, 8(1), 8864. DOI: 10.1038/s41598-018-27156-z.
  • Kadota, K.; Imanaka, A.; Shimazaki, M.; Takemiya, T.; Kubo, K.; Uchiyama, H.; Tozuka, Y. Effects of Inhalation Procedure on Particle Behavior and Deposition in the Airways Analyzed by Numerical Simulation. J. Taiwan Inst. Chem. Eng. 2018, 90, 44–50. DOI: 10.1016/j.jtice.2017.11.008.
  • Yang, Y.; Martonen, T.; Caillibotte, G.; Katz, I.; Sbirlea-Apiou, G. Deposition Mechanics of Pharmaceutical Particles in Human Airways. In Inhal. Aerosols; CRC Press: United States, 2006; pp 27–56.
  • Martins, V.; Minguillón, M. C.; Moreno, T.; Querol, X.; de Miguel, E.; Capdevila, M.; Centelles, S.; Lazaridis, M. Deposition of Aerosol Particles from a Subway Microenvironment in the Human Respiratory Tract. J. Aerosol Sci. 2015, 90, 103–113. DOI: 10.1016/j.jaerosci.2015.08.008.
  • Fröhlich, E.; Mercuri, A.; Wu, S.; Salar-Behzadi, S. Measurements of Deposition, Lung Surface Area and Lung Fluid for Simulation of Inhaled Compounds. Front. Pharmacol. 2016, 7, 181. DOI: 10.3389/fphar.2016.00181.
  • Crowder, T. M.; Rosati, J. A.; Schroeter, J. D.; Hickey, A. J.; Martonen, T. B. Fundamental Effects of Particle Morphology on Lung Delivery: Predictions of Stokes’ Law and the Particular Relevance to Dry Powder Inhaler Formulation and Development. Pharm. Res. 2002, 19(3), 239–245. DOI: 10.1023/A:1014426530935.
  • Hickey, A. J.; Edwards, D. A. Density and Shape Factor Terms in Stokes’ Equation for Aerodynamic Behavior of Aerosols. J. Pharm. Sci. 2018, 107(3), 794–796. DOI: 10.1016/j.xphs.2017.11.005.
  • Davies, C. N.;. Definitive Equations for the Fluid Resistance of Spheres. Proc Phys Soc. 1945, 57, 259. DOI: 10.1088/0959-5309/57/4/301.
  • Chow, K.; Tong, H. H. Y.; Lum, S.; Chow, A. H. L. Engineering of Pharmaceutical Materials: An Industrial Perspective. J. Pharm. Sci. 2008, 97(8), 2855–2877. DOI: 10.1002/jps.21212.
  • Hussain, M.; Madl, P.; Khan, A. Lung Deposition Predictions of Airborne Particles and the Emergence of Contemporary Diseases, Part-I. Health (Irvine Calif). 2011, 2, 51–59.
  • Depreter, F.; Pilcer, G.; Amighi, K. Inhaled Proteins: Challenges and Perspectives. Int. J. Pharm. 2013, 447, 251–280.
  • Brown, J. S.;. Deposition of Particles. In Comp. Biol. Norm. Lung; Elsevier Science: Netherlands, 2015; pp 513–536.
  • Ibrahim, M.; Garcia-Contreras, L. Mechanisms of Absorption and Elimination of Drugs Administered by Inhalation. Ther Deliv. 2013, 4(8), 1027–1045. DOI: 10.4155/tde.13.67.
  • Frank, J. A.;. Claudins and Alveolar Epithelial Barrier Function in the Lung. Ann. N Y Acad. Sci. 2012, 1257(1), 175. DOI: 10.1111/j.1749-6632.2012.06533.x.
  • Schneeberger, E. E.; Lynch, R. D. The Tight Junction: A Multifunctional Complex. Am J Physiol Physiol. 2004, 286, C1213–C1228. DOI: 10.1152/ajpcell.00558.2003.
  • Stewart, C. E.; Torr, E. E.; Jamili, M.; Nur, H.; Bosquillon, C.; Sayers, I. Evaluation of Differentiated Human Bronchial Epithelial Cell Culture Systems for Asthma Research. J Allergy. 2012, 2012. DOI:10.1155/2012/943982.
  • Patton, J. S.; Byron, P. R. Inhaling Medicines: Delivering Drugs to the Body through the Lungs. Nat. Rev. Drug Discov. 2007, 6(1), 67. DOI: 10.1038/nrd2153.
  • Florea, B. I.; Cassara, M. L.; Junginger, H. E.; Borchard, G. Drug Transport and Metabolism Characteristics of the Human Airway Epithelial Cell Line Calu-3. J. Control. Release. 2003, 87(1–3), 131–138. DOI: 10.1016/S0168-3659(02)00356-5.
  • Vllasaliu, D.; Casettari, L.; Fowler, R.; Exposito-Harris, R.; Garnett, M.; Illum, L.; Stolnik, S. Absorption-promoting Effects of Chitosan in Airway and Intestinal Cell Lines: A Comparative Study. Int. J. Pharm. 2012, 430, 151–160. DOI: 10.1016/j.ijpharm.2012.04.012.
  • Sun, J.; Sakai, S.; Tauchi, Y.; Deguchi, Y.; Chen, J.; Zhang, R.; Morimoto, K. Determination of Lipophilicity of Two Quinolone Antibacterials, Ciprofloxacin and Grepafloxacin, in the Protonation Equilibrium. Eur. J. Pharm. Biopharm. 2002, 54(1), 51–58.
  • Liang, Z.; Ni, R.; Zhou, J.; Mao, S. Recent Advances in Controlled Pulmonary Drug Delivery. Drug Discov. Today. 2015, 20(3), 380–389. DOI: 10.1016/j.drudis.2014.09.020.
  • Forbes, B.; Ehrhardt, C. Human Respiratory Epithelial Cell Culture for Drug Delivery Applications. Eur. J. Pharm. Biopharm. 2005, 60(2), 193–205. DOI: 10.1016/j.ejpb.2005.02.010.
  • Bosquillon, C.;. Drug Transporters in the Lung’ Do They Play a Role in the Biopharmaceutics of Inhaled Drugs? J. Pharm. Sci. 2010, 99(5), 2240–2255. DOI: 10.1002/jps.21995.
  • Groneberg DA, Eynott PR, Döring F, Dinh QT, Oates T, Barnes PJ, et al. Distribution and Function of the Peptide Transporter PEPT2 in Normal and Cystic Fibrosis Human Lung. Thorax. 2002, 57(1), 55–60. doi:10.1136/thorax.57.1.55.
  • Roth, M.; Obaidat, A.; Hagenbuch, B. OATPs, OATs and OCTs: The Organic Anion and Cation Transporters of the SLCO and SLC22A Gene Superfamilies. Br. J. Pharmacol. 2012, 165, 1260–1287.
  • Zelikin, A. N.; Ehrhardt, C.; Healy, A. M. Materials and Methods for Delivery of Biological Drugs. Nat. Chem. 2016, 8(11), 997. DOI: 10.1038/nchem.2629.
  • Gumbleton, M.; Hollins, A. J.; Omidi, Y.; Campbell, L.; Taylor, G. Targeting Caveolae for Vesicular Drug Transport. J. Control. Release. 2003, 87(1–3), 139–151. DOI: 10.1016/S0168-3659(02)00358-9.
  • Bourquin, J.; Milosevic, A.; Hauser, D.; Lehner, R.; Blank, F.; Petri‐Fink, A.; Rothen‐Rutishauser. Biodistribution, Clearance, and Long-term Fate of Clinically Relevant Nanomaterials. Adv. Mater. 2018, 30, 1704307.
  • Parkar, N. S.; Akpa, B. S.; Nitsche, L. C.; Wedgewood, L. E.; Place, A. T.; Sverdlov, M. S.; Chaga, O.; Minshall, R. D. Vesicle Formation and Endocytosis: Function, Machinery, Mechanisms, and Modeling. Antioxid. Redox Signal. 2009, 11(6), 1301–1312.
  • Herd, H.; Daum, N.; Jones, A. T.; Huwer, H.; Ghandehari, H.; Lehr, C.-M. Nanoparticle Geometry and Surface Orientation Influence Mode of Cellular Uptake. ACS Nano. 2013, 7(3), 1961–1973. DOI: 10.1021/nn304439f.
  • Focaroli, S.; Mah, P. T.; Hastedt, J. E.; Gitlin, I.; Oscarson, S.; Fahy, J. V.; Healy, A. M. A Design of Experiment (Doe) Approach to Optimise Spray Drying Process Conditions for the Production of Trehalose/leucine Formulations with Application in Pulmonary Delivery. Int. J. Pharm. 2019. DOI:10.1016/j.ijpharm.2019.03.004.
  • Basak, S.; Chen, D.-R.; Biswas, P. Electrospray of Ionic Precursor Solutions to Synthesize Iron Oxide Nanoparticles: Modified Scaling Law. Chem. Eng. Sci. 2007, 62(4), 1263–1268. DOI: 10.1016/j.ces.2006.11.029.
  • Mehta, P. P.; Ghoshal, D.; Pawar, A. P.; Kadam, S. S.; Dhapte-Pawar, V. S. Recent Advances in Inhalable Liposomes for Treatment of Pulmonary Diseases: Concept to Clinical Stance. In J Drug Deliv Sci Technol, 2020, 56, 101509. DOI:10.1016/j.jddst.2020.101509.
  • Price, D. N.; Kunda, N. K.; Muttil, P. Challenges Associated with the Pulmonary Delivery of Therapeutic Dry Powders for Preclinical Testing. KONA Powder Part. J. 2019, 36, 129–144. DOI: 10.14356/kona.2019008.
  • Mack, G. S. Pfizer Dumps Exubera. Nat. Biotechnol. 2007, 25(12), 1331–1332. DOI: 10.1038/nbt1207-1331.
  • Clark, A. R. Medical Aerosol Inhalers: Past, Present, and Future. Aerosol Sci. Technol. 1995, 22(4), 374–391. DOI: 10.1080/02786829408959755.
  • FDA issues guidance on quality considerations for inhaled drugs, Posted on 15.06.2018 n.d. http://www.gabionline.net/Guidelines/FDA-issues-guidance-on-quality-considerations-for-inhaled-drugs ( accessed April 18, 2020).
  • Bailey, C. J.; Barnett, A. H. Why Is Exubera Being Withdrawn? Bmj. 2007, 335(7630), 1156. DOI: 10.1136/bmj.39409.507662.94.
  • Experts to Consider Withdrawal of Asthma Drugs n.d. https://www.nytimes.com/2005/07/13/health/experts-to-consider-withdrawal-of-asthma-drugs.html?auth=link-dismiss-google1tap ( accessed April 19, 2020).
  • Fröhlich, E.; Salar-Behzadi, S. Toxicological Assessment of Inhaled Nanoparticles: Role of in Vivo, Ex Vivo, in Vitro, and in Silico Studies. Int. J. Mol. Sci. 2014, 15(3), 4795–4822. DOI: 10.3390/ijms15034795.
  • Seville, P. C.; Kellaway, I. W.; Birchall, J. C. Preparation of Dry Powder Dispersions for Non-viral Gene Delivery by Freeze-drying and Spray-drying. J Gene Med, 2002, 4(4), 428-437.
  • Verma, P.; Thakur, A. S.; Deshmukh, K.; Jha, A. K.; Verma, S. Routes of Drug Administration. Int J Pharm Stud Res. 2010, 1, 54–59.
  • Kestenbaum, M. G.; Vilches, A. O.; Messersmith, S.; Connor, S. R.; Fine, P. G.; Murphy, B.; Davis, M.; Muir, J. C. Alternative Routes to Oral Opioid Administration in Palliative Care: A Review and Clinical Summary. Pain Med. 2014, 15(7), 1129–1153.
  • Tangri, P.; Road, D. Approaches to Pulmonary Drug Delivery Systems. Ijpsr. 2011, 2, 1616–1622.
  • Singh, M.; Chitranshi, N.; Singh, A. P.; Arora, V.; Siddiqi, A. W. An Overview on Fast Disintegrating Sublingual Tablets. Int J Drug Deliv. 2012, 4, 407.
  • Chhajed, S.; Sangale, S.; Barhate, S. D. Advantageous Nasal Drug Delivery System: A Review. Int. J. Pharm. Sci. Res. 2011, 2, 1322.
  • Chowdhury, P. H.; He, Q.; Lasitza Male, T.; Brune, W. H.; Rudich, Y.; Pardo, M. Exposure of Lung Epithelial Cells to Photochemically Aged Secondary Organic Aerosol Shows Increased Toxic Effects. Environ. Sci. Technol. Lett. 2018, 5(7), 424–430. DOI: 10.1021/acs.estlett.8b00256.
  • Martonen, T. B.; Bell, K. A.; Phalen, R. F.; Wilson, A. F.; Ho, A. Growth Rate Measurements and Deposition Modelling of Hygroscopic Aerosols in Human Tracheobronchial Models. In Inhaled Part. V; Elsevier Science: United Kingdom, 1982; pp 93–108.
  • Sansone, F.; Aquino, R. P.; Del Gaudio, P.; Colombo, P.; Russo, P. Physical Characteristics and Aerosol Performance of Naringin Dry Powders for Pulmonary Delivery Prepared by Spray-drying. Eur. J. Pharm. Biopharm. 2009, 72, 206–213.
  • McClure, R.; Ong, H.; Janve, V.; Barton, S.; Zhu, M.; Li, B.; Dawes, M.; Jerome, W. G.; Anderson, A.; Massion, P.; Gore, J. C. Aerosol Delivery of Curcumin Reduced amyloid-$β$ Deposition and Improved Cognitive Performance in a Transgenic Model of Alzheimer’s Disease. J. Alzheimer’s Dis. 2017, 55, 797–811. DOI: 10.3233/JAD-160289.
  • Fu, H.; He, J.; Mei, F.; Zhang, Q.; Hara, Y.; Ryota, S.; Lubet, R. A.; Chen, R.; Chen, D. R.; You, M. Lung Cancer Inhibitory Effect of Epigallocatechin-3-gallate Is Dependent on Its Presence in a Complex Mixture (Polyphenon E). Cancer Prev. Res. 2009, 2(6), 531–537.
  • Gandhi, M.; Pandya, T.; Gandhi, R.; Patel, S.; Mashru, R.; Misra, A.; Tandel, H. Inhalable Liposomal Dry Powder of gemcitabine-HCl: Formulation, in Vitro Characterization and in Vivo Studies. Int. J. Pharm. 2015, 496(2), 886–895.
  • Chow, M. Y.; Qiu, Y.; Lo, F. F.; Lin, H. H.; Chan, H. K.; Kwok, P. C.; Lam, J. K. Inhaled Powder Formulation of Naked siRNA Using Spray Drying Technology with L-leucine as Dispersion Enhancer. Int. J. Pharm. 2017, 530, 40–52. DOI: 10.1016/j.ijpharm.2017.07.013.
  • Tse, J. Y.; Kadota, K.; Hirata, Y.; Taniguchi, M.; Uchiyama, H.; Tozuka, Y. Characterization of Matrix Embedded Formulations for Combination Spray-dried Particles Comprising Pyrazinamide and Rifampicin. J. Drug Deliv. Sci. Technol. 2018, 48, 137–144. DOI: 10.1016/j.jddst.2018.09.013.
  • Poursina, N.; Vatanara, A.; Rouini, M. R.; Gilani, K.; Najafabadi, A. R. The Effect of Excipients on the Stability and Aerosol Performance of Salmon Calcitonin Dry Powder Inhalers Prepared via Spray Freeze Drying Process. Acta. Pharm. 2016, 66(2), 207–218. DOI: 10.1515/acph-2016-0012.
  • O’hara, P.; Hickey, A. J. Respirable PLGA Microspheres Containing Rifampicin for the Treatment of Tuberculosis: Manufacture and Characterization. Pharm. Res. 2000, 17(8), 955–961. DOI: 10.1023/A:1007527204887.
  • Vaidya, B.; Kulkarni, N. S.; Shukla, S. K.; Parvathaneni, V.; Chauhan, G.; Damon, J. K.; Sarode, A.; Garcia, J. V.; Kunda, N.; Mitragotri, S.; Gupta, V. Development of Inhalable Quinacrine Loaded Bovine Serum Albumin Modified Cationic Nanoparticles: Repurposing Quinacrine for Lung Cancer Therapeutics. Int. J. Pharm. 2020, 577, 118995. DOI: 10.1016/j.ijpharm.2019.118995.
  • Piao, C.; Kim, G.; Ha, J.; Lee, M. Inhalable Gene Delivery System Using a Cationic RAGE-antagonist Peptide for Gene Delivery to Inflammatory Lung Cells. ACS Biomater. Sci. Eng. 2019, 5(5), 2247–2257. DOI: 10.1021/acsbiomaterials.9b00004.
  • Barandalla Sobrados, M.; Carullo, P.; Salvarani, N.; Condorelli, G.; Miragoli, M.; Catalucci, D. 3072 Myocardial Delivery of Therapeutic miR-133 via Inhalable Nanoparticles Prevents the Pathologic Development in a Model of Ventricular Pressure Overload. Eur. Heart J. 2019, 40(Supplement_1), ehz745–0028. DOI: 10.1093/eurheartj/ehz745.0028.
  • Anzctr n.d. https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=373982 (accessed April 13, 2020).
  • Lonhala® Magnair® n.d. https://www.lonhalamagnair.com/(accessed April 13, 2020).
  • Pulmozyme® n.d. https://www.pulmozyme.com/(accessed April 13, 2020).
  • Symbicort® n.d. https://www.mysymbicort.com/asthma.html (accessed April 13, 2020).
  • PodhalerTM n.d. https://www.cff.org/Trials/pipeline/details/14/Tobramycin-Inhaled-Powder-TOBI-Podhaler (accessed April 13, 2020).
  • Gonda, I.; Blanchard, J.; Cipolla, D. C.; Bermudez, L. E. M. Liposomal Ciprofloxacin Formulations with Activity against Non-tuberculous Mycobacteria 2017.
  • Wang, Y.; Nebulization of Monoclonal Antibodies for Treating Pulmonary Diseases 2017.
  • Ishwarya, S. P.; Anandharamakrishnan, C.; Stapley, A. G. F. Spray-freeze-drying: A Novel Process for the Drying of Foods and Bioproducts. Trends Food Sci. Technol. 2015, 41(2), 161–181. DOI: 10.1016/j.tifs.2014.10.008.
  • Lavanya, M. N.; Kathiravan, T.; Moses, J. A.; Anandharamakrishnan, C. Influence of Spray-drying Conditions on Microencapsulation of Fish Oil and Chia Oil. Dry Technol. 2019, 38(3), 279-292. DOI: 10.1080/07373937.2018.1553181.
  • Vehring, R.; Foss, W. R.; Lechuga-Ballesteros, D. Particle Formation in Spray Drying. J. Aerosol Sci. 2007, 38(7), 728–746. DOI: 10.1016/j.jaerosci.2007.04.005.
  • Vicente, J.; Pinto, J.; Menezes, J.; Gaspar, F. Fundamental Analysis of Particle Formation in Spray Drying. Powder Technol. 2013, 247, 1–7. DOI: 10.1016/j.powtec.2013.06.038.
  • Elversson, J.; Millqvist-Fureby, A. Particle Size and Density in Spray Drying—effects of Carbohydrate Properties. J. Pharm. Sci. 2005, 94(9), 2049–2060. DOI: 10.1002/jps.20418.
  • Schiffter, H.; Lee, G. Single-droplet Evaporation Kinetics and Particle Formation in an Acoustic Levitator. Part 1: Evaporation of Water Microdroplets Assessed Using Boundary-layer and Acoustic Levitation Theories. J. Pharm. Sci. 2007, 96, 2274–2283. DOI: 10.1002/jps.20860.
  • Liao, Q.; Yip, L.; Chow, M. Y.; Chow, S. F.; Chan, H. K.; Kwok, P. C.; Lam, J. K. Porous and Highly Dispersible Voriconazole Dry Powders Produced by Spray Freeze Drying for Pulmonary Delivery with Efficient Lung Deposition. Int. J. Pharm. 2019, 560, 144–154. DOI: 10.1016/j.ijpharm.2019.01.057.
  • Hickey, A. J.; Mansour, H. M. Inhalation Aerosols: Physical and Biological Basis for Therapy; United States: CRC press, 2019; Vol. 1.
  • Taki, M.; Tagami, T.; Fukushige, K.; Ozeki, T. Fabrication of Nanocomposite Particles Using a Two-solution Mixing-type Spray Nozzle for Use in an Inhaled Curcumin Formulation. Int. J. Pharm. 2016, 511(1), 104–110. DOI: 10.1016/j.ijpharm.2016.06.134.
  • Trotta, V.; Lee, W.-H.; Loo, C.-Y.; Young, P. M.; Traini, D.; Scalia, S. Co-spray Dried Resveratrol and Budesonide Inhalation Formulation for Reducing Inflammation and Oxidative Stress in Rat Alveolar Macrophages. Eur. J. Pharm. Sci. 2016, 86, 20–28. DOI: 10.1016/j.ejps.2016.02.018.
  • Sheth, P.; Myrdal, P.B. Excipients Utilized for Modifying Pulmonary Drug Release. In Control. Pulm. Drug Deliv.; Springer: New York,2011; 237–263. DOI:10.1007/978-1-4419-9745-6.
  • Bürki, K.; Jeon, I.; Arpagaus, C.; Betz, G. New Insights into Respirable Protein Powder Preparation Using a Nano Spray Dryer. Int. J. Pharm. 2011, 408, 248–256. DOI: 10.1016/j.ijpharm.2011.02.012.
  • Elhissi, A.;. Liposomes for Pulmonary Drug Delivery: The Role of Formulation and Inhalation Device Design. Curr. Pharm. Des. 2017, 23(3), 362–372. DOI: 10.2174/1381612823666161116114732.
  • D’Addio, S. M.; Chan, J. G. Y.; Kwok, P. C. L.; Benson, B. R.; Prud’homme, R. K.; Chan, H.-K. Aerosol Delivery of Nanoparticles in Uniform Mannitol Carriers Formulated by Ultrasonic Spray Freeze Drying. Pharm. Res. 2013, 30, 2891–2901. DOI: 10.1007/s11095-013-1120-6.
  • Arpagaus, C.; Meuri, M. Laboratory Scale Spray Drying of Inhalable Particles: A Review. 2010.
  • Dutta, S.; Moses, J. A.; Anandharamakrishnan, C. Modern Frontiers and Applications of Spray‐freeze‐drying in Design of Food and Biological Supplements. J. Food Process Eng. 2018, 41, e12881. DOI: 10.1111/jfpe.12881.
  • Al-Hussein, A.; Gieseler, H. The Effect of Mannitol Crystallization in Mannitol–sucrose Systems on LDH Stability during Freeze-drying. J. Pharm. Sci. 2012, 101(7), 2534–2544. DOI: 10.1002/jps.23173.
  • Carvalho, T. C.; Peters, J. I. Influence of Particle Size on Regional Lung Deposition - What Evidence Is There? Respiratory Drug Deliv. 2010, 2, 469-476.
  • Liao, X.; Krishnamurthy, R.; Suryanarayanan, R. Influence of the Active Pharmaceutical Ingredient Concentration on the Physical State of Mannitol—implications in Freeze-drying. Pharm. Res. 2005, 22(11), 1978–1985. DOI: 10.1007/s11095-005-7625-x.
  • Patil, J. S.; Devi, V. K.; Devi, K.; Sarasija, S. A Novel Approach for Lung Delivery of Rifampicin-loaded Liposomes in Dry Powder Form for the Treatment of Tuberculosis. Lung India Off Organ Indian Chest Soc. 2015, 32(4), 331. DOI: 10.4103/0970-2113.159559.
  • Nounou, M. M.; El-Khordagui, L.; Khalafallah, N.; Khalil, S. Influence of Different Sugar Cryoprotectants on the Stability and Physico-chemical Characteristics of Freeze-dried 5-fluorouracil Plurilamellar Vesicles. DARU J. Pharm. Sci. 2005, 13, 133–142.
  • Kusuma, G. D.; Barabadi, M.; Tan, J. L.; Da V, M.; Frith, J. E.; Lim, R. To Protect and to Preserve: Novel Preservation Strategies for Extracellular Vesicles. Front. Pharmacol. 2018, 9, 1199. DOI: 10.3389/fphar.2018.01199.
  • Werly, E. F.; Bauman, E. K. Production of Submicronic Powder by Spray-freezing. Arch Environ Heal An Int J. 1964, 9(5), 567–571. DOI: 10.1080/00039896.1964.10663881.
  • Ali, M. E.; Lamprecht, A. Spray Freeze Drying for Dry Powder Inhalation of Nanoparticles. Eur. J. Pharm. Biopharm. 2014, 87(3), 510–517. DOI: 10.1016/j.ejpb.2014.03.009.
  • Wanning, S.; Sueverkruep, R.; Lamprecht, A. Pharmaceutical Spray Freeze Drying. Int. J. Pharm. 2015, 488, 136–153. DOI: 10.1016/j.ijpharm.2015.04.053.
  • Anandharamakrishnan, C.;. Spray-Freeze-Drying of Coffee. Caffeinated and Cocoa Based Beverages; Elsevier Science: United Kingdom, 2019; pp 337–366.
  • Vishali, D. A.; Monisha, J.; Sundari, S. S. K.; Moses, J. A.; Anandharamakrishnan, C. Spray Freeze Drying: Emerging Applications in Drug Delivery. J. Control. Release. 2019, 93–101. doi:10.1016/j.jconrel.2019.02.044.
  • Kondo, M.; Niwa, T.; Okamoto, H.; Danjo, K. Particle Characterization of Poorly Water-soluble Drugs Using a Spray Freeze Drying Technique. Chem. Pharm. Bull. 2009, 57, 657–662. DOI: 10.1248/cpb.57.657.
  • Vranić, E.; Sirbubalo, M.; Tucak, A.; Hadžiabdić, J.; Rahić, O.; Elezović, A. Development of Inhalable Dry Gene Powders for Pulmonary Drug Delivery by Spray-Freeze-Drying. In Int. Conf. Med. Biol. Eng., Springer: Germany, 2019; pp 533–537.
  • Santos, G. D.; Ri, N.; Rosenthal, A. Powdered Yoghurt Produced by Spray Drying and Freeze Drying: A Review. Braz. J. Food Technol. 2018, 21. DOI: 10.1590/1981-6723.12716.
  • Mueannoom, W.; Srisongphan, A.; Taylor, K. M. G.; Hauschild, S.; Gaisford, S. Thermal Ink-jet Spray Freeze-drying for Preparation of Excipient-free Salbutamol Sulphate for Inhalation. Eur. J. Pharm. Biopharm. 2012, 80(1), 149–155. DOI: 10.1016/j.ejpb.2011.09.016.
  • Zeleny, J.;. Instability of Electrified Liquid Surfaces. Phys. Rev. 1917, 10(1), 1. DOI: 10.1103/PhysRev.10.1.
  • Javanshad, R.; Venter, A. R. Ambient Ionization Mass Spectrometry: Real-time, Proximal Sample Processing and Ionization. Anal. Methods. 2017, 9(34), 4896–4907. DOI: 10.1039/C7AY00948H.
  • Okuyama, K.; Lenggoro, I. W. Preparation of Nanoparticles via Spray Route. Chem. Eng. Sci. 2003, 58(3–6), 537–547. DOI: 10.1016/S0009-2509(02)00578-X.
  • Ijsebaert, J. C.; Geerse, K. B.; Marijnissen, J. C. M.; Lammers J-WJ, Z. P. Electro-hydrodynamic Atomization of Drug Solutions for Inhalation Purposes. J. Appl. Physiol. 2001, 91(6), 2735–2741. DOI: 10.1152/jappl.2001.91.6.2735.
  • Xie, J.; Lim, L. K.; Phua, Y.; Hua, J.; Wang, C.-H. Electrohydrodynamic Atomization for Biodegradable Polymeric Particle Production. J. Colloid Interface Sci. 2006, 302(1), 103–112. DOI: 10.1016/j.jcis.2006.06.037.
  • Jayan, H.; Leena, M. M.; Sundari, S. K. S.; Moses, J. A.; Anandharamakrishnan, C. Improvement of Bioavailability for Resveratrol through Encapsulation in Zein Using Electrospraying Technique. J. Funct. Foods. 2019, 57, 417–424. DOI: 10.1016/j.jff.2019.04.007.
  • Gu, H.; Hu, B.; Li, J.; Yang, S.; Han, J.; Chen, H. Rapid Analysis of Aerosol Drugs Using Nano Extractive Electrospray Ionization Tandem Mass Spectrometry. Analyst. 2010, 135(6), 1259–1267. DOI: 10.1039/b923991j.
  • Morozov, V. N.;. Generation of Biologically Active Nano-aerosol by an Electrospray-neutralization Method. J. Aerosol Sci. 2011, 42(5), 341–354. DOI: 10.1016/j.jaerosci.2011.02.008.
  • Li, G.; Pei, J.; Yin, Y.; Huang, G. Direct Sequencing of a Disulfide-linked Peptide with Electrospray Ionization Tandem Mass Spectrometry. Analyst. 2015, 140(8), 2623–2627. DOI: 10.1039/C5AN00011D.
  • Almekinders, J. C.; Jones, C. Multiple Jet Electrohydrodynamic Spraying and Applications. J. Aerosol Sci. 1999, 30(7), 969–971. DOI: 10.1016/S0021-8502(98)00755-1.
  • Patil, S.; Mahadik, A.; Nalawade, P.; More, P. Crystal Engineering of Lactose Using Electrospray Technology: Carrier for Pulmonary Drug Delivery. Drug Dev. Ind. Pharm. 2017, 43, 2085–2091. DOI: 10.1080/03639045.2017.1371733.
  • Jaworek, A.; Sobczyk, A. T.; Krupa, A. Electrospray Application to Powder Production and Surface Coating. J. Aerosol Sci. 2018, 125, 57–92.
  • Pistel, K. F.; Kissel, T. Effects of Salt Addition on the Microencapsulation of Proteins Using W/O/W Double Emulsion Technique. J. Microencapsul. 2000, 17(4), 467–483. DOI: 10.1080/026520400405723.
  • Patel, B.; Gupta, V.; Ahsan, F. PEG–PLGA Based Large Porous Particles for Pulmonary Delivery of a Highly Soluble Drug, Low Molecular Weight Heparin. J. Control. Release. 2012, 162(2), 310–320. DOI: 10.1016/j.jconrel.2012.07.003.
  • Pistel, K. F.; Bittner, B.; Koll, H.; Winter, G.; Kissel, T. Biodegradable Recombinant Human Erythropoietin Loaded Microspheres Prepared from Linear and Star-branched Block Copolymers: Influence of Encapsulation Technique and Polymer Composition on Particle Characteristics. J. Control. Release. 1999, 59(3), 309–325. DOI: 10.1016/S0168-3659(99)00008-5.
  • Kaialy, W.; Nokhodchi, A. Dry Powder Inhalers: Physicochemical and Aerosolization Properties of Several Size-fractions of a Promising Alternative Carrier, Freeze-dried Mannitol. Eur. J. Pharm. Sci. 2015, 68, 56–67. DOI: 10.1016/j.ejps.2014.12.005.
  • Khadka, P.; Dummer, J.; Hill, P. C.; Das, S. C. Considerations in Preparing for Clinical Studies of Inhaled Rifampicin to Enhance Tuberculosis Treatment. Int. J. Pharm. 2018, 548, 244–254. DOI: 10.1016/j.ijpharm.2018.07.011.
  • Patil, J. S.; Sarasija, S. Pulmonary Drug Delivery Strategies: A Concise, Systematic Review. Lung India Off Organ Indian Chest Soc. 2012, 29, 44. DOI: 10.4103/0970-2113.92361.
  • Liu, J.; Gong, T.; Fu, H.; Wang, C.; Wang, X.; Chen, Q.; Zhang, Q.; He, Q.; Zhang, Z. Solid Lipid Nanoparticles for Pulmonary Delivery of Insulin. Int. J. Pharm. 2008, 356(1–2), 333–344.
  • Chattopadhyay, P.; Shekunov, B. Y.; Yim, D.; Cipolla, D.; Boyd, B.; Farr, S. Production of Solid Lipid Nanoparticle Suspensions Using Supercritical Fluid Extraction of Emulsions (SFEE) for Pulmonary Delivery Using the AERx System. Adv. Drug Deliv. Rev. 2007, 59(6), 444–453. DOI: 10.1016/j.addr.2007.04.010.
  • Sanidad, K. Z.; Sukamtoh, E.; Xiao, H.; McClements, D. J.; Zhang, G. Curcumin: Recent Advances in the Development of Strategies to Improve Oral Bioavailability. Annu Rev Food Sci Technol. 2019, 10, 597-617.
  • Karaman, M.; Firinci, F.; Arıkan, Z. A.; Bahar, I. H. Effects of Imipenem, Tobramycin and Curcumin on Biofilm Formation of Pseudomonas Aeruginosa Strains. Mikrobiyol Bul. 2013, 47, 192–194. DOI: 10.5578/mb.3902.
  • Deljoo, S.; Rabiee, N.; Rabiee, M. Curcumin-hybrid Nanoparticles in Drug Delivery System. Asian J. Nanosci. Mater. 2019, 2, 66–91.
  • Hu, L.; Kong, D.; Hu, Q.; Gao, N.; Pang, S. Evaluation of High-performance Curcumin Nanocrystals for Pulmonary Drug Delivery Both in Vitro and in Vivo. Nanoscale Res. Lett. 2015, 10(1), 381. DOI: 10.1186/s11671-015-1085-y.
  • El-Sherbiny, I. M.; Smyth, H. D. C. Controlled Release Pulmonary Administration of Curcumin Using Swellable Biocompatible Microparticles. Mol. Pharm. 2011, 9, 269–280. DOI: 10.1021/mp200351y.
  • Kozlowska, J.; Kaczmarkiewicz, A. Collagen Matrices Containing Poly (Vinyl Alcohol) Microcapsules with Retinyl palmitate–Structure, Stability, Mechanical and Swelling Properties. Polym. Degrad. Stab. 2019, 161, 108–113. DOI: 10.1016/j.polymdegradstab.2019.01.019.
  • Esteban, J.; Serrano-Maciá, M.; Sánchez-Pérez, I.; Alonso-Magdalena, P.; de la Cruz Pellín, M.; García-Arévalo, M.; Nadal, Á.; Barril, J. In Utero Exposure to bisphenol-A Disrupts Key Elements of Retinoid System in Male Mice Offspring. Food Chem. Toxicol. 2019, 126, 142–151. DOI: 10.1016/j.fct.2019.02.023.
  • Schofield, J. R.; Afrin, L. B. Recognition and Management of Medication Excipient Reactivity in Patients with Mast Cell Activation Syndrome. Am. J. Med. Sci. 2019, 357(6), 507–511. DOI: 10.1016/j.amjms.2019.03.005.
  • Reifen, R.; Berkovich, Z.; Vitamin, M. A. A Supplementation via Aerosol Spray in Asthmatic Children. Pediatr. Allergy Immunol. 2015, 26(6), 578–579. DOI: 10.1111/pai.12443.
  • Wiseman, E. M.; Bar-El Dadon, S.; Reifen, R. The Vicious Cycle of Vitamin A Deficiency: A Review. Crit. Rev. Food Sci. Nutr. 2017, 57(17), 3703–3714. DOI: 10.1080/10408398.2016.1160362.
  • Hans, K.; Biesalski, A. Vitamin A Aerosol-Inhalation Preparations. 5,112,598, 1992.
  • Lavanya, M. N.; Dutta, S.; Moses, J. A.; Chinnaswamy, A. Development of β-carotene Aerosol Formulations Using a Modified Spray Dryer. J Food Process Eng,2019, 43(3), e13233.
  • Palmisano, F.; Spinelli, M. G.; Luzzago, S.; Boeri, L.; De Lorenzis, E.; Albo, G.; Gadda, F.; Gelosa, M.; Longo, F.; Dell’Orto, P. G.; Montanari, E. Medical Expulsive Therapy for Symptomatic Distal Ureter Stones: Is the Combination of Bromelain and Tamsulosin More Effective than Tamsulosin Alone? Preliminary Results of a Single-Center Study. Urol Int. 2019, 102, 145–152. DOI: 10.1159/000493158.
  • Pavan, R.; Jain, S.; Kumar, A. Others. Properties and Therapeutic Application of Bromelain: A Review. Biotechnol. Res. Int. 2012, 2012. doi:10.1155/2012/976203.
  • Shoba, E.; Lakra, R.; Kiran, M. S.; Korrapati, P. S. Fabrication of Core–shell Nanofibers for Controlled Delivery of Bromelain and Salvianolic Acid B for Skin Regeneration in Wound Therapeutics. Biomed. Mater. 2017, 12(3), 35005. DOI: 10.1088/1748-605X/aa6684.
  • Taussig, S. J.; Batkin, S. Bromelain, the Enzyme Complex of Pineapple (Ananas Comosus) and Its Clinical Application. An Update. J. Ethnopharmacol. 1988, 22, 191–203. DOI: 10.1016/0378-8741(88)90127-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.