2,226
Views
27
CrossRef citations to date
0
Altmetric
Review

A Review of Phytic Acid Sources, Obtention, and Applications

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Kumar, V.; Sinha, A. K.; Makkar, H. P. S.; Becker, K. Dietary Roles of Phytate and Phytase in Human Nutrition: A Review. Food Chem. 2010, 120(4), 945–959. DOI: 10.1016/j.foodchem.2009.11.052.
  • Loewus, F.; Biosynthesis of Phytate in Food Grains and Seeds. In Food Phytates; Reddy, N.R., Sathe, S.K., Eds.; CRC Press: Boca Raton, 2002; pp 53–61.
  • Hurrell, R. F.; Phytic Acid Degradation as a Means of Improving Iron Absorption. Int. J. Vitam. Nutr. Res. 2004, 74(6), 445–452. DOI: 10.1024/0300-9831.74.6.445.
  • Graf, E.; Eaton, J. W. Antioxidant Functions of Phytic Acid. Free Radic. Biol. Med. 1990, 8(1), 61–69. DOI: 10.1016/0891-5849(90)90146-A.
  • Thavarajah, D.; Thavarajah, P.; See, C.-T.; Vandenberg, A. Phytic Acid and Fe and Zn Concentration in Lentil (Lens Culinaris L.) Seeds Is Influenced by Temperature during Seed Filling Period. Food Chem. 2010 Sep, 122(1), 254–259. doi:10.1016/j.foodchem.2010.02.073.
  • Champagne, E. T.; Hinojosa, O. Independent and Mutual Interactions of copper(II) and zinc(II) Ions with Phytic Acid. J. Inorg. Biochem. 1987, 30(1), 15–33. DOI: 10.1016/0162-0134(87)80041-7.
  • Lopez, H. W.; Leenhardt, F.; Coudray, C.; Remesy, C. Minerals and Phytic Acid Interactions : Is It a Real Problem for Human Nutrition ? Int. J. Food Sci. Technol. 2002, 37(7), 727–739. DOI: 10.1046/j.1365-2621.2002.00618.x.
  • Brehm, M. A.; Windhorst, S. New Options of Cancer Treatment Employing InsP 6. Biochem. Pharmacol. 2019, 163(February), 206–214. DOI: 10.1016/j.bcp.2019.02.024.
  • Masunaga, T.; Murao, N.; Tateishi, H.; Koga, R.; Ohsugi, T.; Otsuka, M.; Fujita, M. Anti-cancer Activity of the Cell Membrane-permeable Phytic Acid Prodrug. Bioorg. Chem. 2019, 92, 103240. DOI: 10.1016/j.bioorg.2019.103240.
  • Yu, W.; Liu, C.; Li, X.; Yang, F.; Cheng, L.; Liu, C.; Song, Y. Inositol Hexaphosphate Suppresses Colorectal Cancer Cell Proliferation via the Akt/GSK-3β/β-catenin Signaling Cascade in a 1,2-dimethylhydrazine-induced Rat Model. Eur. J. Pharmacol. 2018, 805(15), 67–74. DOI: 10.1016/j.ejphar.2017.03.011.
  • Barahuie, F.; Dorniani, D.; Bullo, S.; Gothai, S.; Hussein, M. Z.; Pandurangan, A. K.; Arulselvan, P.; Norhaizan, M. E. Sustained Release of Anticancer Agent Phytic Acid from Its Chitosan-coated Magnetic Nanoparticles for Drug-delivery System. Int. J. Nanomed. 2017, 12, 2361–2372. DOI: 10.2147/IJN.S126245.
  • Norazalina, S.; Norhaizan, M. E.; Hairuszah, I.; Norashareena, M. S. Anticarcinogenic Efficacy of Phytic Acid Extracted from Rice Bran on Azoxymethane-induced Colon Carcinogenesis in Rats. Exp. Toxicol. Pathol. 2010, 62(3), 259–268. DOI: 10.1016/j.etp.2009.04.002.
  • Kim, S. M.; Rico, C. W.; Lee, S. C.; Kang, M. Y. Modulatory Effect of Rice Bran and Phytic Acid on Glucose Metabolism in High Fat-fed C57BL/6N Mice. J. Clin. Biochem. Nutr. 2010, 47(1), 12–17. DOI: 10.3164/jcbn.09-124.
  • Lee, S. H.; Park, H. J.; Chun, H. K.; Cho, S. Y.; Cho, S. M.; Lillehoj, H. S. Dietary Phytic Acid Lowers the Blood Glucose Level in Diabetic KK Mice. Nutr. Res. 2006, 26(9), 474–479. DOI: 10.1016/j.nutres.2006.06.017.
  • Buades Fuster, J. M.; Sanchís Cortés, P.; Perelló Bestard, J.; Grases Freixedas, F. Plant Phosphates, Phytate and Pathological Calcifications in Chronic Kidney Disease. Nefrologia. 2017, 37(1), 20–28. DOI: 10.1016/j.nefroe.2017.01.018.
  • Obata, T.; Nakashima, M. Phytic Acid Suppresses Ischemia-induced Hydroxyl Radical Generationin Rat Myocardium. Eur. J. Pharmacol. 2016, 774(5), 20–24. DOI: 10.1016/j.ejphar.2015.12.045.
  • Xu, Q.; Kanthasamy, A. G.; Reddy, M. B. Neuroprotective Effect of the Natural Iron Chelator, Phytic Acid in a Cell Culture Model of Parkinson’s Disease. Toxicology. 2008, 245(1–2), 101–108. DOI: 10.1016/j.tox.2007.12.017.
  • Saw, N. K.; Chow, K.; Rao, P. N.; Kavanagh, J. P. Effects of Inositol Hexaphosphate (Phytate) on Calcium Binding, Calcium Oxalate Crystallization and in Vitro Stone Growth. J. Urol. 2007, 177(6), 2366–2370. DOI: 10.1016/j.juro.2007.01.113.
  • Graf, E.; Mahoney, J. R.; Bryant, R. G.; Eaton, J. W. Iron-catalyzed Hydroxyl Radical Formation. Stringent Requirement for Free Iron Coordination Site. J. Biol. Chem. 1984, 259(6), 3620–3624.
  • Zhang, H.; Yang, Q.; Lin, H.; Ren, X.; Zhao, L.; Hou, J. Phytic Acid Enhances Biocontrol Efficacy of Rhodotorula Mucilaginosa against Postharvest Gray Mold Spoilage and Natural Spoilage of Strawberries. LWT - Food Sci. Technol. 2013, 52(2), 110–115. DOI: 10.1016/j.lwt.2012.01.027.
  • Zhou, Q.; Zhao, Y.; Dang, H.; Tang, Y.; Zhang, B. Antibacterial Effects of Phytic Acid against Foodborne Pathogens and Investigation of Its Mode of Action. J. Food Prot. 2018, 82(5), 826–833. DOI: 10.4315/0362-028X.JFP-18-418.
  • Canan, C.; et al. Composição Antimicrobiana a Base De Fitato, E Seu Uso. 2018, 21, 1–41,
  • Kim, N. H.; Rhee, M. S. Synergistic Bactericidal Action of Phytic Acid and Sodium Chloride against Escherichia Coli O157: H7 Cells Protected by a Biofilm. Int. J. Food Microbiol. 2016, 227, 17–21. DOI: 10.1016/j.ijfoodmicro.2016.03.026.
  • Iemma, F.; Cirillo, G.; Spizzirri, U. G.; Puoci, F.; Parisi, O. I.; Picci, N. Removal of Metal Ions from Aqueous Solution by Chelating Polymeric Microspheres Bearing Phytic Acid Derivatives. Eur. Polym. J. 2008, 44(4), 1183–1190. DOI: 10.1016/j.eurpolymj.2008.01.024.
  • Tang, F.; Wang, X.; Xu, X.; Li, L. Phytic Acid Doped Nanoparticles for Green Anticorrosion Coatings. Colloids Surf. A. 2010, 369(1–3), 101–105. DOI: 10.1016/j.colsurfa.2010.08.013.
  • Zhang, X.; Zhou, X.; Cheng, X.; Tang, R.-C. Phytic Acid as an Eco-friendly Flame Retardant for Silk/wool Blend: A Comparative Study with Fluorotitanate and Fluorozirconate. J. Clean. Prod. 2018, 198(10), 1044–1052. DOI: 10.1016/j.jclepro.2018.07.103.
  • Champagne, E. T.; Rao, R. M.; Liuzzo, J. A.; Robinson, J. W.; Gale, R. J.; Miller, F. Solubility Behaviors of the Minerals, Proteins, and Phytic Acid in Rice Bran with Time, Temperature, and pH. Cereal Chem. 1985, 62(3), 218–222.
  • Blaabjerg, K.; Hansen-Møller, J.; Poulsen, H. D. High-performance Ion Chromatography Method for Separation and Quantification of Inositol Phosphates in Diets and Digesta. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2010, 878(3–4), 347–354. DOI: 10.1016/j.jchromb.2009.11.046.
  • Park, H. R.; Ahn, H. J.; Kim, S. H.; Lee, C. H.; Byun, M. W.; Lee, G. W. Determination of the Phytic Acid Levels in Infant Foods Using Different Analytical Methods. Food Control. 2006, 17(9), 727–732. DOI: 10.1016/j.foodcont.2005.05.007.
  • Goro, K.; Noda, E.; Hisagi, Z.; Hideaki, T.; Tsukushiro, K., “Process for Producing Phytic Acid,” US Patent 3591665A, 1971.
  • Kolchev, L. A.;, “Method for Producing Phytin,” US Patent 4070422, 1978.
  • Newkirk, R. W.; Maenz, D. D.; Classen, H. L., “Purification of Inositol from Plant Materials,” US Patent 8,012,512 B2, 2011.
  • Thiel, A.; Muffler, K.; Tippkötter, N.; Suck, K.; Sohling, U.; Hruschka, S. M.; Ulber, R. A Novel Integrated Downstream Processing Approach to Recover Sinapic Acid, Phytic Acid and Proteins from Rapeseed Meal. J. Chem. Technol. Biotechnol. 2015, 90, 1999–2006. DOI: 10.1002/jctb.4664
  • Raboy, V.; myo-Inositol-1,2,3,4,5,6-hexakisphosphate. Phytochemistry. 2003, 64(6), 1033–1043. DOI: 10.1016/S0031-9422(03)00446-1.
  • Raboy, V.; Approaches and Challenges to Engineering Seed Phytate and Total Phosphorus. Plant Sci. 2009, 177(4), 281–296. DOI: 10.1016/j.plantsci.2009.06.012.
  • Blank, G. E.; Pletcher, J.; Sax, M. The Structure of Myo-inositol Hexaphosphate Dodecasodium Salt Octatriacontahyfrate: A Single Crystal X-ray Analysis. Biochem. Biophys. Res. Commun. 1971, 44(2), 319–325. DOI: 10.1016/0006-291X(71)90602-4.
  • Matsuno, K.; Fujimura, T. Induction of Phytic Acid Synthesis by Abscisic Acid in Suspension-cultured Cells of Rice. Plant Sci. 2014, 217–218, 152–157. DOI: 10.1016/j.plantsci.2013.12.015.
  • Oatway, L.; Vasanthan, T.; Helm, J. H. Phytic Acid. Food Revies Int. 2001, 17(4), 419–431. DOI: 10.1081/FRI-100108531.
  • Silva, E. O.; Bracarense, A. P. F. R. L. Phytic Acid: From Antinutritional to Multiple Protection Factor of Organic Systems. J. Food Sci. 2016, 81(6), R1357–R1362. DOI: 10.1111/1750-3841.13320.
  • Shi, H.; Zhang, A.; Du, H.; Zhang, M.; Zhang, Y.; Huang, H.; Xiao, Y.; Zhang, Y.; He, X.; Wang, K.; et al. A Novel Fluorescent Nanosensor Based on Small-sized Conjugated Polyelectrolyte Dots for Ultrasensitive Detection of Phytic Acid. Talanta. December, 2019, 202, 214–220. DOI: 10.1016/j.talanta.2019.04.078.
  • Shamsuddin, A. K. M.; Vucenik, I. IP6 & Inositol in Cancer Prevention and Therapy. Curr. Cancer Ther. Rev. 2005, 1(3), 259–269. DOI: 10.2174/157339405774574216.
  • Ravindran, S.; Ravindran, V.; Sivalogan, G. Total and Phytate Phosphorus Contents of Various Foods and Feedstuffs of Plant Origin. Food Chem. 1994, 50(2), 133–136. DOI: 10.1016/0308-8146(94)90109-0.
  • Lolas, G.; Palamidis, N.; Markakis, P. Phytic Acid Total Phosphorus Relationship Relationship in Barley, Oats, Soybeans and Wheat. Cereal Chem. 1976, 53(6), 867–871.
  • Lehrfeld, J. High-performance Liquid Chromatography Analysis of Phytic Acid on a pH-stable, Macroporous Polymer Column. Cereal Chem. 66(1986), 510–515, 1989. Online]. Available: http://cat.inist.fr/?aModele=afficheN&cpsidt=6733043
  • Frossard, E.; Bucher, M.; Mächler, F.; Mozafar, A.; Hurrell, R. Potential for Increasing the Content and Bioavailability of Fe, Zn and Ca in Plants for Human Nutrition. J. Sci. Food Agric. 2000, 80(7), 861–879. DOI: 10.1002/(SICI)1097-0010(20000515)80:7<861::AID-JSFA601>3.0.CO;2-P.
  • Kasim, B.; Edwards, H. M. The Analysis of Inositol Phosphate Forms in Feed Ingredients. J. Sci. Food Agric. 1998, 76(1), 1–9. DOI: 10.1002/(SICI)1097-0010(199801)76:1<1::AID-JSFA922>3.0.CO;2-9.
  • Canan, C.; Cruz, F. T. L.; Delaroza, F.; Casagrande, R.; Sarmento, C. P. M.; Shimokomaki, M.; Ida, E. I. Studies on the Extraction and Purification of Phytic Acid from Rice Bran. J. Food Compos. Anal. 2011, 24(7), 1057–1063. DOI: 10.1016/j.jfca.2010.12.014.
  • Garcı́a-Estepa, R.; García-Estepa, R. M.; Guerra-Hernández, E.; García-Villanova, B. Phytic Acid Content in Milled Cereal Products and Breads. Food Res. Int. 1999, 32(3), 217–221. DOI: 10.1016/S0963-9969(99)00092-7.
  • Ferguson, E. L.; Gibson, R. S.; Thompson, L. U.; Ounpuu, S.; Berry, M. Phytate, Zinc, and Calcium Contents of 30 East African Foods and Their Calculated Phytate: Zn,Ca: Phytate,and [Ca][phytate]/[zn] Molar Ratios. J. Food Compos. Anal. 1988, 1(4), 316–325. DOI: 10.1016/0889-1575(88)90031-2.
  • Lazarte, C. E.; Carlsson, N.-G.; Almgren, A.; Sandberg, A.-S.; Granfeldt, Y. Phytate, Zinc, Iron and Calcium Content of Common Bolivian Food, and Implications for Mineral Bioavailability. J. Food Compos. Anal. 2015, 39, 111–119. DOI: 10.1016/j.jfca.2014.11.015.
  • Phillippy, B. Q.; Bland, J. M.; Evens, T. J. Ion Chromatography of Phytate in Roots and Tubers. J. Agric. Food Chem. 2003, 51(2), 350–353. DOI: 10.1021/jf025827m.
  • Lolas, G.; Markakis, P. Phytic Acid and Other Phosphorus Compounds of Beans (Phaseolus Vulgaris L.). J. Agric. Food. 1975, 23(1), 13–15. DOI: 10.1021/jf60197a016.
  • Harland, B. F.; Smikle-Williams, S.; Oberleas, D. High Performance Liquid Chromatography Analysis of Phytate (IP6) in Selected Foods. J. Food Compos. Anal. 2004, 17(2), 227–233. DOI: 10.1016/j.jfca.2003.08.005.
  • Zhou, Z.; Chen, X.; Zhang, M.; Blanchard, C. Phenolics, Flavonoids, Proanthocyanidin and Antioxidant Activity of Brown Rice with Different Pericarp Colors following Storage. J. Stored Prod. Res. 2014, 59, 120–125. DOI: 10.1016/j.jspr.2014.06.009.
  • Da Silva, M. A.; Sanches, C.; Amante, E. R. Prevention of Hydrolytic Rancidity in Rice Bran. J. Food Eng. 2006, 75(4), 487–491. DOI: 10.1016/j.jfoodeng.2005.03.066.
  • Bhatnagar, A. S.; Prabhakar, D. S.; Prasanth Kumar, P. K.; Raja Rajan, R. G.; Gopala Krishna, A. G. Processing of Commercial Rice Bran for the Production of Fat and Nutraceutical Rich Rice Brokens, Rice Germ and Pure Bran. LWT - Food Sci. Technol. 2014, 58(1), 306–311. DOI: 10.1016/j.lwt.2014.03.011.
  • O’Dell, B. L.; De Boland, A. R.; Koirtyohann, S. R. Distribution of Phytate and Nutritionally Important Elements among the Morphological Components of Cereal Grains. J. Agric. Food Chem. 1972, 20(3), 718–723. DOI: 10.1021/jf60181a021.
  • Parrado, J.; Miramontes, E.; Jover, M.; Gutierrez, J. F.; Collantes De Terán, L.; Bautista, J. Preparation of a Rice Bran Enzymatic Extract with Potential Use as Functional Food. Food Chem. 2006, 98(4), 742–748. DOI: 10.1016/j.foodchem.2005.07.016.
  • Miller, W. F.; Shirley, J. E.; Titgemeyer, E. C.; Brouk, M. J. Comparison of Full-fat Corn Germ, Whole Cottonseed, and Tallow as Fat Sources for Lactating Dairy Cattle. J. Dairy Sci. 2009, 92(7), 3386–3391. DOI: 10.3168/jds.2009-2118.
  • Samireddypalle, A.; Prasad, K. V. S. V.; Ravi, D.; Khan, A. A.; Reddy, R.; Angadi, U. B.; Blümmel, M. Embracing Whole Plant Optimization of Rice and Wheat to Meet the Growing Demand for Food and Feed. F. Crop. Res. 2019, 244(June), 107634. DOI: 10.1016/j.fcr.2019.107634.
  • Khattak, A. B.; Zeb, A.; Bibi, N.; Khalil, S. A.; Khattak, M. S. Influence of Germination Techniques on Phytic Acid and Polyphenols Content of Chickpea (Cicer Arietinum L.) Sprouts. Food Chem. 2007, 104(3), 1074–1079. DOI: 10.1016/j.foodchem.2007.01.022.
  • Rasmussen, S. K.; Ingvardsen, C. R.; Torp, A. M. Mutations in Genes Controlling the Biosynthesis and Accumulation of Inositol Phosphates in Seeds. Biochem. Soc. Trans. 2010, 38(2), 689–694. DOI: 10.1042/BST0380689.
  • Iwai, T.; Takahashi, M.; Oda, K.; Terada, Y.; Yoshida, K. T. Dynamic Changes in the Distribution of Minerals in Relation to Phytic Acid Accumulation during Rice Seed Development. Plant Physiol. 2012, 160(4), 2007–2014. DOI: 10.1104/pp.112.206573.
  • Suzuki, M.; Tanaka, K.; Kuwano, M.; Yoshida, K. T. Expression Pattern of Inositol Phosphate-related Enzymes in Rice (Oryza Sativa L.): Implications for the Phytic Acid Biosynthetic Pathway. Gene. 2007, 405(1–2), 55–64. DOI: 10.1016/j.gene.2007.09.006.
  • Saad, N.; Esa, N. M.; Ithnin, H.; Shafie, N. H. Optimization of Optimum Condition for Phytic Acid Extraction from Rice Bran. African J. Plant Sci. 5(3), 168–176, 2011. Online]. Available: http://www.academicjournals.org/ajps
  • Costello, A. J.; Glonek, T.; Myers, T. C. 31P Nuclear Magnetic resonance-pH Titrations of Myo-inositol Hexaphosphate. Carbohydr. Res. 1976, 46(2), 159–171. DOI: 10.1016/s0008-6215(00)84287-1.
  • Nolan, K. B.; Duffin, P. A.; Mcweeny, D. J. Effects of Phytate on Mineral Bioavailability. In Vitro Studies on Mg2+, Ca2+, Fe3+, Cu2+ and Zn2+ (Also Cd2+) Solubilities in the Presence of Phytate. J. Sci. Food Agric. 1987, 40(1), 79–85. DOI: 10.1002/jsfa.2740400110.
  • Fuh, W. S.; Chiang, B. H. Dephytinisation of Rice Bran and Manufacturing a New Food Ingredient. J. Sci. Food Agric. 2001, 81(15), 1419–1425. DOI: 10.1002/jsfa.962.
  • Persson, H.; Türk, M.; Nyman, M.; Sandeberg, A.-S. Binding of Cu2+, Zn2+, and Cd2+ to Inositol Tri-, Tetra-, Penta-, and Hexaphosphates. J. Agric. Food Chem. 1998, 46(8), 3194–3200. DOI: 10.1021/jf971055w.
  • Wheeler, E. L.; Ferrel, R. E. A Method for Phytic Acid Determination in Wheat and Wheat Fractions. Cereal Chem. 1971, 48, 312–320.
  • Han, Y. W.; Removal of Phytic Acid from Soybean and Cottonseed Meals. J. Agric. Food Chem. 1988, 36(6), 1181–1183. DOI: 10.1021/jf00084a014.
  • Hong, R.; Ting, L.; Huijie, W. Optimization of Extraction Condition for Phytic Acid from Peanut Meal by Response Surface Methodology. Resour. Technol. 2017, 3(3), 226–231. DOI: 10.1016/j.reffit.2017.06.002.
  • Process of Preparing Phytic Acid/Sodium Phytate and Co-Producing Corn Proteins by Using Corn as Raw Material. 2010, CN Patent 102010441A.
  • Kumar, V.; Makkar, H. P. S.; Devappa, R. K.; Becker, K. Isolation of Phytate from Jatropha Curcas Kernel Meal and Effects of Isolated Phytate on Growth, Digestive Physiology and Metabolic Changes in Nile Tilapia (Oreochromis Niloticus L.). Food Chem. Toxicol. 2011, 49(9), 2144–2156. DOI: 10.1016/j.fct.2011.05.029.
  • Song, H.-Y.; El Sheikha, A. F.; Hu, D.-M. The Positive Impacts of Microbial Phytase on Its Nutritional Applications. Trends Food Sci. Technol. 2019, 86, 553–562. DOI: 10.1016/j.tifs.2018.12.001.
  • Siegenberg, D.; Baynes, R. D.; Bothwell, T. H.; Macfarlane, B. J.; Lamparelli, R. D.; Car, N. G.; MacPhail, P.; Schmidt, U.; Tal, A.; Mayet, F.; et al. Ascorbic Acid of Polyphenols Prevents the Dose-dependent and Phytates on Nonheme-iron Inhibitory Effects Absorption. Am. J. Clin. Nutr. 1991, 53(2), 537–541.
  • Sandström, B.; Almgren, A.; Kivistö, B.; Cederblad, A. Effect of Protein Level and Protein Source on Zinc Absorption in Humans. J. Nutr. July 1989, 119(1), 48–53. DOI: 10.1093/jn/119.1.48.
  • Sandström, B.; Bügel, S.; McGaw, B. A.; Price, J.; Reid, M. D. A High Oat-bran Intake Does Not Impair Zinc Absorption in Humans When Added to A Low-fiber Animal Protein-based Diet. J. Nutr. 2000, 130(3), 594–599. DOI: 10.1093/jn/130.3.594.
  • Matsumoto, H.; Ito, K.; Yonekura, K.; Tsuda, T.; Ichiyanagi, T.; Hirayama, M.; Konishi, T. Enhanced Absorption of Anthocyanins after Oral Administration of Phytic Acid in Rats and Humans. J. Agric. Food Chem. 2007, 55(6), 2489–2496. DOI: 10.1021/jf063199t.
  • Xie, Y.; Luo, H.; Duan, J.; Hong, C.; Ma, P.; Li, G.; Zhang, T.; Wu, T.; Ji, G. Phytic Acid Enhances the Oral Absorption of Isorhamnetin, Quercetin, and Kaempferol in Total Flavones of Hippophae Rhamnoides L. Fitoterapia 2014, 93, 216–225. DOI: 10.1016/j.fitote.2014.01.013.
  • Pei, Y.; Ai, T.; Deng, Z.; Wu, D.; Liang, H.; McClements, D. J.; Li, B. Impact of Plant Extract on the Gastrointestinal Fate of Nutraceutical-loaded Nanoemulsions: Phytic Acid Inhibits Lipid Digestion but Enhances Curcumin Bioaccessibility. Food Funct. 2019, 10(6), 3344–3355. DOI: 10.1039/c9fo00545e.
  • Chung, S.-Y.; Champagne, E. T. Effects of Phytic Acid on Peanut Allergens and Allergenic Properties Os Extracts. J. Agric. Food Chem. 2007, 55(22), 9054–9058. DOI: 10.1021/jf071213b.
  • Fox, C. H.; Eberl, M. Phytic Acid (IP6), Novel Broad Spectrum Anti-neoplastic Agent: A Systematic Review. Complement. Ther. Med. 2002, 10(4), 229–234. DOI: 10.1016/S0965-2299(02)00092-4.
  • Li, L.; Fu, Q.; Xia, M.; Xin, L.; Shen, H.; Li, G.; Ji, G.; Meng, Q.; Xie, Y. Inhibition of P-Glycoprotein Mediated Efflux in Caco-2 Cells by Phytic Acid. J. Agric. Food Chem. 2018, 66(4), 988–998. DOI: 10.1021/acs.jafc.7b04307.
  • Al-Fatlawi, A. A.; Al-Fatlawi, A. A.; Irshad, M.; Zafaryab, M.; Moshahid Alam Rizvi, M.; Ahmad, A. Rice Bran Phytic Acid Induced Apoptosis through Regulation of Bcl-2/Bax and P53 Genes in HepG2 Human Hepatocellular Carcinoma Cells. Asian Pac. J. Cancer Prev. 2014, 15(8), 3731–3736. DOI: 10.7314/APJCP.2014.15.8.3731.
  • Khatiwada, J.; Verghese, M.; Walker, L. T.; Shackelford, L.; Chawan, C. B.; Sunkara, R. Combination of Green Tea, Phytic Acid, and Inositol Reduced the Incidence of Azoxymethane-induced Colon Tumors in Fisher 344 Male Rats. LWT - Food Sci. Technol. 2006, 39(10), 1080–1086. DOI: 10.1016/j.lwt.2005.07.018.
  • Kumar, A.; Sahu, C.; Panda, P. A.; Biswal, M.; Sah, R. P.; Lal, M. K.; Baig, M. J.; Swain, P.; Behera, L.; Chattopadhyay, K.; et al. Phytic Acid Content May Affect Starch Digestibility and Glycemic Index Value of Rice (Oryza Sativa L.). J. Sci. Food Agric. 2020, 100(4), 1598–1607. DOI: 10.1002/jsfa.10168.
  • Kim, J. N.; Han, S. N.; Kim, H. K. Phytic Acid and Myo-inositol Support Adipocyte Differentiation and Improve Insulin Sensitivity in 3T3-L1 Cells. Nutr. Res. 2014, 34(8), 723–731. DOI: 10.1016/j.nutres.2014.07.015.
  • Thompson, L. U.; Button, C. L.; Jenkins, D. J. A. Phytic Acid and Calcium Affect the in Vitro Rate of Navy Bean Starch Digestion and Blood Glucose Response in Humans. Am. J. Clin. Nutr. 1987, 46(3), 467–473. DOI: 10.1093/ajcn/46.3.467.
  • Sekita, A.; Okazaki, Y.; Katayama, T. Dietary Phytic Acid Prevents Fatty Liver by Reducing Expression of Hepatic Lipogenic Enzymes and Modulates Gut Microflora in Rats Fed a High-sucrose Diet. Nutrition. 2016, 32(6), 720–722. DOI: 10.1016/j.nut.2016.01.003.
  • Kang, M. Y.; Kim, S. M.; Rico, C. W.; Lee, S. C. Hypolipidemic and Antioxidative Effects of Rice Bran and Phytic Acid in High Fat-fed Mice. Food Sci. Biotechnol. 2012, 21(1), 123–128. DOI: 10.1007/s10068-012-0015-3.
  • Berg, D.; Gerlach, M.; Youdim, M. B. H.; Double, K. L.; Zecca, L.; Riederer, P.; Becker, G. Brain Iron Pathways and Their Relevance to Parkinson’s Disease. J. Neurochem. 2001, 79(2), 225–236. DOI: 10.1046/j.1471-4159.2001.00608.x.
  • Greer, F. R.; Krebs, N. F.; Committee on Nutrition. Optimizing Bone Health and Calcium Intakes of Infants, Children, and Adolescents. Pediatrics 2006, 117(2), 578–585. DOI:10.1542/peds.2005-2822.
  • Canan, C.; Delaroza, F.; Casagrande, R.; Baracat, M. M.; Shimokomaki, M.; Ida, E. I. Antioxidant Capacity of Phytic Acid Purified from Rice Bran. Acta Sci. - Technol. 2012, 34(4), 457–463. DOI: 10.4025/actascitechnol.v34i4.16358.
  • Verma, D. K.; Srivastav, P. P. Bioactive Compounds of Rice (Oryza Sativa L.): Review on Paradigm and Its Potential Benefit in Human Health Deepak. Trends Food Sci. Technol. 2020, 97, 355–365. DOI: 10.1016/j.tifs.2020.01.007.
  • Braughler, J. M.; Duncan, L. A.; Chase, R. L. The Involvement of Iron in Lipid Peroxidation. Importance of Ferric to Ferrous Ratios in Initiation. J. Biol. Chem. 1986, 261(22), 10282–10289. DOI: 10.1016/S0021-9258(18)67521-0.
  • Minotti, G.; Aust, S. D. The Requirement for Iron (III) in the Initiation of Lipid Peroxidation by Iron (II) and Hydrogen Peroxide. J. Biol. Chem. 1987, 262(3), 1098–1104. DOI: 10.1016/S0021-9258(19)75755-X.
  • Graf, E.; Empson, K. L.; Eaton, J. W. Phytic Acid. A Natural Antioxidant. J. Biol. Chem. 1987, 262(24), 11647–11650. DOI: 10.1016/S0021-9258(18)60858-0.
  • Lee, B. J.; Hendricks, D. G. Metal-catalyzed Oxidation of Ascorbate, Deoxyribose and Linoleic Acid as Affected by Phytic Acid in a Model System. J. Food Sci. 1997, 62(5), 935–939. DOI: 10.1111/j.1365-2621.1997.tb15010.x.
  • Graf, E.; Applications of Phytic Acid. J. Am. Oil Chem. Soc. 1983, 60(11), 1861–1867. DOI: 10.1007/BF02901539.
  • Lee, B. J.; Hendricks, D. G.; Cornforth, D. P. Effect of Sodium Phytate, Sodium Pyrophosphate and Sodium Tripolyphosphate on Physico-chemical Characteristics of Restructured Beef. Meat Sci. 1998, 50(3), 273–283. DOI: 10.1016/S0309-1740(98)00002-3.
  • Lee, B. J.; Hendricks, D. G. Phytic Acid Protective Effect against Beef Round Muscle Lipid Peroxidation. J. Food Sci. 1995, 60(2), 241–244. DOI: 10.1111/j.1365-2621.1995.tb05646.x.
  • Lee, B. J.; Hendricks, D. G.; Cornforth, D. P. Antioxidant Effects of Carnosine and Phytic Acid in a Model Beef System. J. Food Sci. 1998, 63(3), 394–398. DOI: 10.1111/j.1365-2621.1998.tb15750.x.
  • Park, H. R.; Ahn, H.-J.; Kim, J.-H.; Yook, H.-S.; Kim, S.; Lee, C.-H.; Byun, M.-W. “Effects of Irradiated Phytic Acid on Antioxidation and Color Stability in Meat Models. J. Agric. Food Chem. 2004, 52(9), 2572–2576. DOI: 10.1021/jf035203w.
  • Stodolak, B.; Starzyńska, A.; Czyszczoń, M.; Zyła, K. The Effect of Phytic Acid on Oxidative Stability of Raw and Cooked Meat. Food Chem. 2007, 101(3), 1041–1045. DOI: 10.1016/j.foodchem.2006.02.061.
  • Harbach, A. P. R.; Da Costa, M. C. R.; Soares, A. L.; Bridi, A. M.; Shimokomaki, M.; Da Silva, C. A.; Ida, E. I. Dietary Corn Germ Containing Phytic Acid Prevents Pork Meat Lipid Oxidation while Maintaining Normal Animal Growth Performance. Food Chem. 2007, 100(4), 1630–1633. DOI: 10.1016/j.foodchem.2005.11.046.
  • Veiga, R. D. S.; Kalschne, D. L.; Silva-Buzanello, R. A.; De, É. L.; Flores, M.; Corso, M. P.; Canan, C. Rice Bran as a Substitute for Soy Protein and Erythorbate in Chicken Nuggets. Semin. Ciências Agrárias. 2020, 41(5), 1547–1556. DOI: 10.5433/1679-0359.2020v41n5p1547.
  • Du, Y.; Dou, S.; Wu, S. Efficacy of Phytic Acid as an Inhibitor of Enzymatic and Non-enzymatic Browning in Apple Juice. Food Chem. 2012, 135(2), 580–582. DOI: 10.1016/j.foodchem.2012.04.131.
  • Boukhris, I.; Smaoui, S.; Ennouri, K.; Morjene, N.; Farhat-Khemakhem, A.; Blibech, M.; Alghamdi, O. A.; Chouayekh, H. Towards Understanding the Antagonistic Activity of Phytic Acid against Common Foodborne Bacterial Pathogens Using a General Linear Model. PLoS One. 2020, 15(4), 1–15. DOI: 10.1371/journal.pone.0231397.
  • Kim, N. H.; Jang, S. H.; Kim, S. H.; Lee, H. J.; Kim, Y.; Ryu, J. H.; Rhee, M. S. Use of Phytic Acid and Hyper-salting to Eliminate Escherichia Coli O157: H7 from Napa Cabbage for Kimchi Production in a Commercial Plant. Int. J. Food Microbiol. 2015, 214, 24–30. DOI: 10.1016/j.ijfoodmicro.2015.07.024.
  • Kim, N. H.; Rhee, M. S.; Schaffner, D. W. Phytic Acid and Sodium Chloride Show Marked Synergistic Bactericidal Effects against Nonadapted and Acid-adapted Escherichia Coli O157: H7strains. Appl. Environ. Microbiol. 2016, 82(4), 1040–1049. DOI: 10.1128/AEM.03307-15.
  • Sun, X.; Hong, H.; Jia, S.; Liu, Y.; Luo, Y. Effects of Phytic Acid and Lysozyme on Microbial Composition and Quality of Grass Carp (Ctenopharyngodon Idellus) Fillets Stored at 4 °C. Food Microbiol. 2020, 86, 103313. DOI: 10.1016/j.fm.2019.103313.
  • Bari, M. L.; Ukuku, D. O.; Kawasaki, T.; Inatsu, Y.; Isshiki, K.; Kawamoto, S. Combined Efficacy of Nisin and Pediocin with Sodium Lactate, Citric Acid, Phytic Acid, and Potassium Sorbate and EDTA in Reducing the Listeria Monocytogenes Population of Inoculated Fresh-cut Produce. J. Food Prot. 2005, 68(7), 1381–1387. DOI: 10.4315/0362-028X-68.7.1381.
  • Savidge, T. C.; Urvil, P.; Oezguen, N.; Ali, K.; Choudhury, A.; Acharya, V.; Pinchuk, I.; Torres, A. G.; English, R. D.; Wiktorowicz, J. E.; et al. Host S-nitrosylation Inhibits Clostridial Small Molecule-activated Glucosylating Toxins. Nat. Med. 2011, 17(9), 1136–1142. DOI: 10.1038/nm.2405.
  • Ben Ali, M.; Wang, F.; Boukherroub, R.; Xia, M. High Performance of Phytic Acid-functionalized Spherical Poly-phenylglycine Particles for Removal of Heavy Metal Ions. Appl. Surf. Sci. 2020, 518(5), 146206. DOI: 10.1016/j.apsusc.2020.146206.
  • Fang, Y.; Liu, X.; Wu, X.; Tao, X.; Fei, W. Electrospun Polyurethane/phytic Acid Nanofibrous Membrane for High Efficient Removal of Heavy Metal Ions. Environ. Technol. (United Kingdom). Aug 2019, 1–8. DOI: 10.1080/09593330.2019.1652695.
  • Li, R.; Liu, L.; Yang, F. Removal of Aqueous Hg(II) and Cr(VI) Using Phytic Acid Doped Polyanilinecellulose Acetate Composite Membrane. J. Hazard. Mater. 2014, 280, 20–30. DOI: 10.1016/j.jhazmat.2014.07.052.
  • Paterson-Beedle, M.; Readman, J. E.; Hriljac, J. A.; MacAskie, L. E. Biorecovery of Uranium from Aqueous Solutions at the Expense of Phytic Acid. Hydrometallurgy. 2010, 104(3–4), 524–528. DOI: 10.1016/j.hydromet.2010.01.019.
  • Zhou, Y.; Xiao, J.; Hu, R.; Wang, T.; Shao, X.; Chen, G.; Chen, L.; Tian, X. Engineered Phosphorous-functionalized Biochar with Enhanced Porosity Using Phytic Acid-assisted Ball Milling for Efficient and Selective Uptake of Aquatic Uranium. J. Mol. Liq. 2020, 303, 112659. DOI: 10.1016/j.molliq.2020.112659.
  • Dai, H.; Wang, N.; Wang, D.; Ma, H.; Lin, M. An Electrochemical Sensor Based on Phytic Acid Functionalized Polypyrrole/graphene Oxide Nanocomposites for Simultaneous Determination of Cd(II) and Pb(II). Chem. Eng. J. 2016, 299, 150–155. DOI: 10.1016/j.cej.2016.04.083.
  • Gao, X.; Yan, R.; Xu, L.; Ma, H. Effect of Amorphous Phytic Acid Nanoparticles on the Corrosion Mitigation Performance and Stability of Sol-gel Coatings on Cold-rolled Steel Substrates. J. Alloys Compd. May 2018, 747, 747–754. DOI: 10.1016/j.jallcom.2018.03.078.
  • Gao, X.; Zhao, C.; Lu, H.; Gao, F.; Ma, H. Influence of Phytic Acid on the Corrosion Behavior of Iron under Acidic and Neutral Conditions. Electrochim. Acta. 2014, 150, 188–196. DOI: 10.1016/j.electacta.2014.09.160.
  • Cheng, X.-W.; Tang, R.-C.; Guan, J.-P.; Zhou, S.-Q. An Eco-friendly and Effective Flame Retardant Coating for Cotton Fabric Based on Phytic Acid Doped Silica Sol Approach. Prog. Org. Coatings. 2020, 141, 105539. DOI: 10.1016/j.porgcoat.2020.105539.
  • Thota, S.; Somisetti, V.; Kulkarni, S.; Kumar, J.; Nagarajan, R.; Mosurkal, R. Covalent Functionalization of Cellulose in Cotton and a Nylon-cotton Blend with Phytic Acid for Flame Retardant Properties. Cellulose. 2020, 27(1), 11–24. DOI: 10.1007/s10570-019-02801-6.
  • Zhou, Q.; Chen, J.; Zhou, T.; Shao, J. In Situ Polymerization of Polyaniline on Cotton Fabrics with Phytic Acid as a Novel Efficient Dopant for Flame Retardancy and Conductivity Switching. New J. Chem. 2020, 44(8), 3504–3513. DOI: 10.1039/C9NJ05689K.
  • Cheng, X.-W.; Guan, J.-P.; Kiekens, P.; Yang, X.-H.; Tang, R. C. Preparation and Evaluation of an Eco-friendly, Reactive, and Phytic Acid-based Flame Retardant for Wool. React. Funct. Polym. November 2019, 134, 58–66. DOI: 10.1016/j.reactfunctpolym.2018.11.006.
  • Cheng, X.-W.; Guan, J.-P.; Yang, X.-H.; Tang, R.-C. Improvement of Flame Retardancy of Silk Fabric by Bio-based Phytic Acid, nano-TiO2, and Polycarboxylic Acid. Prog. Org. Coatings. 2017, 112(June), 18–26. DOI: 10.1016/j.porgcoat.2017.06.025.
  • Liu, X.; Zhang, Q.; Cheng, B.; Ren, Y.; Zhang, Y.; Ding, C. Durable Flame Retardant Cellulosic Fibers Modified with Novel, Facile and Efficient Phytic Acid-based Finishing Agent. Cellulose. 2018, 25, 799–811. DOI: 10.1007/s10570-017-1550-0.
  • Cheng, X.-W.; Guan, J.-P.; Tang, R.-C.; Liu, K.-Q. Phytic Acid as a Bio-based Phosphorus Flame Retardant for Poly(lactic Acid) Nonwoven Fabric. J. Clean. Prod. 2016, 124, 114–119. DOI: 10.1016/j.jclepro.2016.02.113.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.