464
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Overview of Green Nanofabrication Technologies for Food Quality and Safety Applications

, ORCID Icon &

References

  • Nasrollahzadeh, M.; Sajjadi, M.; Sajadi, S. M.; Issaabadi, Z. Green Nanotechnology. In Interface Science and Technology; Elsevier, 2019, Vol. 28, pp 145–198. DOI:10.1016/B978-0-12-813586-0.00005-5.
  • Maksimović, M.; Towards Green, O.-M. E. Nanotechnology: Maximizing Benefits and Minimizing Harm. In CMBEBIH; Badnjevic A., Ed.; Springer: Singapore, 2017; 164–170. DOI:10.1007/978-981-10-4166-2_26.
  • Krishnaswamy, K.; Orsat, V. Sustainable Delivery Systems through Green Nanotechnology. In Nano-and Microscale Drug Delivery Systems; Elsevier: 2017; pp 17–32. doi:10.1016/B978-0-323-52727-9.00002-9.
  • Patra, J. K.; Baek, K. H. Green Nanobiotechnology: Factors Affecting Synthesis and Characterization Techniques. J. Nanomater. 2014, 1–12. DOI: 10.1155/2014/417305.
  • Ravichandran, R.;. Nanotechnology Applications in Food and Food Processing: Innovative Green Approaches, Opportunities, and Uncertainties for Global Market. Int. J. Green Nanotechnol.: Phys. Chem. 2010, 1(2), PP72–96. DOI: 10.1080/19430871003684440.
  • María, L. P.; Díaz-Reinoso, B.; Giancarlo, C.; Barba, F. J.; Moure, A.; Domínguez, H.; Daniel, F. Green Technologies for Food Processing: Principal Considerations. In Innovative Thermal and Non-thermal Processing, Bioaccessibility and Bioavailability of Nutrients and Bioactive Compounds; Barba, F. J., Saraiva, J. M. A., Cravotto, G., Lorenzo, J. M., Eds.; Woodhead Publishing, 2019; pp 55–103. doi:10.1016/B978-0-12-814174-8.00003-2.
  • Balasooriya, E. R.; Jayasinghe, C. D.; Jayawardena, U. A.; Ruwanthika, R. W. D.; Mendis De Silva, R.; Udagama, P. V. Honey Mediated Green Synthesis of Nanoparticles: A New Era of Safe Nanotechnology. J. Nanomater. 2017, 1–10. DOI: 10.1155/2017/5919836.
  • Rolim, W. R.; Pelegrino, M. T.; De Araújo Lima, B.; Ferraz, L. S.; Costa, F. N.; Bernardes, J. S.; Rodigues, T.; Brocchi, M.; Seabra, A. B. Green Tea Extract Mediated Biogenic Synthesis of Silver Nanoparticles: Characterization, Cytotoxicity Evaluation and Antibacterial Activity. Applied Surface Science. 2019, 463, 66–74. DOI: 10.1016/j.apsusc.2018.08.203.
  • Qidwai, A.; Kumar, R.; Shukla, S. K.; Dikshit, A. Advances in Biogenic Nanoparticles and the Mechanisms of Antimicrobial Effects. Indian J. Pharm. Sci. 2018, 80(4), 592–603. DOI: 10.4172/pharmaceutical-sciences.1000398.
  • Ghaani, M.; Cozzolino, C. A.; Castelli, G.; Farris, S. An Overview of the Intelligent Packaging Technologies in the Food Sector. Trends Food Sci. Technol. 2016, 51, 1–11. DOI: 10.1016/j.tifs.2016.02.008.
  • Ummi, A. S.; Siddiquee, S. Nanotechnology Applications in Food: Opportunities and Challenges in Food Industry. In Nanotechnology: Applications in Energy, Drug and Food; Siddiquee, S., Melvin, G. J. H., Rahman, M. M., Eds.; Springer: Cham, 2019; 295–308. DOI:10.1007/978-3-319-99602-8_15.
  • Shah, M. A.; Mir, S. A.; Bashir, M. Nanoencapsulation of Food Ingredients. In Food Science and Nutrition: Breakthroughs in Research and Practice; Nayak, B. K., Nanda, A., Bhat, M. A., Eds.; IGI Global: 2018; pp 218–234. doi:10.4018/978-1-5225-0610-2.ch006.
  • Wong, S.; Karn, B. Ensuring Sustainability with Green Nanotechnology. Nanotechnol. 2012, 23(29), 290201. DOI: 10.1088/0957-4484/23/29/290201.
  • Sanjay, S. S.;. Safe Nano Is Green Nano. In Green Synthesis, Characterization and Applications of Nanoparticles; Shukla, A., Iravani, S., Eds.; Elsevier: 2019; pp 27–36. doi:10.1016/B978-0-08-102579-6.00002-2.
  • Dwivedi, C.; Dwivedi, C.; Pandey, I.; Chorage, C.; Singh, A. V.; Ramteke, P.W. The Potential of Nanobiotechnology for the Production of Ingredients in the Food Industry. In Food Applications of Nanotechnology; Molina, G., Inamuddin, Pelissari, F. M., Asiri, A. M., Eds.;CRC Press, Taylor & Francis Group, 2019, pp 421–432. doi:10.1201/9780429297038-17
  • Kumar, I.; Mondal, M.; Sakthivel, N. Green Synthesis of Phytogenic Nanoparticles. In Green Synthesis, Characterization and Applications of Nanoparticles; Shukla, A., Iravani, S., Eds.; Elsevier: 2019; pp 37–73. doi:10.1016/B978-0-08-102579-6.00003-4.
  • Saha, S. K.; Chowdhury, P.; Saini, P.; Babu, S. P. S. Ultrasound Assisted Green Synthesis of Poly (Vinyl Alcohol) Capped Silver Nanoparticles for the Study of Its Antifilarial Efficacy. Appl. Surf. Sci. 2014, 288, 625–632. DOI: 10.1016/j.apsusc.2013.10.085.
  • Silva, L. P.; Pereira, T. M.; Bonatto, C. C. Frontiers and Perspectives in the Green Synthesis of Silver Nanoparticles. In Green Synthesis, Characterization and Applications of Nanoparticles; Shukla, A., Iravani, S., Eds.; Elsevier, 2019; pp 137–164. doi:10.1016/B978-0-08-102579-6.00007-1.
  • Malassis, L.; Dreyfus, R.; Murphy, R. J.; Hough, L. A.; Donnio, B.; Murray, C. B. One-step Green Synthesis of Gold and Silver Nanoparticles with Ascorbic Acid and Their Versatile Surface Post-Functionalization. RSC Adv. 2016, 6(39), 33092–33100. DOI: 10.1039/C6RA00194G.
  • Sahu, N.; Soni, D.; Chandrashekhar, B.; Satpute, D. B.; Saravanadevi, S.; Sarangi, B. K.; Pandey, R. A. Synthesis of Silver Nanoparticles Using Flavonoids: Hesperidin, Naringin and Diosmin, and Their Antibacterial Effects and Cytotoxicity. Int. Nano Lett. 2016, 6(3), 173–181. DOI: 10.1007/s40089-016-0184-9.
  • Saratale, R. G.; Saratale, G. D.; Shin, H. S.; Jacob, J. M.; Pugazhendhi, A.; Bhaisare, M.; Kumar, G. New Insights on the Green Synthesis of Metallic Nanoparticles Using Plant and Waste Biomaterials: Current Knowledge, Their Agricultural and Environmental Applications. Environ. Sci. Pollut. Res. 2018, 25(11), 10164–10183. DOI: 10.1007/s11356-017-9912-6.
  • Liu, Y. S.; Chang, Y. C.; Chen, H. H. Silver Nanoparticle Biosynthesis by Using Phenolic Acids in Rice Husk Extract as Reducing Agents and Dispersants. J. Food Drug Anal. 2018, 26(2), 649–656. DOI: 10.1016/j.jfda.2017.07.005.
  • Yang, N.; WeiHong, L.; Hao, L. Biosynthesis of Au Nanoparticles Using Agricultural Waste Mango Peel Extract and It’s in Vitro Cytotoxic Effect on Two Normal Cells. Mater. Lett. 2014, 134, 67–70. DOI: 10.1016/j.matlet.2014.07.025.
  • Vishwasrao, C.; Momin, B.; Ananthanarayan, L. Green Synthesis of Silver Nanoparticles Using Sapota Fruit Waste and Evaluation of Their Antimicrobial Activity. Waste Biomass Valorization. 2019, 10(8), 2353–2363. DOI: 10.1007/s12649-018-0230-0.
  • Phongtongpasuk, S.; Poadang, S. Green Synthesis of Silver Nanoparticles Using Pomegranate Peel Extract. In Advanced Materials Research; Srikhirin, T., Kerdcharoen, T., Osotchan, T., Eds.; Trans Tech Publications, Trans Tech Publications, 2016, Vol. 1131, pp 227–230. D OI:10.4028/www.scientific.net/AMR.1131.227.
  • Omran, B. A.; Nassar, H. N.; Fatthallah, N. A.; Hamdy, A.; El-Shatoury, E. H.; El-Gendy, N. S. Waste Upcycling of Citrus Sinensis Peels as a Green Route for the Synthesis of Silver Nanoparticles. Energ. Source Part A. 2018, 40(2), 227–236. DOI: 10.1080/15567036.2017.1410597.
  • Patra, J. K.; Kwon, Y.; Baek, K. H. Green Biosynthesis of Gold Nanoparticles by Onion Peel Extract: Synthesis, Characterization and Biological Activities. Adv. Powder Technol. 2016, 27(5), 2204–2213. DOI: 10.1016/j.apt.2016.08.005.
  • Sinsinwar, S.; Sarkar, M. K.; Suriya, K. R.; Nithyanand, P.; Vadivel, V. Use of Agricultural Waste (Coconut Shell) for the Synthesis of Silver Nanoparticles and Evaluation of Their Antibacterial Activity against Selected Human Pathogens. Microb. Pathog. 2018, 124, 30–37. DOI: 10.1016/j.micpath.2018.08.025.
  • Yadav, S.; Chauhan, M.; Mathur, D.; Jain, A.; Malhotra, P. Sugarcane Bagasse-facilitated Benign Synthesis of Cu2O Nanoparticles and Its Role in Photocatalytic Degradation of Toxic Dyes: A Trash to Treasure Approach. Environ. Dev. Sustain. 2010, 1–21. DOI: 10.1007/s10668-020-00664-7.
  • Majeed, A.; Ullah, W.; Anwar, A. W.; Shuaib, A.; Ilyas, U.; Khalid, P.; Mustafa, G.; Junaid, M.; Faheem, B.; Cost-Effective, A. S. Biosynthesis of Silver Nanoparticles Using Different Organs of Plants and Their Antimicrobial Applications: A Review. Mater. Technol. 2018, 33(5), 313–320. DOI: 10.1080/10667857.2015.1108065.
  • Khandel, P.; Yadaw, R. K.; Soni, D. K.; Kanwar, L.; Shahi, S. K. Biogenesis of Metal Nanoparticles and Their Pharmacological Applications: Present Status and Application Prospects. J. Nanostructure Chem. 2018, 8(3), 217–254. DOI: 10.1007/s40097-018-0267-4.
  • Ramrakhiani, L.; Ghosh, S. Metallic Nanoparticle Synthesized by Biological Route: Safer Candidate for Diverse Applications. IET Nanobiotechnol. 2018, 12(4), 392–404. DOI: 10.1049/iet-nbt.2017.0076.
  • Wang, L.; Xu, J.; Yan, Y.; Liu, H.; Li, F. Synthesis of Gold Nanoparticles from Leaf Panaxnotoginseng and Its Anticancer Activity in Pancreatic Cancer PANC-1 Cell Lines. Artif. Cells Nanomed. Biotechnol. 2019, 47(1), 1216–1223. DOI: 10.1080/21691401.2019.1593852.
  • Chung, I. M.; Abdul Rahuman, A.; Marimuthu, S.; Vishnu Kirthi, A.; Anbarasan, K.; Padmini, P.; Rajakumar, G. Green Synthesis of Copper Nanoparticles Using Ecliptaprostrata Leaves Extract and Their Antioxidant and Cytotoxic Activities. Exp. Ther. Med. 2017, 14(1), 18–24. DOI: 10.3892/etm.2017.4466.
  • Devatha, C. P.; Thalla, A. K.; Katte, S. Y. Green Synthesis of Iron Nanoparticles Using Different Leaf Extracts for the Treatment of Domestic Wastewater. J. Clean. Prod. 2016, 139, 1425–1435. DOI: 10.1016/j.jclepro.2016.09.019.
  • Tahir, K.; Nazir, S.; Ahmad, A.; Li, B.; Khan, A. U.; Khan, Z. U. H.; Khan, F. U.; Khan, Q. U.; Khan, A.; Rahman, A. U. Facile and Green Synthesis of Phytochemicals Capped Platinum Nanoparticles and in Vitro Their Superior Antibacterial Activity. J. Photoch. Photobio. B. 2017, 166, 246–251. DOI: 10.1016/j.jphotobiol.2016.12.016.
  • Hussain, I.; Singh, N. B.; Singh, A.; Singh, H.; Singh, S. C. Green Synthesis of Nanoparticles and Its Potential Application. Biotechnol. Lett. 2016, 38(4), 545–560. DOI: 10.1007/s10529-015-2026-7.
  • Said, M. I.; Othman, A. A. Fast Green Synthesis of Silver Nanoparticles Using Grape Leaves Extract. Mater. Res. Express. 2019, 6(5), 055029. DOI: 10.1088/2053-1591/ab0481.
  • Akram, M.; Farooq, Q. H.; Shafiq, M. I.; Awan, A. S. Synthesis and Characterization of Some Important Metal Nanoparticles and Their Applications. Sci. Int. (Lahore). 2016, 28, 4049–4059.
  • Wisam, J. A.; Haneen, A. J.; Novel, A. Study of pH Influence on Ag Nanoparticles Size with an Antibacterial and Antifungal Activity Using Green Synthesis. World Sci. News. 2018, 97, 139–152.
  • Anigol, L. B.; Charantimath, J. S.; Gurubasavaraj, P. M. Effect of Concentration and pH on the Size of Silver Nanoparticles Synthesized by Green Chemistry. Org. Med. Chem. 2017, 3(5), 1–5. DOI: 10.19080/omcij.2017.03.555622.
  • Vanaja, M.; Rajeshkumar, S.; Paulkumar, K.; Gnanajobitha, G.; Malarkodi, C.; Annadurai, G. Kinetic Study on Green Synthesis of Silver Nanoparticles Using Coleus Aromaticus Leaf Extract. Adv. Appl. Sci. Res. 2013, 4(3), 50–55.
  • Manjamadha, V. P.; Ultrasound-Assisted Green, M. K. Synthesis of Silver Nanoparticles Using Weed Plant. Bioproc. Biosyst. Eng. 2016, 39(3), 401–411. DOI: 10.1007/s00449-015-1523-3.
  • Francis, S.; Joseph, S.; Koshy, E. P.; Mathew, B. Microwave Assisted the Green Synthesis of Silver Nanoparticles Using Leaf Extract of Elephantopusscaber and Its Environmental and Biological Applications. Artif. Cells Nanomed. Biotechnol. 2018, 46(4), 795–804. DOI: 10.1080/21691401.2017.1345921.
  • Deshmukh, A. R.; Gupta, A.; Kim, B. S. Ultrasound-Assisted Green Synthesis of Silver and Iron Oxide Nanoparticles Using Fenugreek Seed Extract and Their Enhanced Antibacterial and Antioxidant Activities. BioMed. Res. Int. 2019, 1–14. DOI: 10.1155/2019/1714358.
  • Liem, L.; Nguyen, D. Microwave Assisted Green Synthesis of Silver Nanoparticles Using Mulberry Leaves Extract and Silver Nitrate Solution. Technol. 2019, 7(1), 7. DOI: 10.3390/technologies7010007.
  • He, X.; Hwang, H. M. Nanotechnology in Food Science: Functionality, Applicability, and Safety Assessment. J. Food Drug Anal. 2016, 24(4), 671–681. DOI: 10.1016/j.jfda.2016.06.001.
  • Kuswandi, B.; Wicaksono, Y.; Abdullah, A.; Heng, L. Y.; Smart Packaging, A. M. Sensors for Monitoring of Food Quality and Safety. Sens. Instrum. Food Qual. Saf. 2011, 5, 137–146. DOI: 10.1007/s11694-011-9120-x.
  • Environmental Friendly, K. B.;. Food Nano-packaging. Environ. Chem. Lett. 2017, 15(2), 205–221. DOI: 10.1007/s10311-017-0613-7.
  • Yousefi, H.; Su, H. M.; Imani, S. M.; Alkhaldi, K.; Filipe, M.; Didar, C. D.; Intelligent Food, T. F. Packaging: A Review of Smart Sensing Technologies for Monitoring Food Quality. ACS Sens. 2019, 4(4), 808–821. DOI: 10.1021/acssensors.9b00440.
  • Nanotechnology, P. M.; New, A. Approach to Food Packaging. J. Food Microbiol. Safe. Hyg. 2017, 2, 121. DOI: 10.4172/2476-2059.1000121.
  • Lee, S. Y.; Lee, S. J.; Choi, D. S.; Hur, S. J. Current Topics in Active and Intelligent Food Packaging for the Preservation of Fresh Foods. J. Sci. Food Agri. 2015, 95(14), 2799–2810. DOI: 10.1002/jsfa.7218.
  • Cherpinski, A.; Gozutok, M.; Sasmazel, H.; Torres-Giner, S.; Lagaron, J. Electrospun Oxygen Scavenging Films of Poly (3-hydroxybutyrate) Containing Palladium Nanoparticles for Active Packaging Applications. Nanomaterials. 2015, 8(7), 469. DOI: 10.3390/nano8070469.
  • Basavegowda, N.; Mandal, T. K.; Baek, K. H. Bimetallic and Trimetallic Nanoparticles for Active Food Packaging Applications: A Review. Food Bioprocess Technol. 2020, 13(1), 30–44. DOI: 10.1007/s11947-019-02370-3.
  • Gopinath, K.; Shanmugam, V. K.; Gowri, S.; Senthilkumar, V.; Kumaresan, S.; Arumugam, A. Antibacterial Activity of Ruthenium Nanoparticles Synthesized Using Gloriosasuperba L. Leaf Extract. J. Nanostruct. Chem. 2014, 4, 83. DOI: 10.1007/s40097014-0083-4.
  • Ortega, F.; Giannuzzi, L.; Arce, V. B.; García, M. A. Active Composite Starch Films Containing Green Synthesized Silver Nanoparticles. Food Hydrocoll. 2017, 70, 152–162. DOI: 10.1016/j.foodhyd.2017.03.036.
  • Verma, D. K.; Gupta, A. P. Carboxymethyl Guar Gum–Silver Nanocomposite Film: Preparation and Antimicrobial Activity. Asian Chitin J. 2015, 11(1), 11–16.
  • Popov, V.; Hinkov, I.; Diankov, S.; Karsheva, M.; Handzhiyski, Y. Ultrasound-assisted Green Synthesis of Silver Nanoparticles and Their Incorporation in Antibacterial Cellulose Packaging. Green Process. Synth. 2015, 4(2), 125–131. DOI: 10.1515/gps-2014-0085.
  • Assadpour, E.; Jafari, S. M. Nanoencapsulation: Techniques and Developments for Food Applications. In Nanomaterials for Food Applications; ópez Rubio, A., Fabra Rovira, M. J., Martínez Sanz, M. & Gómez-Mascaraque, L. G., Eds.; Elsevier, 2019, pp 35-61. DOI:10.1016/B978-0-12-814130-4.00003-8.
  • Rai, M.; Ingle, A. P.; Gupta, I.; Pandit, R.; Paralikar, P.; Gade, A.; Chaud, M. V.; Dos Santos, C. A. Smart Nano Packaging for the Enhancement of Food Shelf Life. Environ. Chem. Lett. 2019, 17(1), 277–290. DOI: 10.1007/s10311-018-0794-8.
  • Martins, A. J.; Benelmekki, M.; Teixeira, V.; Coutinho, P. J. G. Platinum Nanoparticles as pH Sensor for Intelligent Packaging. J. Nano Res. 2012, 18, 97–104. D OI: 10.4028/www.scientific.net/JNanoR.18-19.97.
  • Taccola, S.; Greco, F.; Zucca, A.; Innocenti, C.; De Julián Fernández, C.; Campo, G.; Sangregorio, C.; Mazzolai, B.; Mattoli, V. Characterization of Free-Standing PEDOT: PSS/Iron Oxide Nanoparticle Composite Thin Films and Application as Conformable Humidity Sensors. ACS Appl. Mater. Interfaces. 2013, 5(13), 6324–6332. DOI: 10.1021/am4013775.
  • Echegoyen, Y.;. Nano-developments for Food Packaging and Labelling Applications. In Nanotechnologies in Food and Agriculture.; Rai, M., Riberio, C., Mattoso, L., Duran, N., Eds.; Springer: Basel, 2015; pp 141–160. DOI: 10.1007/s10311-018-0794-8.
  • Eleftheriadou, M.; Pyrgiotakis, G.; Demokritou, P. Nanotechnology to the Rescue: Using Nano-enabled Approaches in Microbiological Food Safety and Quality. Curr. Opin. Biotech. 2017, 44, 87–93. DOI: 10.1016/j.copbio.2016.11.012.
  • Lv, M.; Liu, Y.; Geng, J.; Kou, X.; Xin, Z.; Engineering Nanomaterials-based, Y. D. Biosensors for Food Safety Detection. Biosens. Bioelectron. 2018, 106, 122–128. DOI: 10.1016/j.bios.2018.01.049.
  • Ragavan, K. V.; Neethirajan, S. Nanoparticles as Biosensors for Food Quality and Safety Assessment. Nanomater. Food Appl. 2019, 142–202. DOI: 10.1016/B978-0-12-814130-4.00007-5.
  • Wang, Y.; Alocilja, E. C. Gold Nanoparticle-labe Led Biosensor for Rapid and Sensitive Detection of Bacterial Pathogens. J. Biol. Eng. 2015, 9, 1–7. DOI: 10.1186/s13036-015-0014-z.
  • Verma, M. S.; Chen, P. Z.; Jones, L.; Gu, F. X. Controlling “Chemical Nose” Biosensor Characteristics by Modulating Gold Nanoparticle Shape and Concentration. Sens. Bio-Sensing Res. 2015, 5, 13–18. DOI: 10.1016/j.sbsr.2015.04.007.
  • Song, J.; Wu, F.; Wan, Y.; Ma, L. Colorimetric Detection of Melamine in Pretreated Milk Using Silver Nanoparticles Functionalized with Sulfanilic Acid. Food Control. 2015, 50, 356–361. DOI: 10.1016/j.foodcont.2014.08.049.
  • He, Y.; Xu, B.; Li, W.; Yu, H. Silver Nanoparticle-based Chemiluminescent Sensor Array for Pesticide Discrimination. J. Agric. Food Chem. 2015, 63(11), 2930–2934. DOI: 10.1021/acs.jafc.5b00671.
  • Ismail, M.; Khan, M. I.; Akhtar, K.; Khan, M. A.; Asiri, A. M.; Khan, S. B. Biosynthesis of Silver Nanoparticles: A Colorimetric Optical Sensor for Detection of Hexavalent Chromium and Ammonia in Aqueous Solution. Physica E Low Dimens. Syst. 2018, 103, 367–376. DOI: 10.1016/j.physe.2018.06.015.
  • Rajput, J. K.;. Bio-Polyphenols Promoted Green Synthesis of Silver Nanoparticles for Facile and Ultra-Sensitive Colorimetric Detection of Melamine in Milk. Biosens. Bioelectron. 2018, 120, 153–159. DOI: 10.1016/j.bios.2018.08.054.
  • Kumar, V.; Guleria, P.; Mehta, S. K. Nanosensors for Food Quality and Safety Assessment. Environ. Chem. Lett. 2017, 15(2), 165–177. DOI: 10.1007/s10311-017-0616-4.
  • Neethirajan, S.; Jayas, D. S. Nanotechnology for the Food and Bioprocessing Industries. Food Bioproc. Tech. 2011, 4(1), 39–47. DOI: 10.1007/s11947-010-0328-2.
  • Nam, J. M.; Thaxton, C. S.; Mirkin, C. A. Nanoparticle Based Bio-bar Codes for the Ultrasensitive Detection of Proteins. Science. 2003, 301(5641), 1884–1886. DOI: 10.1126/science.1088755.
  • Li, X.; Wang, T.; Zhang, J.; Zhu, D.; Zhang, X.; Ning, Y.; Zhang, H.; Yang, B. Controlled Fabrication of Fluorescent Barcode Nanorods. ACS Nano. 2010, 4(8), 4350–4360. DOI: 10.1021/nn9017137.
  • Naseer, B.; Srivastava, G.; Qadri, O. S.; Faridi, S. A.; Islam, R. U.; Younis, K. Importance and Health Hazards of Nanoparticles Used in the Food Industry. Nanotechnol. Rev. 2018, 7(6), 623–641. DOI: 10.1515/ntrev-2018-0076.
  • Li, Y.; Yht, C. U.; Luo, D. Multiplexed Detection of Pathogen DNA with DNA-based Fluorescence Nanobarcodes. Nat. Biotechnol. 2005, 23, 885–889. DOI: 10.1038/nbt1106.
  • Carlo, M. D.; Fusella, G. C.; Pepe, A.; Sergi, M.; Martino, M. D.; Mascini, M.; Martino, G.; Cichelli, A.; Natale, C. D.; Novel Oligopeptides, C. D. Based E-Nose for Food Quality Control: Application to Extra-Virgin Olive Samples. Qual. Assur. Saf. Crop. 2014, 6, 307–317. DOI: 10.3920/QAS2013.0377.
  • Zhang, Q.; Zhang, S.; Xie, C.; Zeng, D.; Fan, C.; Li, D.; Bai, Z. Characterization of Chinese Vinegars by Electronic Nose. Sens. Actuators B-Chem. 2006, 119, 538–546. DOI: 10.1016/j.snb.2006.01.007.
  • Hashem, F.; Nasr, M.; Preparation, A. Y. Evaluation of Iron Oxide Nanoparticles for Treatment of Iron Deficiency Anemia. Int. J. Pharm. Pharm. Sci. 2018, 10(1), 142–146. DOI: 10.22159/ijpps.2018v10i1.22686.
  • Elshemy, M. A.;. Iron Oxide Nanoparticles versus Ferrous Sulfate in Treatment of Iron Deficiency Anemia in Rats. Egypt J. Vet. Sci. 2018, 49(2), 103–109. DOI: 10.21608/ejvs.2018.3855.1039.
  • Nuruzzaman, M.; Rahman, M. M.; Liu, Y.; Nanoencapsulation, N. R. Nano-Guard for Pesticides: A New Window for Safe Application. J. Agric. Food Chem. 2016, 64(7), 1447–1483. DOI: 10.1021/acs.jafc.5b05214.
  • Ezhilarasi, P. N.; Karthik, P.; Chhanwal, N.; Anandharamakrishnan, C. Nanoencapsulation Techniques for Food Bioactive Components: A Review. Food Bioprocess Technol. 2013, 6(3), 628–647. DOI: 10.1007/s11947-012-0944-0.
  • Xiao, J.; Cao, Y.; Huang, Q. Edible Nanoencapsulation Vehicles for Oral Delivery of Phytochemicals: A Perspective Paper. J. Agric. Food Chem. 2017, 65(32), 6727–6735. DOI: 10.1021/acs.jafc.7b02128.
  • Fathi, M.; Mozafari, M. R.; Mohebbi, M. Nanoencapsulation of Food Ingredients Using Lipid Based Delivery Systems. Trends Food Sci. Technol. 2012, 23(1), 13–27. DOI: 10.1016/j.tifs.2011.08.003.
  • Fathi, M.; Martin, A.; McClements, D. J. Nanoencapsulation of Food Ingredients Using Carbohydrate Based Delivery Systems. Trends Food Sci. Technol. 2014, 39(1), 18–39. DOI: 10.1016/j.tifs.2014.06.007.
  • Samaranayaka, A. G. P.; Li-Chan, E. C. Y. Food-Derived Peptidic Antioxidants: A Review of Their Production, Assessment, and Potential Applications. J. Funct. Foods. 2011, 3(4), 229–254. DOI: 10.1016/j.jff.2011.05.006.
  • Fathi, M.; Donsi, F.; McClements, D. J. Protein‐Based Delivery Systems for the Nanoencapsulation of Food Ingredients. Compr. Rev. Food Sci. Food Saf. 2018, 17(4), 920–936. DOI: 10.1111/1541-4337.12360.
  • Mozafari, M. R.; Flanagan, J.; Matia‐Merino, L.; Awati, A.; Omri, A.; Suntres, Z. E.; Singh, H. Recent Trends in the Lipid‐Based Nanoencapsulation of Antioxidants and Their Role in Foods. J. Sci. Food Agri. 2006, 86(13), 2038–2045. DOI: 10.1002/jsfa.2576.
  • Akhavan, S.; Assadpour, E.; Katouzian, I.; Jafari, S. M. Lipid Nano Scale Cargos For The Protection And Delivery Of Food Bioactive Ingredients And Nutraceuticals. Trends Food Sci. Technol. 2018, 74, 132–146. DOI: 10.1016/j.tifs.2018.02.001.
  • Livney, Y. D.;. Nanostructured Delivery Systems in Food: Latest Developments and Potential Future Directions. Curr. Opin. Food Sci. 2015, 2015(3), 125–135. DOI: 10.1016/j.cofs.2015.06.010.
  • Assadpour, E.; Jafari, S. M. An Overview of Specialized Equipment for Nanoencapsulation of Food Ingredients. In Nanoencapsulation of Food Ingredients by Specialized Equipment; Jafari, S., Ed.; Academic Press: 2019; pp 1–30. doi:10.1016/B978-0-12-815671-1.00001-9.
  • Zhu, J.; Huang, Q. Nanoencapsulation of Functional Food Ingredients. In Advances in Food and Nutrition Research.; Lim, L.-T., Rogers, M., Eds.; Academic Press, 2019, Vol. 88, pp 129–165. DOI:10.1016/bs.afnr.2019.03.005.
  • Mortazavi, S. M.; Mohammadabadi, M. R.; Khosravi-Darani, K.; Mozafari, M. R. Preparation of Liposomal Gene Therapy Vectors by a Scalable Method without Using Volatile Solvents or Detergents. J. Biotechnol. 2007, 129(4), 604–613. DOI: 10.1016/j.jbiotec.2007.02.005.
  • Jafarizadeh-Malmiri, H.; Sayyar, Z.; Anarjan, N.; Berenjian, A. Nano-encapsulation for Nutrition Delivery. In Nanobiotechnology in Food: Concepts, Applications and Perspectives; Jafarizadeh-Malmiri, H., Sayyar, Z., Anarjan, N., Berenjian, A., Eds.; Springer: Cham, 2019; pp 95–114.
  • De Souza Simões, L.; Madalena, D. A.; Pinheiro, A. C.; Teixeira, J. A.; Vicente, A. A.; Ramos, O. L. Micro-and Nano Bio-based Delivery Systems for Food Applications: In Vitro Behavior. Adv. Colloid Interface Sci. 2017, 243, 23–45. DOI: 10.1016/j.cis.2017.02.010.
  • Zuidam, N. J.; Shimoni, E. Overview of Microencapsulation Use in Food Products or Processes and Methods to Make Them. In Encapsulation Technique for Active Food Ingredients and Food Processing; Zuidam, N.J., Nedovic, V.A., Eds.; Springer: New York, 2010; pp 3–29.
  • Anandharamakrishnan, C.;. Electrospraying and Electrospinning Techniques for Nanoencapsulation. In Techniques for Nanoencapsulation of Food Ingredients; Anandharamakrishnan, C. Ed.; Springer: New York, 2014; 43–49. DOI:10.1007/978-1-4614-9387-7_5.
  • Kurečič, M.; Smole, M. S. Electrospinning: Nanofibre Production Method. Tekstilec. 2013, 56(1), 1. DOI: 10.14502/Tekstilec2013.56.4-12.
  • Hao, S.; Wang, Y.; Wang, B.; Deng, J.; Liu, X.; Liu, J. Rapid Preparation of Ph-Sensitive Polymeric Nanoparticle with High Loading Capacity Using Electrospray for Oral Drug Delivery. Mater. Sci. Eng. C. 2013, 33(8), 4562–4567. DOI: 10.1016/j.msec.2013.07.009.
  • Zhang, S.; Kawakami, K. One-step Preparation of Chitosan Solid Nanoparticles by Electrospray Deposition. Int. J. Pharm. 2010, 397(1–2), 211–217. DOI: 10.1016/j.ijpharm.2010.07.007.
  • Paredes, A. J.; Asensio, C. M.; Llabot, J. M.; Allemandi, D. A.; Palma, S. D. Nanoencapsulation in the Food Industry: Manufacture, Applications and Characterization. J. Food Bioeng. Nanoprocess. 2016, 1(1), 56–79.
  • Singh, H.;. Nanotechnology Applications in Functional Foods; Opportunities and Challenges. Prev. Nutr. Food Sci. 2016, 21(1), 1. DOI: 10.3746/pnf.2016.21.1.1.
  • Gökmen, V.; Mogol, B. A.; Lumaga, R. B.; Fogliano, V.; Kaplun, Z.; Shimoni, E. Development of Functional Bread Containing Nanoencapsulated Omega-3 Fatty Acids. J. Food Eng. 2011, 105(4), 585–591. DOI: 10.1016/j.jfoodeng.2011.03.021.
  • Joseph, T.; Morrison, M. Nanotechnology in Agriculture and Food.A Nano forum report, Institute of Nanotechnology, 2006.
  • Echiegu, E. A.;. Nanotechnology Applications in the Food Industry. In Nanotechnology; Prasad R., Kumar V., Kumar M., Eds.; Springer: Singapore, 2017; 153–171. DOI:10.1007/978-981-10-4678-0_9.
  • Pandey, A. K.; Kumar, P.; Singh, P.; Tripathi, N. N.; Bajpai, V. K. Essential Oils: Sources of Antimicrobials and Food Preservatives. Front. Microbial. 2017, 7, 2161. DOI: 10.3389/fmicb.2016.02161.
  • Tossi, A.; Sandri, L.; Giangaspero, A. Amphipathic, α‐Helical Antimicrobial Peptides. Pept. Sci. 2000, 55(1), 4–30.
  • Ahmad, I.; Mehmood, Z.; Mohammad, F. Screening of Some Indian Medicinal Plants for Their Antimicrobial Properties. J. Ethnopharmacol. 1998, 62(2), 183–193. DOI: 10.1016/S0378-8741(98)00055-5.
  • Cruz-Romero, M. C.; Murphy, T.; Morris, M.; Cummins, E.; Kerry, J. P. Antimicrobial Activity of Chitosan, Organic Acids and Nano-sized Solubilisates for Potential Use in Smart Antimicrobially-active Packaging for Potential Food Applications. Food Control. 2013, 34(2), 393–397. DOI: 10.1016/j.foodcont.2013.04.042.
  • Bahrami, A.; Delshadi, R.; Assadpour, E.; Jafari, S. M.; Williams, L. Antimicrobial-Loaded Nanocarriers for Food Packaging Applications. Adv. Colloid Interface Sci. 2020, 278, 102140. DOI: 10.1016/j.cis.2020.102140.
  • Ewert, K. K.; Kotamraju, V. R.; Majzoub, R. N.; Steffes, V. M.; Wonder, E. A.; Teesalu, T.; Ruoslahti, E.; Safinya, C. R. Synthesis of Linear and Cyclic Peptide–PEG–Lipids for Stabilization and Targeting of Cationic Liposome–DNA Complexes. Bioorg. Med. Chem. Lett. 2016, 26(6), 1618–1623. DOI: 10.1016/j.bmcl.2016.01.079.
  • Kriegel, C.; Kit, K. M.; McClements, D. J.; Weiss, J. Nanofibers as Carrier Systems for Antimicrobial Microemulsions. Part I: Fabrication and Characterization. Langmuir. 2009, 25(2), 1154–1161. DOI: 10.1021/la803058c.
  • Spigno, G.; Donsì, F.; Amendola, D.; Sessa, M.; Ferrari, G.; De Faveri, D. M. Nanoencapsulation Systems to Improve Solubility and Antioxidant Efficiency of a Grape Marc Extract into Hazelnut Paste. J. Food Eng. 2013, 114(2), 207–214. DOI: 10.1016/j.jfoodeng.2012.08.014.
  • Imran, M.; Revol-Junelles, A. M.; Francius, G. G.; Desobry, S. P. Diffusion of Fluorescently Labeled Bacteriocin from Edible Nanomaterials and Embedded Nano-bioactive Coatings. ACS Appl. Mater. Interfaces. 2016, 8(33), 21618–21631. DOI: 10.1021/acsami.6b04621.
  • Pabast, M.; Shariatifar, N.; Beikzadeh, S.; Jahed, G. Effects of Chitosan Coatings Incorporating with Free or Nano-Encapsulated SaturejaPlant Essential Oil on Quality Characteristics of Lamb Meat. Food Control. 2018, 91, 185–192. DOI: 10.1016/j.foodcont.2018.03.047.
  • Pradhan, N.; Singh, S.; Ojha, N.; Shrivastava, A.; Barla, A.; Rai, V.; Bose, S. Facets of Nanotechnology as Seen in Food Processing, Packaging and Preservation Industry. Biomed. Res. Int. 2015, 1–7. DOI: 10.1155/2015/365672.
  • Fung, W. Y.; Yuen, K. H.; Liong, M. T. Agrowaste-based Nanofibers as a Probiotic Encapsulant: Fabrication and Characterization. J. Agri. Food Chem. 2012, 59(15), 8140–8147. DOI: 10.1021/jf2009342.
  • Auweter, H.; Bohn, H.; Haberkorn, H.; Horn, D.; Luddecke, E.; Rauschenberger, V. Production of Carotenoid Preparations in the Form of Coldwater-dispersible Powders, and the Use of the Novel Carotenoid Preparations. 1999, US Patent 5968251.
  • Semo, E.; Kesselman, W.; Danino, D.; Livney, Y. D. Caseinmicelle as a Natural Nano-Capsular Vehicle for Nutraceuticals. Food Hydrocoll. 2007, 21(5–6), 936–942. DOI: 10.1016/j.foodhyd.2006.09.006.
  • De Azeredo, H. M. C.;. Nanocomposites for Food Packaging Applications. Food Res. Int. 2009, 42(9), 1240–1253. DOI: 10.1016/j.foodres.2009.03.019.
  • Milanovic, J.; Manojlovic, V.; Levic, S.; Rajic, N.; Nedovic, V.; Bugarski, B. Microencapsulation of Flavors in Carnauba Wax. Sensors. 2010, 10(1), 901–912. DOI: 10.3390/s100100901.
  • Kayaci, F.; Uyar, T. Encapsulation of Vanillin/Cyclodextrin Inclusion Complex in Electrospun Polyvinyl Alcohol (PVA) Nanowebs: Prolonged Shelf-life and High Temperature Stability of Vanillin. Food Chem. 2012, 133(3), 641–649. DOI: 10.1016/j.foodchem.2012.01.040.
  • Bugusu, B.; Mejia, C.; Magnuson, B.; Tafazoli, S. Global Regulatory Food Policies on Nanotechnology. Food Technol. 2009, 63(5), 24–29.
  • Singh, T.; Shukla, S.; Kumar, P.; Wahla, V.; Bajpai, V. K.; Rather, I. A. Application of Nanotechnology in Food Science: Perception and Overview. Front. Microbiol. 2017, 8, 1501. DOI: 10.3389/fmicb.2017.01501.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.