1,914
Views
20
CrossRef citations to date
0
Altmetric
Review

Seaweeds as Novel Foods and Source of Culinary Flavors

, &

References

  • Latorre, P.; Flores-Aguilar, R. El Mercado Internacional de Algas para Consumo Humano. Panorama Acuícola Magazine. November 2004; 62–67. http://i-mar.cl/wp-content/uploads/2017/04/Latorre-P-y-Flores-Aguilar-R.-2004.pdf
  • Mouritsen, O.;. Seaweeds: Edible, Available, and Sustainable; The University of Chicago Press: Chicago, 2013. DOI: 10.1017/CBO9781107415324.004.
  • Pereira, L.;. Edible Seaweeds of the World; CRC Press: Coimbra, 2016. DOI: 10.1201/b19970.
  • Chung, I. K.; Calvyn, F. A.; Beardall, S.; Beardall, J. The Future of Seaweed Aquaculture in a Rapidly Changing World. Eur. J. Phycol. 2017, 52(4), 495–505. DOI: 10.1080/09670262.2017.1359678.
  • Food and Agriculture Organization of the United Nations. The Global Status of Seaweed Production, Trade and Utilization; FAO Globefish Research Programme: Rome, 2018. http://www.fao.org/3/CA1121EN/ca1121en.pdf(accessed Dec18,2019).
  • van den Burg, S. W. K.; Dagevos, H.; Helmes, R. J. K. Towards Sustainable European Seaweed Value Chains: A Triple P Perspective. ICES J. Mar. Sci. 2019, 183, 1–9. DOI: 10.1093/icesjms/fsz183.
  • Rajapakse, N.; Kim, S.-K. Nutritional and Digestive Health Benefits of Seaweed. In Marine Medicinal Foods, 1st ed ed.; Kim, S.K., Ed.; Academic Press: London, 2011; pp 17–28. DOI: 10.1016/B978-0-12-387669-0.00002-8.
  • Shannon, E.; Abu-Ghannam, N. Seaweeds as Nutraceuticals for Health and Nutrition. Phycologia. 2019, 58(5), 563–577. DOI: 10.1080/00318884.2019.1640533.
  • Sanjeewa, K. K. A.; Jeon, Y.; Edible Brown, J. Seaweeds: A Review. J. Food Bioactives. 2018, 2, 37–50. DOI: 10.31665/jfb.2018.2139.
  • Brownlee, I. A.; Fairclough, A. C.; Hall, A. C.; Paxman, J. R. The Potential Health Benefits of Seaweed and Seaweed Extracts. In Seaweed: Ecology, Nutrient Composition and Medicinal Uses, 1st ed ed.; Pomin, V.H., Ed.; Nova Science Publishers: New York, 2012; pp 119–136.
  • Ito, K.; Hori, K. Seaweed: Chemical Composition and Potential Food Uses. Food Rev. Int. 1989, 5(1), 101–144. DOI: 10.1080/87559128909540845.
  • Cherry, P.; O’Hara, C.; Magee, P. J.; McSorley, E. M.; Allsopp, P. J. Risks and Benefits of Consuming Edible Seaweeds. Nutr. Rev. 2019, 77(5), 307–329. DOI: 10.1093/nutrit/nuy066.
  • Encina-Montoya, F.; Vega-Aguayo, R.; Díaz, O.; Esse, C.; Nimptsch, J.; Muñoz-Pedreros, A. Mazzaella Laminarioides and Sarcothalia Crispata as Possible Bioindicators of Heavy Metal Contamination in the Marine Coastal Zone of Chile. Environ. Monit. Assess. 2017, 189(11), 1–9. DOI: 10.1007/s10661-017-6297-4.
  • Ospina, N.; Peña, E. J. Alternativas De Monitoreo De Calidad De Aguas: Algas Como Bioindicadores. Acta Nova. 2004, 2(4), 513–517. DOI: 10.4067/S0716-078X2007000200008.
  • Pack, E. C.; Kim, C. H.; Lee, S. H.; Lim, C. H.; Sung, D. G.; Kim, M. H.; Park, K. H.; Hong, -S.-S.; Lim, K. M.; Choi, D. W.;, et al. Effects of Environmental Temperature Change on Mercury Absorption in Aquatic Organisms with respect to Climate Warming. J. Toxicol. Environ. Health, Part A.2014, 77(22–24), 1477–1490. DOI: 10.1080/15287394.2014.955892.
  • Schiener, P.; Black, K. D.; Stanley, M. S.; Green, D. H. The Seasonal Variation in the Chemical Composition of the Kelp Species Laminaria Digitata, Laminaria Hyperborea, Saccharina Latissima and Alaria Esculenta. J. Appl. Phycol. 2015, 27(1), 363–373. DOI: 10.1007/s10811-014-0327-1.
  • Praiboon, J.; Palakas, S.; Noiraksa, T.; Miyashita, K. Seasonal Variation in Nutritional Composition and Anti-proliferative Activity of Brown Seaweed, Sargassum Oligocystum. J. Appl. Phycol. 2018, 30(1), 101–111. DOI: 10.1007/s10811-017-1248-6.
  • Nelson, M. M.; Phleger, C. F.; Nichols, P. D. Seasonal Lipid Composition in Macroalgae of the Northeastern Pacific Ocean. Bot. Mar. 2002, 45(1), 58–65. DOI: 10.1515/BOT.2002.007.
  • García-Poza, S.; Leandro, A.; Cotas, C.; Cotas, J.; Marques, J. C.; Pereira, L.; Gonçalves, A. M. M. The Evolution Road of Seaweed Aquaculture: Cultivation Technologies and the Industry 4.0. Int. J. Environ. Res. Public Health. 2020, 17(18), 6528. DOI: 10.3390/ijerph17186528.
  • Mahadevan, K.;. Seaweeds: A Sustainable Food Source. In Seaweed Sustainability: Food and Non-food Applications, 1st ed ed.; Tiwary, B.K., Troy, D.J., Eds.; Elsevier: Amsterdam, 2015; pp 347–364. DOI: 10.1016/B978-0-12-418697-2.00013-1.
  • Mouritsen, O. G.; Rhatigan, P.; Pérez-Lloréns, J. L. World Cuisine of Seaweeds: Science Meets Gastronomy. Int. J. Gastron. Food. Sci. 2018, 14, 55–65. DOI: 10.1016/j.ijgfs.2018.09.002.
  • O´Connor, K.;. Seaweed a Global History; London: Reaktion Books, 2017.
  • Dillehay, T. D.; Ramírez, C.; Pino, M.; Collins, M. B.; Rossen, J.; Pino-Navarro, J. D. Monte Verde: Seaweed, Food, Medicine, and the Peopling of South America. Science. 2008, 320(5877), 784–786. DOI: 10.1126/science.1156533.
  • Buchholz, C. M.; Krause, G.; Buck, B. H. Seaweed and Man Cornelia. In Seaweed Biology, 1st ed ed.; Wiencke, C., Kai, B., Eds.; Springer: Berlin, 2012; pp 471–493. DOI: 10.1007/978-3-642-28451-9.
  • Wells, M. L.; Potin, P.; Craigie, J. S.; Raven, J. A.; Merchant, S. S.; Helliwell, K. E.; Smith, A. G.; Camire, M. E.; Brawley, S. H. Algae as Nutritional and Functional Food Sources: Revisiting Our Understanding. J. Appl. Phycol. 2017, 29(2), 949–982. DOI: 10.1007/s10811-016-0974-5.
  • Zava, T. T.; Zava, D. T. Assessment of Japanese Iodine Intake Based on Seaweed Consumption in Japan: A Literature-Based Analysis. Thyroid Res. 2011, 4(1), 1–14. DOI: 10.1186/1756-6614-4-14.
  • Nisizawa, K.; Noda, H.; Kikuchi, R.; Watanabe, T. The Main Seaweed Foods in Japan. Hydrobiologia. 1987, 151(1), 5–29. DOI: 10.1007/BF00046102.
  • Pereira, L. A.;. Review of the Nutrient Composition of Selected Edible Seaweeds. In Seaweed: Ecology, Nutrient Composition and Medicinal Uses, 1st ed ed.; Pomin, V.H., Ed.; Nova Science Publishers: Coimbra, 2011; pp 15–47.
  • Rioux, L. E.; Beaulieu, L.; Turgeon, S. L. Seaweeds: A Traditional Ingredients for New Gastronomic Sensation. Food Hydrocoll. 2017, 68, 255–265. DOI: 10.1016/j.foodhyd.2017.02.005.
  • Xia, B.; Abbott, I. A. Edible Seaweeds of China and Their Place in the Chinese Diet. Econ. Bot. 1987, 41(3), 341–353. DOI: 10.1007/BF02859049.
  • Josse, F.; La grande vogue des algues. GEO Extra No. 2 Alimentation, May-July, 2015 pp. 94–95.
  • Cherry, P.; Yadav, S.; Strain, C. R.; Allsopp, P. J.; McSorley, E. M.; Ross, R. P.; Stanton, C. Prebiotics from Seaweeds: An Ocean of Opportunity? Mar. Drugs. 2019, 17(6), 327. DOI: 10.3390/md17060327.
  • Dhargalkar, V. K.;. Uses of Seaweeds in the Indian Diet for Sustenance and Well-Being. Sci. Cult. 2014, 80, 192–202.
  • Ganesan, M.; Trivedi, N.; Gupta, V.; Madhav, S.; Reddy, C. R. K.; Levine, I. Seaweed Resources in India – Current Status of Diversity and Cultivation: Prospects and Challenges. Bot. Mar. 2019, 62(5), 463–482. DOI: 10.1515/bot-2018-0056.
  • Misheer, N.; Kindness, A.; Jonnalagadda, S. B. Seaweeds along Kwazulu-Natal Coast of South Africa-3: Elemental Uptake by Ulva Lactuca (Sea Lettuce). J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng. 2006, 41(6), 1249–1259. DOI: 10.1080/10934520600623158.
  • Pérez-Lloréns, J. L.;. Seaweed Consumption in the Americas. Gastronomica. 2019, 19(4), 49–59. DOI: 10.1525/gfc.2019.19.4.49.
  • Turner, N. J.;. The Ethnobotany of Edible Seaweed (Porphyra Abbottae and Related Species; Rhodophyta: Bangiales) and Its Use by First Nations on the Pacific Coast of Canada. Can. J. Bot. 2003, 81(4), 283–293. DOI: 10.1139/b03-029.
  • Pérez-Lloréns, J. L.; Hernández, I.; Vergara, J. J.; Brun, F. G.; León, A. Las Algas se Comen? Un Periplo por la Biología, la Historia, las Curiosidades y la Gastronomía; Editorial UCA: Cádiz, 2017.
  • Noriega, C.;. Algas Marinas Para La Alimentación De Los Peruanos. Turismo y Patrimonio. 2016, 10(10), 55–68. DOI: 10.24265/turpatrim.2016.n10.04.
  • Montecino, S.;. La Olla Deleitosa. Cocinas Mestizas de Chile; Catalonia: Santiago de Chile, 2004.
  • Mouritsen, O. G.; Duelund, L.; Petersen, M. A.; Hartmann, A. L.; Frøst, M. B. Umami Taste, Free Amino Acid Composition, and Volatile Compounds of Brown Seaweeds. J. Appl. Phycol. 2019, 31(2), 1213–1232. DOI: 10.1007/s10811-018-1632-x.
  • Marine, S. B.;. Algae as Human Food in Hawaii, with Notes on Other Polynesian Islands. Ecol. Food Nutr. 1979, 8(1), 47–59. DOI: 10.1080/03670244.1979.9990544.
  • Abott, I. A.;. The Uses of Seaweed as Food in Hawaii. Econ. Bot. 1978, 32(4), 409–412. DOI: 10.1007/BF02907938.
  • Cwiertka, K. J.;. Modern Japanese Cuisine: Food, Power and National Identity; Reaktion Books: London, 2008. DOI: 10.1525/gfc.2008.8.2.94.
  • Hirasawa, N.; Toshikoshi Soba (New Year’s Eve Noodles) – ‘Midnight Diner: Tokyo Stories’https://www.justonecookbook.com/toshikoshi-soba/(accessed–May 28,2020).
  • Kenicer, G.; Bridgewater, S.; Milliken, W.; Garden, R. B. The Ebb and Flow of Scottish Seaweed Use. Trans. - Bot. Soc. Edinburgh. 2015, 52(2), 119–148. DOI: 10.1080/13594860009441750.
  • Nussinovitch, A.; Hirashima, M. Cooking Innovations, using Hydrocolloids for Thickening, Gelling and Emulsification; CRC Press: Boca Raton, 2014.
  • Fleurence, J.; Levine, F. Seaweed in Health and Disease Prevention; Elsevier: London, 2016.
  • Jackman, R. L.; Stanley, D. W. Perspectives in the Textural Evaluation of Plant Foods. Trends Food Sci. Technol. 1995, 6(6), 187–194. DOI: 10.1016/S0924-2244(00)89053-6.
  • Harder, D. L.; Hurd, C. L.; Speck, T. Comparison of Mechanical Properties of Four Large, Wave-Exposed Seaweeds. Am. J. Bot. 2006, 93(10), 1426–1432. DOI: 10.3732/ajb.93.10.1426.
  • Tanaka, M. Texture of Japanese Foods. Food Rev. Int. 1986, 2(2), 247–265. DOI: 10.1080/87559128609540797.
  • Wassilieff, M. Seaweed - Kelp. Te Ara - the Encyclopedia of New Zealand, Ministry of Culture and Heritage. 2006. http://www.TeAra.govt.nz/en/photograph/4597/bull-kelps-honeycombed-structure (accessed May 29, 2020)
  • Kato, K.; Hayashi, M.; Umene, S.; Masunaga, H. A Novel Method for Producing Softened Edible Seaweed Kombu. Food Sci. Technol. 2015, 65, 618–623. DOI: 10.1016/j.lwt.2015.08.059.
  • Mateluna, C.; Figueroa, V.; Ortiz, J.; Aguilera, J. M. Effect of Processing on Texture and Microstructure of the Seaweed Durvillaea Antarctica. J. Appl. Phycol. 2020, 32(6), 4211–4219. DOI: 10.1007/s10811-020-02259-1.
  • Ono, M.; Yanagisawa, Y.; Kawai, M. An Examination of Instrumental Textural Evaluation of “Nori” Products by Texturometer. Nippon Shokuhin Kogyo Gakkaishi. 1993, 40(2), 129–132. DOI: 10.3136/nskkk1962.40.129.
  • Nayyar, D.; Skonberg, D. I. Contrasting Effects of Two Storage Temperatures on the Microbial, Physicochemical, and Sensory Properties of Two Fresh Red Seaweeds, Palmaria Palmata and Gracilaria Tikvahiae. J. Appl. Phycol. 2018, 31(1), 731–739. DOI: 10.1007/s10811-018-1545-8.
  • Vettori, D.; Nikora, V. Morphological and Mechanical Properties of Blades of Saccharina Latissima. Estuar. Coast. Shelf Sci. 2017, 196, 1–9. DOI: 10.1016/j.ecss.2017.06.033.
  • Blikra, M. J.; Løvdal, T.; Vaka, M. R.; Roiha, I. S.; Lunestad, B. T.; Lindseth, C.; Skipnes, D. Assessment of Food Quality and Microbial Safety of Brown Macroalgae (Alaria Esculenta and Saccharina Latissima). J. Sci. Food Agric. 2019, 99(3), 1198–1206. DOI: 10.1002/jsfa.9289.
  • Pinheiro, V. F.; Marçal, C.; Abreu, H.; Lopes da Silva, J.; Silva, A. M. S.; Cardoso, S. M. Physicochemical Changes of Air-Dried and Salt-Processed Ulva Rigida over Storage Time. Molecules. 2019, 24(16), 1–11. DOI: 10.3390/molecules24162955.
  • Del Olmo, A.; Picon, A.; Núñez, M. Preservation of Five Edible Seaweeds by High Pressure Processing: Effect on Microbiota, Shelf Life, Colour, Texture and Antioxidant Capacity. Algal Res. 2020, 49, 1–8. DOI: 10.1016/j.algal.2020.101938.
  • Peinado, I.; Girón, J.; Koutsidis, G.; Ames, J. M. Chemical Composition, Antioxidant Activity and Sensory Evaluation of Five Different Species of Brown Edible Seaweeds. Food Res. Int. 2014, 66, 36–44. DOI: 10.1016/j.foodres.2014.08.035.
  • Hotchkiss, S.; (2009). Investigation of the Flavouring and Taste Components of Irish Seaweeds; Marine Research Sub-programme (NDP 2007-’13) Series. Project No. ILA/07/004. 2009–3195; Marine Institute: Galway, 2009. http://www.marine.ie/home/Publications/Publications/Marine+Research+Sub-Programme+%28NDP+2007-2013%29.htm. (accessed october 31, 2019)
  • Bruhn, A.; Brynning, G.; Johansen, A.; Lindegaard, M. S.; Sveigaard, H. H.; Aarup, B.; Fonager, L.; Andersen, L. L.; Rasmussen, M. B.; Larsen, M. M.;, et al. Fermentation of Sugar Kelp (Saccharina Latissima)—effects on Sensory Properties, and Content of Minerals and Metals. J. Appl. Phycol. 2019, 31(5), 3175–3187. DOI: 10.1007/s10811-019-01827-4.
  • Stévant, P.; Indergård, E.; Ólafsdóttir, A.; Marfaing, H.; Larssen, W. E.; Fleurence, J.; Roleda, M. Y.; Rustad, T.; Slizyte, R.; Nordtvedt, T. S. Effects of Drying on the Nutrient Content and Physico-Chemical and Sensory Characteristics of the Edible Kelp Saccharina Latissima. J. Appl. Phycol. 2018, 30(4), 2587–2599. DOI: 10.1007/s10811-018-1451-0.
  • Vieira, E. F.; Soares, C.; Machado, S.; Correia, M.; Ramalhosa, M. J.; Oliva-telesa, M. T.; Carvalho, A. P.; Domingues, V. F.; Antunes, F.; Oliveira, T. A. C.;, et al. Seaweeds from the Portuguese Coast as a Source of Proteinaceous Material: Total and Free Amino Acid Composition Profile. Food Chem. 2018, 269, 264–275. DOI: 10.1016/j.foodchem.2018.06.145.
  • Mouritsen, O. G.; Williams, L.; Bjerregaard, R.; Duelund, L. Seaweeds for Umami Flavour in the New Nordic Cuisine. Flavour. 2012, 1(1), 4. DOI: 10.1186/2044-7248-1-4.
  • Garcia, J. S.; Palacios, V.; Roldán, A. Nutritional Potential of Four Seaweed Species Collected in the Barbate Estuary (Gulf of Cadiz, Spain). J. Nutr. Food Sci. 2016, 6(3), 1–7. DOI: 10.4172/2155-9600.1000505.
  • Smith, B.;. Perspective: Complexities of Flavour. Nature. 2012, 486(7403), 1–6. DOI: 10.1038/486S6a.
  • Choudhury, S.; Sen Sarkar, N. Algae as Source of Natural Flavour Enhancers - A Mini Review. Plant Sci. Today. 2017, 4(4), 172. DOI: 10.14719/pst.2017.4.4.338.
  • Osawa, Y.;. Glutamate Perception, Soup Stock, and the Concept of Umami: The Ethnography, Food Ecology, and History of Dashi in Japan. Ecol. Food Nutr. 2012, 51(4), 329–345. DOI: 10.1080/03670244.2012.691389.
  • Kawashima, T.; Shirai, T.; Matsuda, H.; Osako, K.; Okazaki, E. Identification and Roles of the Taste-Active Components of Dried Nori. Japan J. Food Eng. 2018, 19(2), 121–127. DOI: 10.11301/jsfe.18515.
  • Ninomiya, K.;. Science of Umami Taste: Adaptation to Gastronomic Culture. Flavour. 2015, 4(1), 1–13. DOI: 10.1186/2044-7248-4-13.
  • Yuasa, M.; Koe, M.; Maeda, A.; Eguchi, A.; Abe, H.; Tominaga, M. Characterization of Flavor Component in Japanese Instant Soup Stocks ‘Dashi’. Int. J. Gastron. Food Sci. 2017, 9, 55–61. DOI: 10.1016/j.ijgfs.2017.06.002.
  • Park, W. M.; Kang, D. S.; Bae, T. J. Studies on Organic Acid, Vitamin and Free Sugar Contents of Commercial Dried Lavers (Porphyra Yezoensis) Cultivated in Korea. J. Korean Soc. Food Sci. Nutr. 2014, 43(1), 172–177. DOI: 10.3746/jkfn.2014.43.1.172.
  • López-Pérez, O.; Picon, A.; Nuñez, M. Volatile Compounds and Odour Characteristics of Seven Species of Dehydrated Edible Seaweeds. Food Res. Int. 2017, 99, 1002–1010. DOI: 10.1016/j.foodres.2016.12.013.
  • Santos, M. T.; Narain, N. Volatile Components in Seaweeds. Examines Mar, Biol. Oceanogr. 2018, 2(2), 195–201. DOI: 10.31031/eimbo.2018.02.000535.
  • Yamamoto, M.; Baldermann, S.; Yoshikawa, K.; Fujita, A.; Mase, N.; Watanabe, N. Determination of Volatile Compounds in Four Commercial Samples of Japanese Green Algae Using Solid Phase Microextraction Gas Chromatography Mass Spectrometry. Sci. World J. 2014, 14, 1–8. DOI: 10.1155/2014/289780.
  • Garicano, E.; O’Sullivan, M. G.; Kerry, J. P.; Kilcawley, K. N. Volatile Compounds of Six Species of Edible Seaweed: A Review. Algal Res. 2020, 101740(45). DOI: 10.1016/j.algal.2019.101740.
  • Mourtisen, O. G.; Styrbaek, K. Umami: Unlocking the Secrets of the Fifth Taste; Columbia University Press: New York, 2014.
  • Ikeda, K.;. New Seasonings. Chem. Senses. 2002, 27(9), 847–849. DOI: 10.1093/chemse/27.9.847.
  • Kodama, S.;. On a Procedure for Separating Inosinic Acid. Chem. Soc. 1913, 34, 751.
  • Kuninaka, A.;. Studies on Taste of Ribonucleic Acid Derivatives. J. Agric. Chem. Soc. Jpn. 1960, 34(6), 489–492. DOI: 10.1271/nogeikagaku1924.34.6_489.
  • Yamaguchi, S.; Ninomiya, K. Umami and Food Palatability. J. Nutr. 2000, 130(4), 921–926. DOI: 10.1093/jn/130.4.921S.
  • Chaudhari, N.; Landin, A. M.; Roper, S. D. A. Metabotropic Glutamate Receptor Variant Functions as a Taste Receptor. Nat. Neurosci. 2000, 3(2), 113–119. DOI: 10.1038/72053.
  • Nelson, G.; Chandrashekar, J.; Hoon, M. A.; Feng, L.; Zhao, G.; Ryba, N. J. P.; Zuker, C. S. An Amino-Acid Taste Receptor. Nature. 2002, 416(6877), 199–202. DOI: 10.1038/nature726.
  • Hartley, I. E.; Liem, D. G.; Keast, R. Umami as an ‘Alimentary’ Taste. A New Perspective on Taste Classification. Nutrients. 2019, 11(1), 182. DOI: 10.3390/nu11010182.
  • Kurihara, K.;. Umami the Fifth Basic Taste: History of Studies on Receptor Mechanisms and Role as a Food Flavor. BioMed. Res. Int. 2015, 2015, 1–10. DOI: 10.1155/2015/189402.
  • Behrens, M.; Meyerhof, W.; Hellfritsch, C.; Hofmann, T. Sweet and Umami Taste: Natural Products, Their Chemosensory Targets, and Beyond. Angew Chem. Int. Ed. 2011, 50(10), 2220–2242. DOI: 10.1002/anie.201002094.
  • Ninomiya, K.;. Umami: A Universal Taste. Food Rev. Int. 2002, 18(1), 23–38. DOI: 10.1081/FRI-120003415.
  • Yamaguchi, S.; Ninomiya, K. What Is Umami? Food Rev. Int. 1998, 14(2–3), 123–138. DOI: 10.1080/87559129809541155.
  • Wijayasekara, K.; Wansapala, J. Uses, Effects and Properties of Monosodium Glutamate (MSG) on Food & Nutrition. Int. J. Food Sci. Nutr. 2017, 2(3), 132–143. DOI: 10.22271/food.
  • Linscott, T. D.; Lim, J. Retronasal Odor Enhancement by Salty and Umami Tastes. Food Qual. Prefer. 2016, 48, 1–10. DOI: 10.1016/j.foodqual.2015.08.004.
  • Dunn, R.; Lessen, R. The Influence of Human Milk on Flavor and Food Preferences. Curr. Nutr. Rep. 2017, 6(2), 134–140. DOI: 10.1007/s13668-017-0200-3.
  • Rassin, D. K.; Sturman, J. A.; Gaull, G. E. Taurine and Other Free Amino Acids in Milk of Man and Other Mammals. Early Hum. Dev. 1978, 2(1), 1–13. DOI: 10.1016/0378-3782(78)90048-8.
  • Suess, B.; Festring, D.; Hofmann, T. Umami Compounds and Taste Enhancers. In Flavour Development, Analysis and Perception in Food and Beverages, 1st ed. ed.; Parker, J.K., Elmore, J.S., Methven, L., Eds.; Woodhead Publishing: Cambridge, 2015; pp. 331–351.
  • Melis, M.; Barbarossa, I. T. Taste Perception of Sweet, Sour, Salty, Bitter, and Umami and Changes Due to L-Arginine Supplementation, as a Function of Genetic Ability to Taste 6-n-Propylthiouracil. Nutrients. 2017, 9(6), 1–17. DOI: 10.3390/nu9060541.
  • Tepper, B. J.;. Nutritional Implications of Genetic Taste Variation: The Role of PROP Sensitivity and Other Taste Phenotypes. Annu. Rev. Nutr. 2008, 28(1), 367–388. DOI: 10.1146/annurev.nutr.28.061807.155458.
  • Clausen, M. P.; Christensen, M.; Djurhuus, T. H.; Duelund, L.; Mouritsen, O. G. The Quest for Umami: Can Sous Vide Contribute? Int. J. Gastron. Food Sci. 2018, 13, 129–133. DOI: 10.1016/j.ijgfs.2018.03.002.
  • Wrangham, R. W.;. Catching Fire: How Cooking Made Us Human; Basic Books: New York, 2009.
  • Carmody, R. N.; Weintraub, G. S.; Wrangham, R. W. Energetic Consequences of Thermal and Nonthermal Food Processing. Proc. Natl. Acad. Sci. U. S. A. 2011, 108(48), 19199–19203. DOI: 10.1073/pnas.1112128108.
  • Umami Information Center. Umami Basics. https://www.umamiinfo.com/what/whatisumami/(accessed October 20, 2019)
  • Giacometti, T.;. Free and Bound Glutamate in Natural Products. In Advances in Biochemistry and Physiology, 1st ed. ed.; Filer, L.J., Garattini, S., Kare, M.R., Reynolds, W.A., Wurtman, R.J., Eds.; Raven Pres: New York, 1979; pp. 25–34.
  • Torii, K.;. Brain Activation by the Umami Taste Substance Monosodium L-Glutamate via Gustatory and Visceral Signaling Pathways, and Its Physiological Significance Due to Homeostasis after a Meal. J. Oral Biosci. 2012, 54(3), 144–150. DOI: 10.1016/j.job.2012.03.005.
  • Young, V. R.; Ajami, A. M. Glutamate: An Amino Acid of Particular Distinction. Nutr. J. 2000, 130(4), 892–899. DOI: 10.1093/jn/130.4.892S.
  • Liu, C. K.; Joseph, P. V.; Feldman, D. E.; Kroll, D. S.; Burns, J. A.; Manza, P.; Volkow, N. D.; Wang, G.; Brain, J. Imaging of Taste Perception in Obesity: A Review. Curr. Nutr. Rep. 2019, 8(2), 108–119. DOI: 10.1007/s13668-019-0269-y.
  • Ghirri, A.; Bignetti, E. Occurrence and Role of Umami Molecules in Foods. Int. J. Food Sci. Nutr. 2012, 63(7), 871–881. DOI: 10.3109/09637486.2012.676028.
  • Rolls, E. T.;. Functional Neuroimaging of Umami Taste: What Makes Umami. Am. J. Clin. Nutrition. 2009, 3(3), 804–813. DOI: 10.3945/ajcn.2009.27462R.1.
  • Barragán, R.; Coltell, O.; Portol, O.; Asensio, E. M.; Sorl, V.; Ortega-Azor, C.; González, J. I.; Sáiz, C.; Fernández-Carrión, R.; Ordovas, J. M.;, et al. Bitter, Sweet, Salty, Sour and Umami Taste, Perception Decreases with Age: Sex-Specific Analysis, Modulation by Genetic Variants and Taste-Preference. Nutrients.2018, 10(10), 1539. DOI: 10.3390/nu10101539.
  • Sergi, G.; Bano, G.; Pizzato, S.; Veronese, N.; Manzato, E. Taste Loss in the Elderly: Possible Implications for Dietary Habits. Crit. Rev. Food Sci. Nutr. 2017, 57(17), 3684–3689. DOI: 10.1080/10408398.2016.1160208.
  • Puputti, S.; Aisala, H.; Hoppu, U.; Sandell, M. Factors Explaining Individual Differences in Taste Sensitivity and Taste Modality Recognition among Finnish Adults. J. Sens. Stud. 2019, 34(4), 1–11. DOI: 10.1111/joss.12506.
  • Nishimura, T.; Kato, H. Taste of Free Amino Acids and Peptides. Food Rev. Int. 1988, 4(2), 175–194. DOI: 10.1080/87559128809540828.
  • Zanfirescu, A.; Ungurianu, A.; Tsatsakis, A. M.; Nițulescu, G. M.; Kouretas, D.; Veskoukis, A.; Tsoukalas, D.; Engin, A. B.; Aschner, M.; Margină, D. A. Review of the Alleged Health Hazards of Monosodium Glutamate. Compr. Rev. Food Sci. Food Saf. 2019, 18(4), 1111–1134. DOI: 10.1111/1541-4337.12448.
  • Rotzoll, N.; Dunkel, A.; Hofmann, T. Quantitative Studies, Taste Reconstitution, and Omission Experiments on the Key Taste Compounds in Morel Mushrooms (Morchella Deliciosa Fr.). J. Agric. Food Chem. 2006, 54(7), 2705–2711. DOI: 10.1021/jf053131y.
  • Kawai, M.; Okiyama, A.; Ueda, Y. Taste Enhancements between Various Amino Acids and IMP. Chem. Senses. 2002, 27(8), 739–745. DOI: 10.1093/chemse/27.8.739.
  • Izawa, K.; Amino, Y.; Kohmura, M.; Ueda, Y.; Kuroda, M. Human–Environment Interactions – Taste. In Comprehensive Natural Products II: Chemistry and Biology, 1st ed. ed.; Liu, B., Mande, L., Eds.; Elsevier: Amsterdam, 2009; Vol. 4, pp 149–164.
  • Kawai, M.; Uneyama, H.; Miyano, H. Taste-Active Components in Foods, with Concentration on Umami Compounds. J. Health Sci. 2009, 55(5), 667–673. DOI: 10.1248/jhs.55.667.
  • Fuke, S.; Konosu, S. Taste-Active Components in Some Foods: A Review of Japanese Research. Physiol. Behav. 1991, 49(5), 863–868. DOI: 10.1016/0031-9384(91)90195-T.
  • Ugawa, T.; Konosu, S.; Kurihara, K. Enhancing Effects of NaCl and Na Phosphate on Human Gustatory Responses to Amino Acids. Chem. Senses. 1992, 17(6), 811–815. DOI: 10.1093/chemse/17.6.811.
  • Seki, H.; Nakazato, K.; Hamada-Sato, N. Adenosine Monophosphate Degradation and Inosinic Acid Accumulation in the Shrimp Penaeus Japonicus. Int. Aquat. Res. 2017, 9(1), 37–52. DOI: 10.1007/s40071-017-0154-5.
  • Nakamura, S.; Akagawa, H.; Ikawa, T.; Kawanobe, H. Separation and Identification of Nucleotides in Some Seaweeds. Bot. Mag., Tokyo. 1968, 81(965), 556–565. DOI: 10.15281/jplantres1887.81.556.
  • Ninomiya, K.;. Natural Occurrence. Food Rev. Int. 1998, 14(2–3), 177–211. DOI: 10.1080/87559129809541157.
  • Oruña-Concha, M. J.; Methven, L.; Blumenthal, H.; Young, C.; Mottram, D. S. Differences in Glutamic Acid and 5′-Ribonucleotide Contents between Flesh and Pulp of Tomatoes and the Relationship with Umami Taste. J. Agric. Food Chem. 2007, 55(14), 5776–5780. DOI: 10.1021/jf070791p.
  • Terasaki, M.; Wada, S.; Fujita, E.; Takemoto, T.; Nakajima, T.; Yokobe, T. Studies on Taste of Tricholomic Acid and Ibotenic Acid (Part 2). Eiyo To Shokuryo. 1965, 18(3), 222–225. DOI: 10.4327/jsnfs1949.18.222.
  • Zhao, Y.; Zhang, M.; Devahastin, S.; Liu, Y. Trends in Food Science & Technology Progresses on Processing Methods of Umami Substances: A Review. Trends Food Sci. Technol. 2019, 93, 125–135. DOI: 10.1016/j.tifs.2019.09.012.
  • Zhang, Y.; Venkitasamy, C.; Pan, Z.; Liu, W.; Zhao, L. Novel Umami Ingredients: Umami Peptides and Their Taste. J. Food Sci. 2017, 82(1), 16–23. DOI: 10.1111/1750-3841.13576.
  • Arai, S.; Yamashita, M.; Noguchi, M.; Fujimaki, M. Tastes of L-glutamyl Oligopeptides in Relation to Their Chromatographic Properties. Agric. Biol. Chem. 1973, 37(1), 151–156. DOI: 10.1080/00021369.1973.10860638.
  • Rhyu, M. R.; Kim, E. Y. Umami Taste Characteristics of Water Extract of Doenjang, a Korean Soybean Paste: Low-Molecular Acidic Peptides May Be a Possible Clue to the Taste. Food Chem. 2011, 127(3), 1210–1215. DOI: 10.1016/j.foodchem.2011.01.128.
  • Warendorf, T.; Belitz, H.; Gasser, D.; Grosch, U.; Zum, W. Geschmack von Fleischbrühe 2. Sensorische Analyse der Inhaltsstoffe und Imitation einer Brühe. Z. Lebensm. Unters Forsch. 1992, 195(3), 215–223. DOI: 10.1007/bf01202798.
  • Velíšek, J.; Davídek, J.; Kubelka, V.; Thu, T. T. B.; Hajšlová, J. Succinic Acid in Yeast Autolysates and Its Sensory Properties. Mol. Nutr. Food Res. 1978, 22(8), 735–743. DOI: 10.1002/food.19780220809.
  • Hiroyuki, N.; Hideomi, A.; Kouji, A.; Yoshishige, H. Sugars, Organic Acids, and Minerals of “Nori”, the Dried Laver. Porphyra Spp. Bull. Japan. Soc. Sci. Fish. 1981, 47(1), 57–62. DOI: 10.2331/suisan.47.57.
  • Drake, S. L.; Carunchia, M. E. W.; Drake, M. A.; Courtney, P.; Fligner, K.; Jenkins, J.; Pruitt, C. Sources of Umami Taste in Cheddar and Swiss Cheeses. J. Food Sci. 2007, 72(6), 360–366. DOI: 10.1111/j.1750-3841.2007.00402.x.
  • Kaneko, S.; Kumazawa, K.; Masuda, H.; Henze, A.; Hofmann, T. Molecular and Sensory Studies on the Umami Taste of Japanese Green Tea. J. Agric. Food Chem. 2006, 54(7), 2688–2694. DOI: 10.1021/jf0525232.
  • Lioe, H. N.; Kinjo, A.; Yasuda, S.; Kuba-Miyara, M.; Tachibana, S.; Yasuda, M. Taste and Chemical Characteristics of Low Molecular Weight Fractions from Tofuyo – Japanese Fermented Soybean Curd. Food Chem. 2018, 252, 265–270. DOI: 10.1016/j.foodchem.2018.01.117.
  • Yuasa, M.; Kawabeta, K.; Eguchi, A.; Abe, H.; Yamashita, E.; Koba, K.; Tominaga, M. Characterization of Taste and Micronutrient Content of Rock Oysters (Crassostrea Nippona) and Pacific Oysters (Crassostrea Gigas) in Japan. Int. J. Gastron. Food. Sci. 2018, 13, 52–57. DOI: 10.1016/j.ijgfs.2018.06.001.
  • Shepherd, G. M.;. Neurogastronomy. How the Brain Creates Flavor and Why It Matters; New York: Columbia University Press, 2012.
  • Zhang, F.; Klebansky, B.; Fine, R. M.; Xu, H.; Pronin, A.; Liu, H.; Tachdjian, C.; Li, X. Molecular Mechanism for the Umami Taste Synergism. Proc. Natl. Acad. Sci. U. S. A. 2008, 105(52), 20930–20934. DOI: 10.1073/pnas.0810174106.
  • Kurihara, K.;. Glutamate: From Discovery as a Food Flavor to Role as a Basic Taste (Umami). Am. J. Clin. Nutr. 2009, 90(3), 719–722. DOI: 10.3945/ajcn.2009.27462D.
  • Tanaka, T.; Saito, N.; Okuhara, A.; Yokotsuka, T. Studies on the Taste of Alpha Amino Acids Part II. Nippon Nogeikagaku Kaishi. 1960, 43(3), 171–176. DOI: 10.1271/nogeikagaku1924.43.171.
  • Ueda, Y.; Fukami, K. Flavor Constituents in Savory Seafood: Dried Kelp (Kombu), Scallop, and Dried Bonito (Katsuobushi). Aqua-BioSci. Monogr. 2017, 10(1), 1–22. DOI: 10.5047/absm.2017.01001.0001.
  • Yamaguchi, S.; Yoshikawa, T.; Ikeda, S.; Ninomiya, T. Measurement of the Relative Taste Intensity of Some L‐Α‐Amino Acids and 5′‐Nucleotides. J. Food Sci. 1971, 36, 846–849. DOI: 10.1111/j.1365-2621.1971.tb15541.x.
  • Tamura, M.; Nakatsuka, T.; Tada, M.; Kawasaki, Y.; Kikuchi, E.; Okai, H. The Relationship between Taste and Primary Structure of “Delicious Peptide” (Lys-gly-asp-glu-glu-ser-leu-ala) from Beef Soup. Agric. Biol. Chem. 1989, 53(2), 319–325. DOI: 10.1080/00021369.1989.10869317.
  • Maehashi, K.; Matsuzaki, M.; Yamamoto, Y.; Udaka, S. Isolation of Peptides from an Enzymatic Hydrolysate of Food Proteins and Characterization of Their Taste Properties. Biosci. Biotechnol., Biochem. 1999, 63(3), 555–559. DOI: 10.1271/bbb.63.555.
  • Nakata, T.; Takahashi, M.; Nakatani, M.; Kuramitsu, R.; Tamura, M.; Okai, H. Role of Basic and Acidic Fragments in Delicious Peptides (Lys-gly-asp Glu-Glu-Ser-Leu-Ala) and the Taste Behavior of Sodium and Potassium Salts in Acidic Oligopeptides. Biosci. Biotechnol. Biochem. 1995, 59(4), 689–693. DOI: 10.1271/bbb.59.689.
  • Dang, Y.; Gao, X.; Ma, F.; Wu, X. Comparison of Umami Taste Peptides in Water-Soluble Extractions of Jinhua and Parma Hams. Food Sci. Technol. 2015, 60(2), 1179–1186. DOI: 10.1016/j.lwt.2014.09.014.
  • Ding, Y.; Li, X.; Kan, J. Isolation and Identification of Flavor Peptides from Douchi (Traditional Chinese Soybean Food). Int. J. Food Prop. 2017, 20(2), 1982–1994. DOI: 10.1080/10942912.2017.1360906.
  • Fernández, M.; Singh, T. K.; Fox, P. F. Isolation and Identification of Peptides from the Diafiltration Permeate of the Water-Soluble Fraction of Cheddar Cheese. J. Agric. Food Chem. 1998, 46(11), 4512–4517. DOI: 10.1021/jf9710950.
  • Nishimura, T.; Kuroda, M. Koku in Food Science and Physiology; Singapore: Springer Nature, 2019.
  • Chapman, A.; Stévant, P.; Larssen, W. E. Food or Fad? Challenges and Opportunities for Including Seaweeds in a Nordic Diet. Bot. Mar. 2015, 58(6), 1–11. DOI: 10.1515/bot-2015-0044.
  • Handå, A.; Forbord, S.; Wang, X.; Jacob, O.; Wiborg, S.; Røvik, T.; Inge, K.; Olsen, Y.; Skjermo, J. Seasonal and Depth Dependent Growth of Cultivated Kelp (Saccharina Latissima) in Close Proximity to Salmon (Salmo Salar) Aquaculture in Norway. Aquaculture. 2013, 414–415, 191–201. DOI: 10.1016/j.aquaculture.2013.08.006.
  • Podrażka, M.; Bączyńska, E.; Kundys, M.; Jeleń, P. S.; Witkowska, N. Electronic Tongue – A Tool for All Tastes? Biosensors. 2018, 8(3), 1–24. DOI: 10.3390/bios8010003.
  • Tahara, Y.; Toko, K. Electronic Tongues – A Review. IEEE Sens. J. 2013, 13(8), 3001–3011. DOI: 10.1109/JSEN.2013.2263125.
  • Phat, C.; Moon, B.; Lee, C. Evaluation of Umami Taste in Mushroom Extracts by Chemical Analysis, Sensory Evaluation, and an Electronic Tongue System. Food Chem. 2016, 192, 1068–1077. DOI: 10.1016/j.foodchem.2015.07.113.
  • Uchida, M.; Kurushima, H.; Ishihara, K.; Murata, Y.; Touhata, K.; Ishida, N.; Niwa, K.; Araki, T. Characterization of Fermented Seaweed Sauce Prepared from Nori (Pyropia Yezoensis). J. Biosci. Bioeng. 2017, 123(3), 327–332. DOI: 10.1016/j.jbiosc.2016.10.003.
  • Ottenbacher, M.; Harrington, R. The Innovation Development Process of Michelin-Starred Chefs. Int. J. Contemp. Hosp. Manag. 2007, 19(6), 444–460. DOI: 10.1108/09596110710775110.
  • Aguilera, J. M.;. Relating Food Engineering to Cooking and Gastronomy. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1021–1039. DOI: 10.1111/1541-4337.12361.
  • The World’s 50 Best Restaurants, the World’s 50 Best Restaurants. https://www.theworlds50best.com (accessed June 15, 2020).
  • Ing, P.; Lee, G.; Eng, J.; Mohd, J. The Influence of Consumer Characteristics on the Acceptance of New Seaweed Food Products. Jurnal Kemanusiaan. 2010, 15, 97–107.
  • Newswire, P. R.;. Commercial Seaweed Market Growing at 7.5% CAGR to Be Worth over USD 92 Billion by 2025: Global Market Insights, Inc. https://www.prnewswire.com/news-releases/commercial-seaweed-market-growing-at-7-5-cagr-to-be-worth-over-usd-92-billion-by-2025-global-market-insights-inc-300925901.html (accessed May 15, 2020)
  • Bouga, M.; Combet, E. Emergence of Seaweed and Seaweed-Containing Foods in the UK: Focus on Labeling, Iodine Content, Toxicity and Nutrition. Foods. 2015, 4(4), 240–253. DOI: 10.3390/foods4020240.
  • van der Weele, C.; Feindt, P.; Jan van der Goot, A.; van Mierlo, B.; van Boekel, M. Meat Alternatives; An Integrative Comparison. Trends Food Sci. Technol. 2019, 88, 505–512. DOI: 10.1016/j.tifs.2019.04.018.
  • Tuorila, H.; Hartmann, C. Consumer Responses to Novel and Unfamiliar Foods. Curr. Opin. Food. Sci. 2020, 33, 1–8. DOI: 10.1016/j.cofs.2019.09.004.
  • Prager, H. R.; What Can Be Done to Increase Acceptance of Seaweed into the Western Diet. https://www.ntnu.edu/documents/139799/1273574286/TPD4505.Henry.Prager.pdf/bcb465ea-79e3-45c0-b1d2-1775b3d1852f (accessed 12 June, 2020).
  • Roohinejad, S.; Koubaa, M.; Barba, F. J.; Saljoughian, S.; Amid, M.; Greiner, R. Application of Seaweeds to Develop New Food Products with Enhanced Shelf-Life, Quality and Health-Related Beneficial Properties. Food Res. Int. 2017, 99, 1066–1083. DOI: 10.1016/j.foodres.2016.08.016.
  • Badmus, U. O.; Taggart, M. A.; Boyd, K. G. The Effect of Different Drying Methods on Certain Nutritionally Important Chemical Constituents in Edible Brown Seaweeds. J. Appl. Phycol. 2019, 31(6), 3883–3897. DOI: 10.1007/s10811-019-01846-1.
  • Amorim-Carrilho, K.; Lage-Yusty, M. A.; López-Hernández, J. Variation of Bioactive Compounds in Dried Seaweed Himanthalia Elongata Subjected to Different Culinary Processes. CYTA- J. Food. 2014, 12(4), 336–339. DOI: 10.1080/19476337.2013.877082.
  • Uchida, M.; Miyoshi, T. Algal Fermentation-the Seed for a New Fermentation Industry of Foods and Related Products. Jpn. Agric. Res. Q. 2013, 47(1), 53–63. DOI: 10.6090/jarq.47.53.
  • Song, C.;. Kimchi, Seaweed, and Seasoned Carrot in the Soviet Culinary Culture: The Spread of Korean Food in the Soviet Union and Korean Diaspora. J. Ethn. Foods. 2016, 3(1), 78–84. DOI: 10.1016/j.jef.2016.01.007.
  • Tepait, E. V.;. Acceptability of Dried Pickled Seaweed. Int. Sci. Res. J. 2013, 5(3), 16–36.
  • Mouritsen, O. G.; Rhatigan, P.; Pérez-Lloréns, J. L. The Rise of Seaweed Gastronomy: Phycogastronomy. Bot. Mar. 2019, 62(3), 195–209. DOI: 10.1515/bot-2018-0041.
  • Potter, M.; Vlassopoulos, A.; Lehmann, U. Snacking Recommendations Worldwide: A Scoping Review. Adv. Nutr. 2018, 9(2), 86–98. DOI: 10.1093/advances/nmx003.
  • Twine, R.;. Understanding Snacking through a Practice Theory Lens. Sociol. Health Illn. 2015, 37(8), 1270–1284. DOI: 10.1111/1467-9566.12310.
  • Birch, D.; Skallerud, K.; Paul, N. Who Eats Seaweed? An Australian Perspective. J. Int. Food Agribusiness Mark. 2019, 31(4), 329–351. DOI: 10.1080/08974438.2018.1520182.
  • St Pierre, D.; Are Seaweed Snacks the New Kale Chip? We Think So https://www.bestproducts.com/eats/g22749477/savory-seaweed-snacks/ (accessed May 30, 2020)
  • Lange, K. W.; Hauser, J.; Nakamura, Y.; Kanaya, S. Dietary Seaweeds and Obesity. Food Sci. Hum. Wellness. 2015, 4(3), 87–96. DOI: 10.1016/j.fshw.2015.08.001.
  • Wan-Loy, C.; Siew-Moi, P. Marine Algae as a Potential Source for Anti-Obesity Agents. Mar. Drugs. 2016, 14(12), 222. DOI: 10.3390/md14120222.
  • Djaeni, M.; Sari, D. A. Low Temperature Seaweed Drying Using Dehumidified Air. Procedia Environ. Sci. 2015, 23, 2–10. DOI: 10.1016/j.proenv.2015.01.002.
  • Dobermann, D.; Swift, J. A.; Field, L. M. Opportunities and Hurdles of Edible Insects for Food and Feed. Nutr. Bull. 2017, 42(4), 293–308. DOI: 10.1111/nbu.12291.
  • Dijksterhuis, G.;. New Product Failure: Five Potential Sources Discussed. Trends Food Sci. Technol. 2016, 50, 243–248. DOI: 10.1016/j.tifs.2016.01.016.
  • Munekata, P.; Pateiro, M.; Barba, F.; Domínguez, R.; Gagaoua, M. Development of New Food and Pharmaceutical Products: Nutraceuticals and Food Additives. In In Aquaculture and By-Products: Challenges and Opportunities in the Use of Alternative Protein Sources and Bioactive Compounds, 1st ed ed.; Lorenzo, J.M., Barba, F.J., Eds.; Academic Press: Cambridge, 2020; pp 53–92.
  • Islam, S.; Kamal, M.; Mehedi, M.; Hossain, I.; Hoque, F.; Rasul, G. Manufacture of Different Value Added Seaweed Products and Their Acceptance to Consumers. Asian J. Med. Biol. Res. 2016, 2(4), 639–645. DOI: 10.3329/ajmbr.v2i4.31009.
  • Kim, H.-W.; Choi, J.; Choi, Y.-S.; Han, D.-J.; Kim, H.-Y.; Lee, M.-A.; Kim, S. –. Y.; Kim, C. J. Effects of Sea Tangle (Laminaria Japonica) Powder on Quality Characteristics of Breakfast Sausages. Korean J. Food Sci. Ani. Resour. 2010, 30(1), 55–61. DOI: 10.5851/kosfa.2010.30.1.55.
  • Garicano, E.; Ouyang, H.; O’ Sullivan, M. G.; Kerry, J. P.; Hamill, R. M.; O’ Grady, M. N.; Mohamed, H. O.; Kilcawley, K. N. Effect of Salt Reduction and Inclusion of 1% Edible Seaweeds on the Chemical, Sensory and Volatile Component Profile of Reformulated Frankfurters. Meat Sci. 2020, 161, 1–11. DOI: 10.1016/j.meatsci.2019.108001.
  • Choi, Y.; Kum, J.; Jeon, K.; Park, J.; Choi, H.; Hwang, K. E.; Jeong, T.-J.; Kim, Y.-B.; Kim, C.-J. Effects of Edible Seaweed on Physicochemical and Sensory Characteristics of Reduced-salt Frankfurters. Korean J. Food Sci. An. 2015, 35(6), 748–756. DOI: 10.5851/kosfa.2015.35.6.748.
  • López-López, I.; Cofrades, S.; Yakan, A.; Solas, M. T.; Jiménez-Colmenero, F. Frozen Storage Characteristics of Low-Salt and Low-Fat Beef Patties as Affected by Wakame Addition and Replacing Pork Backfat with Olive Oil-In-Water Emulsion. Food Res. Int. 2010, 43(5), 1244–1254. DOI: 10.1016/j.foodres.2010.03.005.
  • Jannat-Alipour, H.; Rezaei, M.; Shabanpour, B.; Tabarsa, M.; Rafipour, F. Addition of Seaweed Powder and Sulphated Polysaccharide on Shelf-Life Extension of Functional Fish Surimi Restructured Product. J. Food Sci. Technol. 2019, 56(8), 3777–3789. DOI: 10.1007/s13197-019-03846-y.
  • Dellarosa, N.; Laghi, L.; Martinsdóttir, E.; Jónsdóttir, R.; Sveinsdóttir, K. Enrichment of Convenience Seafood with Omega-3 and Seaweed Extracts: Effect on Lipid Oxidation. Food Sci. Technol. 2015, 62, 746–752. DOI: 10.1016/j.lwt.2014.09.032.
  • Fitzgerald, C.; Gallagher, E.; Doran, L.; Auty, M.; Prieto, J.; Hayes, M. Increasing the Health Benefits of Bread: Assessment of the Physical and Sensory Qualities of Bread Formulated Using a Renin Inhibitory Palmaria Palmata Protein Hydrolysate. LWT Food Sci. Technol. 2014, 56(2), 398–405. DOI: 10.1016/j.lwt.2013.11.031.
  • Arufe, S.; Della Valle, G.; Chiron, H.; Chenlo, F.; Sineiro, J.; Moreira, R. Effect of Brown Seaweed Powder on Physical and Textural Properties of Wheat Bread. Eur. Food Res. Technol. 2018, 244(1), 1–10. DOI: 10.1007/s00217-017-2929-8.
  • Arufe, S.; Chenlo, F.; Sineiro, J.; Moreira, R. Effect of Brown Seaweed Addition and Starch Gelatinization on Gluten ‑ Free Chestnut Flour Doughs and Cookies. J. Food Meas. Charact. 2019, 13(4), 2571–2580. DOI: 10.1007/s11694-019-00177-6.
  • Oh, H.; Lee, P.; Kim, S. Y.; Kim, Y.-S. Preparation of Cookies with Various Native Seaweeds Found on the Korean Coast. J. Aquat. Food Prod. Technol. 2020, 29(2), 167–174. DOI: 10.1080/10498850.2019.1707925.
  • Hasmadi, J.; Akanda, J. H.; Khairi, M.; Ai, Y. The Influence of Seaweed Composite Flour on the Physicochemical Properties of Muffin. J. Aquat. Food Prod. Technol. 2018, 27(5), 635–642. DOI: 10.1080/10498850.2018.1468841.
  • Stefani, S.; Pratama, R. I.; Rostini, I.; Afrianto, E. Seaweed Flour Fortification to the Preference Level of Milk Chocolate Bar. Asian J. Agric. Food Sci. 2019, 12(1), 1–10. DOI: 10.9734/AFSJ/2019/v12i130076.
  • O’Sullivan, A. M.; O’ Callaghan, Y. C.; O’ Grady, M. N.; Waldron, D. S.; Smyth, T. J.; O ’Brien, N. M.; Kerry, J. P. An Examination of the Potential of Seaweed Extracts as Functional Ingredients in Milk. Int. J. Dairy Technol. 2014, 67(2), 182–193. DOI: 10.1111/1471-0307.12121.
  • Del Olmo, A.; López-Perez, O.; Picon, A.; Gaya, P.; Nuñez, M. Cheese Supplementation with Five Species of Edible Seaweeds: Effect on Microbiota, Antioxidant Activity, Colour, Texture and Sensory Characteristics. Int. Dairy J. 2018, 84, 36–45. DOI: 10.1016/j.idairyj.2018.04.004.
  • Fradinho, P.; Raymundo, A.; Sousa, I.; Dominguez, H.; Torres, M. D. Edible Brown Seaweed in Gluten-Free Pasta: Technological and Nutritional Evaluation. Foods. 2019, 622(8), 1–18. DOI: 10.3390/foods8120622.
  • Prabhasankar, P.; Ganesan, P.; Bhaskar, N.; Hirose, A.; Stephen, N.; Gowda, L. R.; Hosokawa, M.; Miyashita, K. Edible Japanese Seaweed, Wakame (Undaria Pinnatifida) as an Ingredient in Pasta: Chemical, Functional and Structural Evaluation. Food Chem. 2009, 115(2), 501–508. DOI: 10.1016/j.foodchem.2008.12.047.
  • Nakagawa, T.; Kohori, J.; Koike, S.; Katsuragi, Y.; Shoji, T. Sodium Aspartate as a Specific Enhancer of Salty Taste Perception – Sodium Aspartate Is a Possible Candidate to Decrease Excessive Intake of Dietary Salt. Chem. Senses. 2014, 39(9), 781–786. DOI: 10.1093/chemse/bju051.
  • Onuma, T.; Maruyama, H.; Sakai, N. Enhancement of Saltiness Perception by Monosodium Glutamate Taste and Soy Sauce Odor: A Near-Infrared Spectroscopy Study. Chem. Senses. 2018, 43, 151–167. DOI: 10.1093/chemse/bjx084.
  • Nufus, C.; Abdullah, A. Nurjanah. Characteristics of Green Seaweed Salt as Alternative Salt for Hypertensive Patients. IOP Conf. Ser.: Earth Environ. Sci. 2019, 278(1), 1–7. DOI: 10.1088/1755-1315/278/1/012050.
  • Magnusson, M.; Praeger, C.; Mata, L.; de Nys, R.; Paul, N. Seaweed Salt from Ulva: A Novel First Step in A Cascading Biorefinery Model. Algal Res. 2016, 16, 308–316. DOI: 10.1016/j.algal.2016.03.018.
  • Seagreens. The Mineral Salt – Three Awards in Its First Year! http://www.seagreens.co.uk/mineralsalt (accessed June 15, 2020).
  • Lee, G. H.;. A Salt Substitute with Low Sodium Content from Plant Aqueous Extracts. Food Res. Int. 2011, 44(2), 537–543. DOI: 10.1016/j.foodres.2010.11.018.
  • Hotchkiss, S.; The Application of Edible Seaweed for Taste Enhancement and Salt Replacement. https://cordis.europa.eu/project/id/315170/reporting. (accessed June 16, 2020).
  • Lucas, S.; Gouin, S.; Lesueur, M. Seaweed Consumption and Label Preferences in France. Mar. Resour. Econ. 2019, 34(2), 143–162. DOI: 10.1086/704078.
  • Palmieri, N.; Bonaventura, M. The Potential of Edible Seaweed within the Western Diet. A Segmentation of Italian Consumers. Int. J. Gastron. Food Sci. 2020, 20, 0–9. DOI: 10.1016/j.ijgfs.2020.100202.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.