497
Views
8
CrossRef citations to date
0
Altmetric
Research Article

A Holistic View of the Genetic Factors Involved in Triggering Hydrolytic and Oxidative Rancidity of Rice Bran Lipids

ORCID Icon, , , &

References

  • The Food and Agriculture Organization of the United Nations (2016), Food Outlook, http://www.fao.org/3/a-I5703E.pdf
  • Chapman, K. D; Ohlrogge, J. B. Compartmentation of Triacylglycerol Accumulation in Plants. J. Biol. Chem. 2012, 2012. DOI: 10.1074/jbc.R111.290072.
  • Zambelli, A.; León, A.; Garcés, R. Mutagenesis in Sunflower, In: Sunflower: Chemistry, Production, Processing, and Utilization. AOCS Press. 2015, 27–52. DOI:10.1016/B978-1-893997-94-3.50008-8.
  • Burlando, B.; Cornara, L. Therapeutic Properties of Rice Constituents and Derivatives (Oryza Sativa L.): A Review Update. Trends Food Sci. Technol. 2014, 40, 82–98. DOI: 10.1016/j.tifs.2014.08.002.
  • Verma, D. K.; Srivastav, P. P. Bioactive Compounds of Rice (Oryza Sativa L.): Review on Paradigm and Its Potential Benefit in Human Health. Trends Food Sci. Technol. 2020, 97, 355–365. DOI: 10.1016/j.tifs.2020.01.007.
  • Gul, K.; Yousuf, B.; Singh, A. K.; Singh, P.; Wani, A. A. Rice Bran: Nutritional Values and Its Emerging Potential for Development of Functional Food - A Review. Bioact. Carbohydrates Diet. Fibre. 2015, 6, 24–30. DOI: 10.1016/j.bcdf.2015.06.002.
  • Pal, Y. P.; Pratap, A. P. Rice Bran Oil: A Versatile Source for Edible and Industrial Applications. J. Oleo Sci. 2017, 66, 551–556. DOI: 10.5650/jos.ess17061.
  • Von Hanstein, A. S.; Lenzen, S.; Plötz, T. Toxicity of Fatty Acid Profiles of Popular Edible Oils in Human EndoC-βH1 Beta-cells. Nutr. Diabetes. 2020;10. https://doi.org/10.1038/s41387-020-0108-7
  • Irakli, M.; Kleisiaris, F.; Mygdalia, A.; Katsantonis, D. Stabilization of Rice Bran and Its Effect on Bioactive Compounds Content, Antioxidant Activity and Storage Stability during Infrared Radiation Heating. J. Cereal Sci. 2018, 80, 135–142. DOI: 10.1016/j.jcs.2018.02.005.
  • Escamilla-Castillo, B.; Varela-Montellano, R.; Sánchez-Tovar, S. A.; Solís-Fuentes, J. A.; Durán-de-bazúa, C. Extrusion Deactivation of Rice Bran Enzymes by pH Modification. Eur. J. Lipid Sci. Technol. 2005, 107, 871–876. DOI: 10.1002/ejlt.200501158.
  • Akhter, M. Inactivation of Lipase Enzyme by Using Chemicals to Maximize Rice Bran Shelf Life and Its Edible Oil Recovery. J. Nutr. Food Sci. 2015, s12. DOI: 10.4172/2155-9600.s12-002.
  • Singh, T. P.; Sogi, D. S. Inhibition of Lipase Activity in Commercial Rice Bran of Coarse, Fine, and Superfine Cultivars. Cogent Food Agric. 2016, 2. DOI: 10.1080/23311932.2016.1146055.
  • Sohail, M.; Rakha, A.; Butt, M. S.; Iqbal, M. J.; Rashid, S. Rice Bran Nutraceutics: A Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2017, 57, 3771–3780. DOI: 10.1080/10408398.2016.1164120.
  • Liu, Y. Q.; Strappe, P.; Zhou, Z. K.; Blanchard, C. Impact on the Nutritional Attributes of Rice Bran following Various Stabilization Procedures. Crit. Rev. Food Sci. Nutr. 2019, 59, 2458–2466. DOI: 10.1080/10408398.2018.1455638.
  • Bollinedi, H.; Singh, A. K.; Singh, N.; Bhowmick, P. K.; Vinod, K. K.; Nagarajan, M.; Ellur, R. K. Genetic and Genomic Approaches to Address Rapid Rancidity of Rice Bran. Crit. Rev. Food Sci. Nutr. 2021, 61, 75–84. DOI: 10.1080/10408398.2020.1718598.
  • Dubey, B.; Fitton, D.; Nahar, S.; Howarth, M. Comparative Study on the Rice Bran Stabilization Processes: A Review. Res dev mater sci. 2019, 15, 11. DOI: 10.31031/RDMS.2019.11.000759.
  • Sinha, K.; Kaur, R.; Singh, N.; Kaur, S.; Rishi, V.; Bhunia, R. K. Mobilization of Storage Lipid Reserve and Expression Analysis of Lipase and Lipoxygenase Genes in Rice (Oryza Sativa Var. Pusa Basmati 1) Bran during Germination. Phytochemistry. 2020, 180, 112538. DOI: 10.1016/j.phytochem.2020.112538.
  • Chuan, T.; Jinsong, B. Rice Lipids and Rice Bran Oil. Rice (Fourth Edition), AACC International Press. 2019. 131–168. https://doi.org/10.1016/B978-0-12-811508-4.00005-8
  • Ali, A.; Devarajan, S. Nutritional and Health Benefits of Rice Bran Oil. In Brown Rice; Manickavasagan, A, Santhakumar, C, Venkatachalapathy, N. Eds.; Springer: Cham, 2017. DOI: 10.1007/978-3-319-59011-0_9.
  • Orsavova, J.; Misurcova, L.; Vavra Ambrozova, J.; Vicha, R.; Mlcek, J. Fatty Acids Composition of Vegetable Oils and Its Contribution to Dietary Energy Intake and Dependence of Cardiovascular Mortality on Dietary Intake of Fatty Acids. Int. J. Mol. Sci. 2015, 16(12), 12871–12890. DOI: 10.3390/ijms160612871.
  • Dubois, V.; Breton, S.; Linder, M.; Fanni, J.; Parmentier, M. Fatty Acid Profiles of 80 vegetable Oils with Regard to Their Nutritional Potential. European Journal of Lipid Science and Technology. 2007, 109(7), 710–732. DOI: 10.1002/ejlt.200700040.
  • Gunstone, F. D. Composition and Properties of Edible Oils; Edible oil processing; John Wiley & Sons, Ltd: Hoboken, New Jersey, United States, 2013, 1–33. DOI: 10.1002/9781118535202.ch1.
  • De Deckere, E. A. M.; Korver, O. Minor Constituents of Rice Bran Oil as Functional Foods. Nutr. Rev. 1996, 54. DOI: 10.1111/j.1753-4887.1996.tb03831.x.
  • Leech, J. Showdown: What Is The Best Oil For Cooking? https://olivewellnessinstitute.org/article/showdown-what-is-the-best-oil-for-cooking/
  • Samaddar, A.; Mohibbe Azam, M.; Singaravadivel, K.; Venkatachalapathy, N.; Swain, B. B.; Mishra, P. Postharvest Management and Value Addition of Rice and Its By-Products. Fut Rice Strategy India. 2017, 2017, 301–334. DOI: 10.1016/B978-0-12-805374-4.00011-7.
  • Awang, R. Effect of Heat Treatments on the Yield, Quality and Storage Stability of Oil Extracted from Palm Fruits. Malaysian J. Anal. Sci. 2016, 20(6), 1373–1381. DOI: 10.17576/mjas-2016-2006-16.
  • Alzaa, D. F.; Guillaume, C.; Ravetti, L. Evaluation of Chemical and Physical Changes in Different Commercial Oils during Heating. Acta Sci. Nutr. Heal. 2018, 2, 2–11.
  • Li, X.; Li, Y.; Yang, F.; Liu, R.; Zhao, C.; Jin, Q.; Wang, X. Oxidation Degree of Soybean Oil at Induction Time Point under Rancimat Test Condition: Theoretical Derivation and Experimental Observation. Food Res. Int. 2019, 120, 756–762. DOI: 10.1016/j.foodres.2018.11.036.
  • Keller, T. What Is an Oil Smoke Point? https://www.masterclass.com/articles/cooking-oils-and-smoke-points-what-to-know-and-how-to-choose#what-is-an-oil-smoke-point
  • Bockish, M. Composition, Structure, Physical Data, and Chemical Reactions of Fats and Oils, Their Derivatives, and Their Associates; In: Fats and Oils Handbook; AOCS press: Urbana, Illinois, USA, 1998, pp 53–120. DOI: 10.1016/b978-0-9818936-0-0.50007-x.
  • Chandrashekar, P.; Kumar, P. K. P.; Ramesh, H. P.; Lokesh, B. R.; Gopala Krishna, A. G. G. Hypolipidemic Effect of Oryzanol Concentrate and Low Temperature Extracted Crude Rice Bran Oil in Experimental Male Wistar Rats. J. Food Sci. Technol. 2014, 51(7), 1278–1285. DOI: 10.1007/s13197-012-0628-9.
  • Amanat, A.; Sankar, D. Nutritional and Health Benefits of Rice Bran Oil. In Brown Rice.Manickavasagan, A.; Santhakumar, C.; Venkatachalapathy, N. Eds; Springer: Cham, 2017; pp 135–158.
  • Awogbemi, O.; Onuh, E. I.; Inambao, F. L. Comparative Study of Properties and Fatty Acid Composition of Some Neat Vegetable Oils and Waste Cooking Oils. Int. J. Low-Carbon Technol. 2019, 14(3), 417–425. DOI: 10.1093/ijlct/ctz038.
  • Liu, Y. Q.; Strappe, P.; Shang, W. T.; Zhou, Z. K. Functional Peptides Derived from Rice Bran Proteins. Crit. Rev. Food Sci. Nutr. 2019, 59(2), 349–356. DOI: 10.1080/10408398.2017.1374923.
  • Park, H.-Y.; Lee, K.-W.; Choi, H-D. Rice Bran Constituents: Immunomodulatory and Therapeutic Activities. Food & Function. 2017, 8(3), 935–943. DOI: 10.1039/c6fo01763k.
  • Amended Final Report on the Safety Assessment of Oryza Sativa (Rice) Bran Oil, Oryza Sativa (Rice) Germ Oil, Rice Bran Acid,Oryza Sativa (Rice) Bran Wax, Hydrogenated Rice Bran Wax, Oryza Sativa (Rice)bran Extract, Oryza Sativa (Rice) Extract, Oryza Sativa (Rice) Germ Powder, Oryza Sativa (Rice) Starch, Oryza Sativa (Rice) Bran, Hydrolyzed Rice Bran Extract, Hydrolyzed Rice Bran Protein, Hydrolyzed Rice Extract, and Hydrolyzed Rice Protein. Int. J. Toxicol. 2006, 2, 91–120. DOI: 10.1080/10915810600964626.
  • Rukmini, C. Chemical, Nutritional and Toxicological Studies of Rice Bran Oil. Food Chemistry. 1988, 30(4), 257–268. DOI: 10.1016/0308-8146(88)90112-4.
  • Purushothama, S.; Raina, P. L.; Hariharan, K. Effect of Long Term Feeding of Rice Bran Oil upon Lipids and Lipoproteins in Rats. Mol. Cell Biochem. 1995, 146(1), 63–69. DOI: 10.1007/BF00926883.
  • Araghi, A.; Seifi, S.; Sayrafi, R.; Sadighara, P. Safety Assessment of Rice Bran Oil in a Chicken Embryo Model. Avicenna J. Phytomed. 2016, 6(3), 351–356.
  • Moon, S.-H.; Kim, D.; Shimizu, N.; Okada, T.; Hitoe, S.; Shimoda, H. Ninety-day Oral Toxicity Study of Rice-derived γ-oryzanol in Sprague-Dawley Rats. Toxicol Rep. 2017, 4, 9–18. DOI: 10.1016/j.toxrep.2016.12.001.
  • Minatel, I. O.; Francisqueti, F. V.; Corrêa, C. R.; Pereira Lima, G. P. Antioxidant Activity of Ƴ-oryzanol: A Complex Network of Interactions. Int. J. Mol. Sci. 2016, 2016, 17. DOI: 10.3390/ijms17081107.
  • Srivastava, P.; Singh, R. P. Frying Stability Evaluation of Rice Bran Oil Blended with Soybean, Mustard and Palm Olein Oils. Oriental Journal of Chemistry. 2015, 31(3), 1687–1694. DOI: 10.13005/ojc/310348.
  • Rudzińska, M.; Hassanein, M. M. M.; Abdel–Razek, A. G.; Ratusz, K.; Siger, A. Blends of Rapeseed Oil with Black Cumin and Rice Bran Oils for Increasing the Oxidative Stability. J. Food Sci. Technol. 2016, 53(2), 1055–1062. DOI: 10.1007/s13197-015-2140-5.
  • Joshi, S.; Devaraju, C. J.; Upadya, H. Anti-inflammatory Properties of Blended Edible Oil with Synergistic Antioxidants. Indian Journal of Endocrinology and Metabolism. 2015, 19(4), 511–519. DOI: 10.4103/2230-8210.159063.
  • Law, B. M. H.; Waye, M. M. Y.; So, W. K. W.; Chair, S. Y. Hypotheses on the Potential of Rice Bran Intake to Prevent Gastrointestinal Cancer through the Modulation of Oxidative Stress. Int. J. Mol. Sci. 2017, 18. DOI: 10.3390/ijms18071352.
  • Fabian, C.; Ju, Y.-H. A Review on Rice Bran Protein: Its Properties and Extraction Methods. Crit. Rev. Food Sci. Nutr. 2011, 51(9), 816–827. DOI: 10.1080/10408398.2010.482678.
  • Pushpan, C. K.; Rathnam, P.; Jayalekshmy, J. Attenuation of Atherosclerotic Complications by Modulating Inflammatory Responses in Hypercholesterolemic Rats with Dietary Njavara Rice Bran Oil. Biomed. Pharmacother. 2016, 83, 1387–1397. DOI: 10.1016/j.biopha.2016.08.001.
  • Wong, W. T.; Ismail, M.; Tohit, E. R. M.; Abdullah, R.; Zhang, Y. D. Attenuation of Thrombosis by Crude Rice (Oryza Sativa) Bran Policosanol Extract: Ex Vivo Platelet Aggregation and Serum Levels of Arachidonic Acid Metabolites. Evidence-based Complement. Altern. Med. 2016, 2016. DOI: 10.1155/2016/7343942.
  • Tan, B. L.; Norhaizan, M. E. Scientific Evidence of Rice By-Products for Cancer Prevention: Chemopreventive Properties of Waste Products from Rice Milling on Carcinogenesis in Vitro and in Vivo. BioMed Research International. 2017, 2017, 1–18. DOI: 10.1155/2017/9017902.
  • Lee, S.; Yu, S.; Park, H. J.; Jung, J.; Go, G. W.; Kim, W. Rice Bran Oil Ameliorates Inflammatory Responses by Enhancing Mitochondrial Respiration in Murine Macrophages. PLoS One. 2019, 14. DOI: 10.1371/journal.pone.0222857.
  • Eady, S.; Wallace, A.; Willis, J.; Scott, R.; Frampton, C. Consumption of a Plant Sterol-based Spread Derived from Rice Bran Oil Is Effective at Reducing Plasma Lipid Levels in Mildly Hypercholesterolaemic Individuals. Br. J. Nutr. 2011, 105(12), 1808–1818. DOI: 10.1017/S0007114510005519.
  • Jolfaie, N. R.; Rouhani, M. H.; Surkan, P. J.; Siassi, F.; Azadbakht, L. Rice Bran Oil Decreases Total and LDL Cholesterol in Humans: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. Hormone and Metabolic Research. 2016, 48(7), 417–426. DOI: 10.1055/s-0042-105748.
  • Sivamaruthi, B.; Kesika, P.; Chaiyasut, C. A Comprehensive Review on Anti-diabetic Property of Rice Bran. Asian Pac. J. Trop. Biomed. 2018, 8(1), 79–84. DOI: 10.4103/2221-1691.221142.
  • Bumrungpert, A.; Chongsuwat, R.; Phosat, C.; Butacnum, A. Rice Bran Oil Containing Gamma-Oryzanol Improves Lipid Profiles and Antioxidant Status in Hyperlipidemic Subjects: A Randomized Double-Blind Controlled Trial. J. Altern. Complement. Med. 2019, 25(3), 353–358. DOI: 10.1089/acm.2018.0212.
  • Zavoshy, R.; Noroozi, M.; Jahanihashemi, H. Effect of Low Calorie Diet with Rice Bran Oil on Cardiovascular Risk Factors in Hyperlipidemic Patients. J. Res. Med. Sci. 2012, 17(7), 626–631.
  • Lai, M.-H.; Chen, Y.-T.; Chen, -Y.-Y.; Chang, J.-H.; Cheng, -H.-H. Effects of Rice Bran Oil on the Blood Lipids Profiles and Insulin Resistance in Type 2 Diabetes Patients. J. Clin. Biochem. Nutr. 2012, 51(1), 15–18. DOI: 10.3164/jcbn.11-87.
  • Nhung, B. T.; Tuyen, L. D.; Linh, V. A.; Van Anh, N.; Do Nga, T. T.; Thuc, V. T. M.; Yui, K.; Ito, Y.; Nakashima, Y.; Yamamoto, S.; Rice Bran Extract Reduces the Risk of Atherosclerosis in Post-menopausal Vietnamese Women. . Journal of Nutritional Science and Vitaminology. 2016, 62(5), 295–302. DOI: 10.3177/jnsv.62.295
  • Wilson, T. A.; Nicolosi, R. J.; Woolfrey, B.; Kritchevsky, D. Rice Bran Oil and Oryzanol Reduce Plasma Lipid and Lipoprotein Cholesterol Concentrations and Aortic Cholesterol Ester Accumulation to a Greater Extent than Ferulic Acid in Hypercholesterolemic Hamsters. J. Nutr. Biochem. 2007, 18(2), 105–112. DOI: 10.1016/j.jnutbio.2006.03.006.
  • Reena, M. B.; Krishnakantha, T. P.; Lokesh, B. R. Lowering of Platelet Aggregation and Serum Eicosanoid Levels in Rats Fed with a Diet Containing Coconut Oil Blends with Rice Bran Oil or Sesame Oil. Prostaglandins, Leukotrienes and Essential Fatty Acids. 2010, 83(3), 151–160. DOI: 10.1016/j.plefa.2010.06.004.
  • Huang, L.; Jiang, W.; Zhu, L.; Ma, C.; Ou, Z.; Luo, C.; Wu, J.; Wen, L.; Tan, Z.; Yi, J. γ-Oryzanol Suppresses Cell Apoptosis by Inhibiting Reactive Oxygen Species-mediated Mitochondrial Signaling Pathway in H2O2-stimulated L02 Cells. Biomed. Pharmacother. 2020, 121. DOI: 10.1016/j.biopha.2019.109554.
  • Okparanta, S. Assessment of Rancidity and Other Physicochemical Properties of Edible Oils (Mustard and Corn Oils) Stored at Room Temperature. J. Food Nutr. Sci. 2018, 6, 70. DOI: 10.11648/j.jfns.20180603.11.
  • Nikiforidis, C. V. Structure and Functions of Oleosomes (Oil Bodies). Adv. Colloid Interface Sci. 2019, 274. DOI: 10.1016/j.cis.2019.102039.
  • Dar, A. A.; Choudhury, A. R.; Kancharla, P. K.; The, A. N. FAD2 Gene in Plants: Occurrence, Regulation, and Role. Front. Plant Sci. 2017, 8. DOI: 10.3389/fpls.2017.01789.
  • Pandey, M. K.; Wang, M. L.; Qiao, L.; Feng, S.; Khera, P.; Wang, H.; Tonnis, B.; Barkley, N. A.; Wang, J.; Holbrook, C. C.; et al. Identification of QTLs Associated with Oil Content and Mapping FAD2 Genes and Their Relative Contribution to Oil Quality in Peanut (Arachis Hypogaea L.). BMC Genet. 2014, 2014, 15. DOI: 10.1186/s12863-014-0133-4.
  • Merrill, L. I.; Pike, O. A.; Ogden, L. V.; Dunn, M. L. Oxidative Stability of Conventional and High-oleic Vegetable Oils with Added Antioxidants. Journal of the American Oil Chemists’ Society. 2008, 85(8), 771–776. DOI: 10.1007/s11746-008-1256-4.
  • Malekian, F.; Rao, R. M.; Prinyawiwatkul, W.; Marshall, W. E.; Windhauser, M.; Ahmedna, M. Lipase and Lipoxygenase Activity, Functionality, and Nutrient Losses in Rice Bran during Storage. 2000, Louisiana State Univ. Agric. Cent. DOI: 10.1002/fsn3.86.
  • Gomez-Cambronero, J.; Henkels, K. M. Phospholipase D. In Encyclopedia of Signaling Molecules; Choi, S, Ed.; Springer International Publishing, Cham, 2018. DOI: 10.1007/978-3-319-67199-4_15.
  • Viswanath, K. K.; Varakumar, P.; Pamuru, R. R.; Basha, S. J.; Mehta, S.; Rao, A. D. Plant Lipoxygenases and Their Role in Plant Physiology. . Journal of Plant Biology. 2020, 63(2), 83–95. DOI: 10.1007/s12374-020-09241-x.
  • Hayward, S.; Cilliers, T.; Swart, S. P. Lipoxygenases: From Isolation to Application. Compr. Rev. Food Sci. Food Saf. 2017, 16(1), 199–211. DOI: 10.1111/1541-4337.12239.
  • Prakash, J.; Ramaswamy, H. S. Rice Bran Proteins: Properties and Food Uses. . Critical Reviews in Food Science and Nutrition. 1996, 36(6), 537–552. DOI: 10.1080/10408399609527738.
  • Amarasinghe, B. M. W. P. K.; Kumarasiri, M. P. M.; Gangodavilage, N. C. Effect of Method of Stabilization on Aqueous Extraction of Rice Bran Oil. Food Bioprod. Process. 2009, 87(2), 108–114. DOI: 10.1016/j.fbp.2008.08.002.
  • Thanonkaew, A.; Wongyai, S.; McClements, D. J.; Decker, E. A.; Effect of Stabilization of Rice Bran by Domestic Heating on Mechanical Extraction Yield, Quality, and Antioxidant Properties of Cold-pressed Rice Bran Oil (Oryza Saltiva L.). LWT - Food Science and Technology. 2012, 48(2), 231–236. DOI: 10.1016/j.lwt.2012.03.018
  • Dubey, B. N. Comparative Study on the Rice Bran Stabilization Processes: A Review. Res. Dev. Mater. Sci. 11, 2019. DOI:10.31031/rdms.2019.11.000759
  • Liu, R.; Liu, R.; Shi, L.; Zhang, Z.; Zhang, T.; Lu, M.; Chang, M.; Jin, Q.; Wang, X. Effect of Refining Process on Physicochemical Parameters, Chemical Compositions and in Vitro Antioxidant Activities of Rice Bran Oil. LWT - Food Sci. Technol. 2019, 109, 26–32. DOI: 10.1016/j.lwt.2019.03.096.
  • Ahmed, F.; Platel, K.; Vishwanatha, S.; Puttaraj, S.; Srinivasan, K. Improved Shelf-life of Rice Bran by Domestic Heat Processing and Assessment of Its Dietary Consumption in Experimental Rats. J. Sci. Food Agric. 2007, 87(1), 60–67. DOI: 10.1002/jsfa.2670.
  • Tong, C.; Gao, H.; Luo, S.; Liu, L.; Bao, J. Impact of Postharvest Operations on Rice Grain Quality: A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18(3), 626–640. DOI: 10.1111/1541-4337.12439.
  • Gopinger, E. Whole Rice Bran Stabilization Using a Short Chain Organic Acid Mixture. Journal of Stored Products Research. 2015, 61, 108–113. DOI: 10.1016/j.jspr.2015.01.003.
  • Prabhakar, J. V.; Venkatesh, K. V. L. A Simple Chemical Method for Stabilization of Rice Bran. J. Am. Oil Chem. Soc. 1986, 63(5), 644–646. DOI: 10.1007/BF02638229.
  • Vallabha, V. S.; Indira, T. N.; Jyothi Lakshmi, A.; Radha, C.; Tiku, P. K. Enzymatic Process of Rice Bran: A Stabilized Functional Food with Nutraceuticals and Nutrients. J. Food Sci. Technol. 2015, 52(12), 8252–8259. DOI: 10.1007/s13197-015-1926-9.
  • Guan, -L.-L.; Xu, Y.-W.; Wang, Y.-B.; Chen, L.; Shao, J.; Wu, W.; Isolation and Characterization of a Temperature-Regulated Microsomal Oleate Desaturase Gene (Ctfad2-1) from Safflower (Carthamus Tinctorius L.). Plant Molecular Biology Reporter. 2012, 30(2), 391–402. DOI: 10.1007/s11105-011-0349-7
  • Bhunia, R. K.; Kaur, R.; Maiti, M. K. Metabolic Engineering of Fatty Acid Biosynthetic Pathway in Sesame (Sesamum Indicum L.): Assembling Tools to Develop Nutritionally Desirable Sesame Seed Oil. Phytochemistry Reviews. 2016, 15(5), 799–811. DOI: 10.1007/s11101-015-9424-2.
  • Rodríguez, G.; Villanueva, E.; Cortez, D.; Sanchez, E.; Aguirre, E.; Hidalgo, A. Oxidative Stability Of Chia (Salvia hispanica L.) and Sesame (Sesamum indicum L.) Oil Blends. Journal of the American Oil Chemists’ Society. 2020, 97(7), 729–735. DOI: 10.1002/aocs.12357.
  • Sinha, K.; Kaur, R.; Bhunia, R. K. Tailoring Triacylglycerol Biosynthetic Pathway in Plants for Biofuel Production, In: Sustainable Biofuel and Biomass. CRC Press. 2019, 41–60. DOI: 10.1201/9780429265099-3.
  • Okuley, J.; Lightner, J.; Feldmann, K.; Yadav, N.; Lark, E.; Browse, B. J. Arabidopsis FAD2 Gene Encodes the Enzyme that Is Essential for Polyunsaturated Lipid Synthesis. The Plant Cell. 1994, 6(1), 147–158. DOI: 10.1105/tpc.6.1.147.
  • Beisson, F.; Koo, A. J. K.; Ruuska, S.; Schwender, J.; Pollard, M.; Thelen, J. J.; Paddock, T.; Salas, J. J.; Savage, L.; Milcamps, A.; et al.; Arabidopsis Genes Involved in Acyl Lipid Metabolism. A 2003 Census of the Candidates, A Study of the Distribution of Expressed Sequence Tags in Organs, and A Web-based Database. Plant Physiology. 2003, 132(2), 681–697. DOI: 10.1104/pp.103.022988
  • Maszewska, M.; Florowska, A.; Dłuzewska, E.; Wroniak, M.; Marciniak-Lukasiak, K.; Zbikowska, A.; Oxidative Stability of Selected Edible Oils. Molecules (Basel, Switzerland). 2018, 23(7), 23. DOI: 10.3390/molecules23071746
  • Clemente, T. E.; Cahoon, E. B. Soybean Oil: Genetic Approaches for Modification of Functionality and Total Content: Figure 1. Plant Physiology. 2009, 151(3), 1030–1040. DOI: 10.1104/pp.109.146282.
  • Belide, S.; Petrie, J. R.; Shrestha, P.; Singh, S. P. Modification of Seed Oil Composition in Arabidopsis by Artificial microRNA-Mediated Gene Silencing. Frontiers in Plant science. 2012, 3, 3. DOI: 10.3389/fpls.2012.00168.
  • Yuan, M.; Zhu, J.; Gong, L.; He, L.; Lee, C.; Han, S.; Chen, C.; He, G. Mutagenesis of FAD2 Genes in Peanut with CRISPR/Cas9 Based Gene Editing. BMC biotechnology. 2019, 19(1), 19. DOI: 10.1186/s12896-019-0516-8.
  • Peng, Q.; Hu, Y.; Wei, R.; Zhang, Y.; Guan, C.; Ruan, Y.; Liu, C. Simultaneous Silencing of FAD2 and FAE1 Genes Affects Both Oleic Acid and Erucic Acid Contents in Brassica Napus Seeds. Plant Cell Reports. 2010, 29(4), 317–325. DOI: 10.1007/s00299-010-0823-y.
  • Chen, C.; Yang, J.; Tong, H.; Li, T.; Wang, L.; Chen, H. Genome-wide Analysis of Fatty Acid Desaturase Genes in Rice (Oryza Sativa L.). Scientific Reports. 2019, 9(1). DOI: 10.1038/s41598-019-55648-z.
  • Zaplin, E. S.; Liu, Q.; Li, Z.; Butardo, V. M.; Blanchard, C. L.; Rahman, S. Production of High Oleic Rice Grains by Suppressing the Expression of the OsFAD2-1 Gene. Funct. Plant Biol. 2013, 40(10), 996–1004. DOI: 10.1071/FP12301.
  • Tiwari, G. J.; Liu, Q.; Shreshtha, P.; Li, Z.; Rahman, S. RNAi-mediated Down-regulation of the Expression of OsFAD2-1: Effect on Lipid Accumulation and Expression of Lipid Biosynthetic Genes in the Rice Grain. BMC Plant Biol. 2016, 16. DOI: 10.1186/s12870-016-0881-6.
  • Abe, K.; Araki, E.; Suzuki, Y.; Toki, S.; Saika, H. Production of High Oleic/low Linoleic Rice by Genome Editing. Plant Physiol. Biochem. 2018, 131, 58–62. DOI: 10.1016/j.plaphy.2018.04.033.
  • Al Amin, N.; Ahmad, N.; Wu, N.; Pu, X.; Ma, T.; Du, Y.; Bo, X.; Wang, N.; Sharif, R.; Wang, P. CRISPR-Cas9 Mediated Targeted Disruption of FAD2-2 Microsomal Omega-6 Desaturase in Soybean (Glycine max.L). BMC biotechnology. 2019, 19(1), 19. DOI: 10.1186/s12896-019-0501-2.
  • Shao, Q.; Liu, X.; Su, T.; Ma, C.; Wang, P. New Insights into the Role of Seed Oil Body Proteins in Metabolism and Plant Development. Front. Plant Sci. 2019, 10. DOI: 10.3389/fpls.2019.01568.
  • Shimada, T. L.; Hayashi, M.; Hara-Nishimura, I. Membrane Dynamics and Multiple Functions of Oil Bodies in Seeds and Leaves. Plant Physiology. 2018, 176(1), 199–207. DOI: 10.1104/pp.17.01522.
  • Tzen, J. T. C.; Huang, A. H. C. Surface Structure and Properties of Plant Seed Oil Bodies. Journal of Cell Biology. 1992, 117(2), 327–335. DOI: 10.1083/jcb.117.2.327.
  • Hu, Z. Y.; Hua, W.; Zhang, L.; Bin, D. L.; Wang, X. F.; Liu, G. H.; Hao, W. J.; Wang, H. Z. Seed Structure Characteristics to Form Ultrahigh Oil Content in Rapeseed. PLoS One. 2013, 8. DOI: 10.1371/journal.pone.0062099.
  • Leonova, S.; Grimberg, Å.; Marttila, S.; Stymne, S.; Carlsson, A. S.; Mobilization of Lipid Reserves during Germination of Oat (Avena Sativa L.), A Cereal Rich in Endosperm Oil. . Journal of Experimental Botany. 2010, 61(11), 3089–3099. DOI: 10.1093/jxb/erq141
  • Deruyffelaere, C.; Bouchez, I.; Morin, H.; Guillot, A.; Miquel, M.; Froissard, M.; Chardot, T.; D’Andrea, S. Ubiquitin-mediated Proteasomal Degradation of Oleosins Is Involved in Oil Body Mobilization during Post-germinative Seedling Growth in Arabidopsis. Plant and Cell Physiology. 2015, 56(7), 1374–1387. DOI: 10.1093/pcp/pcv056.
  • Ischebeck, T.; Krawczyk, H. E.; Mullen, R. T.; Dyer, J. M.; Chapman, K. D. Lipid Droplets in Plants and Algae: Distribution, Formation, Turnover and Function. Seminars in Cell & Developmental Biology. 2020, 108, 82–93. DOI: 10.1016/j.semcdb.2020.02.014.
  • Nikiforidis, C. V. Structure and Functions of Oleosomes (Oil Bodies). Adv. Colloid Interface Sci. 2019, 274.
  • Huang, A. H. C. Plant Lipid Droplets and Their Associated Proteins: Potential for Rapid Advances. Plant Physiology. 2018, 176(3), 1894–1918. DOI: 10.1104/pp.17.01677.
  • Huang, A. H. C. Oil Bodies and Oleosins in Seeds. Annual Review of Plant Physiology and Plant Molecular Biology. 1992, 43(1), 177–200. DOI: 10.1146/annurev.pp.43.060192.001141.
  • Huang, C.-Y.; Huang, A. H. C. Unique Motifs and Length of Hairpin in Oleosin Target the Cytosolic Side of Endoplasmic Reticulum and Budding Lipid Droplet. Plant Physiology. 2017, 174(4), 2248–2260. DOI: 10.1104/pp.17.00366.
  • Huang, M.; Der, Huang, A. H. C. Bioinformatics Reveal Five Lineages of Oleosins and the Mechanism of Lineage Evolution Related to Structure/function from Green Algae to Seed Plants. Plant Physiology. 2015, 169(1), 453–470. DOI: 10.1104/pp.15.00634.
  • Cao, H.; Zhang, L.; Tan, X.; Long, H.; Shockey, J. M. Identification, Classification and Differential Expression of Oleosin Genes in Tung Tree (Vernicia Fordii). PLoS One. 2014, 9. DOI: 10.1371/journal.pone.0088409.
  • Lu, Y.; Chi, M.; Li, L.; Noman, M.; Yang, Y.; Ji, K.; Lan, X.; Qiang, W.; Du, L.; Haiyan, L.; et al. Genome-wide Identification, Expression Profiling, and Functional Validation of Oleosin Gene Family in Carthamus Tinctorius L. Front. Plant Sci. 2018, 2018, 871. DOI: 10.3389/fpls.2018.01393.
  • Gidda, S. K.; Watt, S. C.; Collins-Silva, J.; Kilaru, A.; Arondel, V.; Yurchenko, O.; Horn, P. J.; James, C. N.; Shintani, D.; Ohlrogge, J. B.; et al. Lipid Droplet-associated Proteins (Ldaps) are Involved in the Compartmentalization of Lipophilic Compounds in Plant Cells. Plant Signal. Behav 2013, 8. DOI: 10.4161/psb.27141.
  • Horn, P. J.; James, C. N.; Gidda, S. K.; Kilaru, A.; Dyer, J. M.; Mullen, R. T.; Ohlrogge, J. B.; Chapman, K. D. Identification of a New Class of Lipid Droplet-associated Proteins in Plants. Plant Physiology. 2013, 162(4), 1926–1936. DOI: 10.1104/pp.113.222455.
  • Loei, H.; Lim, J.; Tan, M.; Lim, T. K.; Lin, Q. S.; Chew, F. T.; Kulaveerasingam, H.; Chung, M. C. M. Proteomic Analysis of the Oil Palm Fruit Mesocarp Reveals Elevated Oxidative Phosphorylation Activity Is Critical for Increased Storage Oil Production. J. Proteome Res. 2013, 12(11), 5096–5109. DOI: 10.1021/pr400606h.
  • Kilaru, A.; Cao, X.; Dabbs, P. B.; Sung, H.-J.; Rahman, M. M.; Thrower, N.; Zynda, G.; Podicheti, R.; Ibarra-Laclette, E.; Herrera-Estrella, L.; et al. Oil Biosynthesis in a Basal Angiosperm: Transcriptome Analysis of Persea Americana Mesocarp. BMC Plant biology. 2015, 15, 15. DOI: 10.1186/s12870-015-0586-2.
  • Chen, D.-H.; Chyan, C.-L.; Jiang, P.-L.; Chen, C.-S.; Tzen, J. T. C. The Same Oleosin Isoforms are Present in Oil Bodies of Rice Embryo and Aleurone Layer while Caleosin Exists Only in Those of the Embryo. Plant Physiol. Biochem. 2012, 60, 18–24. DOI: 10.1016/j.plaphy.2012.07.022.
  • Thazar-Poulot, N.; Miquel, M.; Fobis-Loisy, I.; Gaude, T. Peroxisome Extensions Deliver the Arabidopsis SDP1 Lipase to Oil Bodies. Proc. Natl. Acad. Sci. U. S. A. 2015, 112(13), 4158–4163. DOI: 10.1073/pnas.1403322112.
  • Cui, S.; Hayashi, Y.; Otomo, M.; Mano, S.; Oikawa, K.; Hayashi, M.; Nishimura, M. Sucrose Production Mediated by Lipid Metabolism Suppresses the Physical Interaction of Peroxisomes and Oil Bodies during Germination of Arabidopsis Thaliana. J. Biol. Chem. 2016, 291(38), 19734–19745. DOI: 10.1074/jbc.M116.748814.
  • Deruyffelaere, C.; Purkrtova, Z.; Bouchez, I.; Collet, B.; Cacas, J.-L.; Chardot, T.; Gallois, J.-L.; D’Andrea, S. PUX10 IS A CDC48A Adaptor Protein that Regulates the Extraction of Ubiquitinated Oleosins from Seed Lipid Droplets in Arabidopsis. The Plant Cell. 2018, 30(9), 2116–2136. DOI: 10.1105/tpc.18.00275.
  • D’Andrea, S. Lipid Droplet Mobilization: The Different Ways to Loosen the Purse Strings. Biochimie. 2016, 120, 17–27. DOI: 10.1016/j.biochi.2015.07.010.
  • Wu, -Y.-Y.; Chou, Y.-R.; Wang, C.-S.; Tseng, T.-H.; Chen, L.-J.; Tzen, J. T. C. Different Effects on Triacylglycerol Packaging to Oil Bodies in Transgenic Rice Seeds by Specifically Eliminating One of Their Two Oleosin Isoforms. Plant Physiol. Biochem. 2010, 48(2–3), 81–89. DOI: 10.1016/j.plaphy.2009.12.004.
  • Winichayakul, S.; William Scott, R.; Roldan, M.; Bertrand Hatier, J.-H. B.; Livingston, S.; Cookson, R.; Curran, A. C.; Roberts, N. J. In Vivo Packaging of Triacylglycerols Enhances Arabidopsis Leaf Biomass and Energy Density. Plant Physiology. 2013, 162(2), 626–639. DOI: 10.1104/pp.113.216820.
  • Graham, I. A. Seed Storage Oil Mobilization. Annual Review of Plant Biology. 2008, 59(1), 115–142. DOI: 10.1146/annurev.arplant.59.032607.092938.
  • Tiwari, G. J.; Chiang, M. Y.; De Silva, J. R.; Song, B. K.; Lau, Y. L.; Rahman, S. Lipase Genes Expressed in Rice Bran: LOC_Os11g43510 Encodes a Novel Rice Lipase. J. Cereal Sci. 2016, 71, 43–52. DOI: 10.1016/j.jcs.2016.07.008.
  • Zhao, M.; Zhang, H.; Yan, H.; Qiu, L.; Baskin, C. C. Mobilization and Role of Starch, Protein, and Fat Reserves during Seed Germination of Six Wild Grassland Species. Front. Plant Sci. 2018, 9. DOI: 10.3389/fpls.2018.00234.
  • Vijayakumar, K. R.; Gowda, L. R. Rice (Oryza Sativa) Lipase: Molecular Cloning, Functional Expression and Substrate Specificity. Protein Expr. Purif. 2013, 88(1), 67–79. DOI: 10.1016/j.pep.2012.11.011.
  • Bhardwaj, K.; Raju, A.; Rajasekharan, R. Identification, Purification, and Characterization of A Thermally Stable Lipase from Rice Bran. A New Member of the (Phospho) Lipase Family. Plant Physiology. 2001, 127(4), 1728–1738. DOI: 10.1104/pp.010604.
  • Gao, M.; Yin, X.; Yang, W.; Lam, S. M.; Tong, X.; Liu, J.; Wang, X.; Li, Q.; Shui, G.; He, Z. GDSL Lipases Modulate Immunity through Lipid Homeostasis in Rice. PLoS pathogens. 2017, 13(11), 13. DOI: 10.1371/journal.ppat.1006724.
  • Derewenda, U.; Brzozowski, A. M.; Lawson, D. M.; Derewenda, Z. S. Catalysis at the Interface: The Anatomy of a Conformational Change in a Triglyceride Lipase. Biochemistry. 1992, 31(5), 1532–1541. DOI: 10.1021/bi00120a034.
  • Sharma, A.; Meena, K. R.; Kanwar, S. S. Molecular Characterization and Bioinformatics Studies of a Lipase from Bacillus Thermoamylovorans BHK67. Int. J. Biol. Macromol. 2018, 107, 2131–2140. DOI: 10.1016/j.ijbiomac.2017.10.092.
  • Zhao, Z.; Hou, S.; Lan, D.; Wang, X.; Liu, J.; Khan, F. I.; Wang, Y. Crystal Structure of a Lipase from Streptomyces Sp. Strain W007 - Implications for Thermostability and Regiospecificity. The FEBS Journal. 2017, 284(20), 3506–3519. DOI: 10.1111/febs.14211.
  • Kim, R. J.; Suh, M. C. The GxSxG Motif of Arabidopsis Monoacylglycerol Lipase (MAGL6 and MAGL8) Is Essential for Their Enzyme Activities. Appl. Biol. Chem. 2016, 59(6), 833–840. DOI: 10.1007/s13765-016-0232-1.
  • Chen, H.; Meng, X.; Xu, X.; Liu, W.; Li, S. The Molecular Basis for Lipase Stereoselectivity. Appl. Microbiol. Biotechnol. 2018, 102(8), 3487–3495. DOI: 10.1007/s00253-018-8858-z.
  • Kelly, A. A.; Quettier, A.-L.; Shaw, E.; Eastmond, P. J. Seed Storage Oil Mobilization Is Important but Not Essential for Germination or Seedling Establishment in Arabidopsis. Plant Physiology. 2011, 157(2), 866–875. DOI: 10.1104/pp.111.181784.
  • Kanai, M.; Yamada, T.; Hayashi, M.; Mano, S.; Nishimura, M. Soybean (Glycine Max L.) Triacylglycerol Lipase GmSDP1 Regulates the Quality and Quantity of Seed Oil. Sci. Rep. 2019, 9. DOI: 10.1038/s41598-019-45331-8.
  • Liu, L.; Waters, D. L. E.; Rose, T. J.; Bao, J.; King, G. J. Phospholipids in Rice: Significance in Grain Quality and Health Benefits: A Review. Food Chemistry. 2015, 6, 1133–1145.
  • Singh, A.; Baranwal, V.; Shankar, A.; Kanwar, P.; Ranjan, R.; Yadav, S.; Pandey, A.; Kapoor, S.; Pandey, G. K. Rice Phospholipase A Superfamily: Organization, Phylogenetic and Expression Analysis during Abiotic Stresses and Development. PLoS One. 2012, 7. DOI: 10.1371/journal.pone.0030947.
  • Selvy, P. E.; Lavieri, R. R.; Lindsley, C. W.; Brown, H. A.; Phospholipase, D. Enzymology, Functionality, and Chemical Modulation. Chem. Rev. 2011, 111, 6064–6119. DOI: 10.1021/cr200296t.
  • Kooijman, E. E.; Chupin, V.; De Kruijff, B.; Burger, K. N. J. Modulation of Membrane Curvature by Phosphatidic Acid and Lysophosphatidic Acid. Traffic. 2003, 4, 162–174. DOI: 10.1034/j.1600-0854.2003.00086.x.
  • Parthibane, V.; Iyappan, R.; Vijayakumar, A.; Venkateshwari, V.; Rajasekharan, R. Serine/threonine/tyrosine Protein Kinase Phosphorylates Oleosin, a Regulator of Lipid Metabolic Functions. Plant Physiol. 2012, 159, 95–104. DOI: 10.1104/pp.112.197194.
  • Li, G.; Lin, F.; Xue, H. W. Genome-wide Analysis of the Phospholipase D Family in Oryza Sativa and Functional Characterization of PLDΒ1 in Seed Germination. Cell Res. 2007, 17, 881–894. DOI: 10.1038/cr.2007.77.
  • Wang, F.; Wang, R.; Jing, W.; Zhang, W. Quantitative Dissection of Lipid Degradation in Rice Seeds during Accelerated Aging. Plant Growth Regul. 2012, 66, 49–58. DOI: 10.1007/s10725-011-9628-4.
  • Han, C.; He, D.; Li, M.; Yang, P. In-depth Proteomic Analysis of Rice Embryo Reveals Its Important Roles in Seed Germination. Plant Cell Physiol. 2014, 55, 1826–1847. DOI: 10.1093/pcp/pcu114.
  • Jia, Y.; Li, W. Phospholipase D Antagonist 1-butanol Inhibited the Mobilization of Triacylglycerol during Seed Germination in Arabidopsis. Plant Divers. 2018, 40, 292–298. DOI: 10.1016/j.pld.2018.11.002.
  • Kaur, A.; Neelam, K.; Kaur, K.; Kitazumi, A.; De Los Reyes, B. G.; Singh, K. Novel Allelic Variation in the Phospholipase D Alpha1 Gene (OsPLDα1) of Wild Oryza Species Implies to Its Low Expression in Rice Bran. Sci. Rep. 2020, 10. DOI: 10.1038/s41598-020-62649-w.
  • Suzuki, Y.; Takeuchi, Y.; Shirasawa, K. Identification of a Seed Phospholipase D Null Allele in Rice (Oryza Sativa L.) And Development of SNP Markers for Phospholipase D Deficiency. Crop Sci. 2011, 51, 2113–2118. DOI: 10.2135/cropsci2010.12.0716.
  • Devaiah, S. P.; Pan, X.; Hong, Y.; Roth, M.; Welti, R.; Wang, X. Enhancing Seed Quality and Viability by Suppressing Phospholipase D in Arabidopsis. Plant J. 2007, 50, 950–957. DOI: 10.1111/j.1365-313X.2007.03103.x.
  • Lee, J.; Welti, R.; Roth, M.; Schapaugh, W. T.; Li, J.; Trick, H. N. Enhanced Seed Viability and Lipid Compositional Changes during Natural Ageing by Suppressing Phospholipase Dα in Soybean Seed. Plant Biotechnol. J. 2012, 10, 164–173. DOI: 10.1111/j.1467-7652.2011.00650.x.
  • Zhang, G.; Bahn, S. C.; Wang, G.; Zhang, Y.; Chen, B.; Zhang, Y.; Wang, X.; Zhao, J. PLDα1-knockdown Soybean Seeds Display Higher Unsaturated Glycerolipid Contents and Seed Vigor in High Temperature and Humidity Environments. Biotechnol. Biofuels. 2019, 12. DOI: 10.1186/s13068-018-1340-4.
  • Porta, H.; Rocha-Sosa, M. Plant Lipoxygenases. Physiological and Molecular Features. Plant Physiol. 2002, 130, 15–21. DOI: 10.1104/pp.010787.
  • Newcomer, M. E.; Brash, A. R. The Structural Basis for Specificity in Lipoxygenase Catalysis. Protein Sci. 2015, 24, 298–309. DOI: 10.1002/pro.2626.
  • Brodhun, F.; Feussner, I. The Oxylipin Biosynthetic Pathways in Plants. https://lipidlibrary.aocs.org/chemistry/physics/plant-lipid/the-oxylipin-biosynthetic-pathways-in-plants
  • Mikulska-Ruminska, K.; Shrivastava, I.; Krieger, J.; Zhang, S.; Li, H.; Baylr, H.; Wenzel, S. E.; Vandemark, A. P.; Kagan, V. E.; Bahar, I. Characterization of Differential Dynamics, Specificity, and Allostery of Lipoxygenase Family Members. J. Chem. Inf. Model. 2019, 59, 2496–2508. DOI: 10.1021/acs.jcim.9b00006.
  • Wasternack, C.; Feussner, I. The Oxylipin Pathways: Biochemistry and Function. Annu. Rev. Plant Biol. 2018, 69, 363–386. DOI: 10.1146/annurev-arplant-042817-040440.
  • Loiseau, J.; Ly Vu, B.; Macherel, M. H.; Le Deunff, Y. Seed Lipoxygenases: Occurrence and Functions. Seed Sci. Res. 2001, 11, 199–211. DOI: 10.1079/SSR200176.
  • Iassonova, D. R.; Johnson, L. A.; Hammond, E. G.; Beattie, S. E. Evidence of an Enzymatic Source of off Flavors in “Lipoxygenase- Null” Soybeans. JAOCS J. Am. Oil Chem. Soc. 2009, 86, 59–64. DOI: 10.1007/s11746-008-1314-y.
  • Liavonchanka, A.; Lipoxygenases:, F. I. Occurrence, Functions and Catalysis. J. Plant Physiol. 2006, 163, 348–357. DOI: 10.1016/j.jplph.2005.11.006.
  • Roychowdhury, M.; Li, X.; Qi, H.; Li, W.; Sun, J.; Huang, C.; Wu, D. Functional Characterization of 9-/13-LOXs in Rice and Silencing Their Expressions to Improve Grain Qualities. BioMed. Res. Int. 2016. DOI: 10.1155/2016/4275904.
  • Andreou, A.; Lipoxygenases, F. I. - Structure and Reaction Mechanism. Phytochemistry. 2009, 70, 1504–1510. DOI: 10.1016/j.phytochem.2009.05.008.
  • Hassan, M. N.; Zainal, Z.; Ismail, I. Green Leaf Volatiles: Biosynthesis, Biological Functions and Their Applications in Biotechnology. Plant Biotechnol. J. 2015, 13, 727–739. DOI: 10.1111/pbi.12368.
  • Huang, J.; Cai, M.; Long, Q.; Liu, L.; Lin, Q.; Jiang, L.; Chen, S.; Oslox, W. J. A Rice Type I Lipoxygenase, Confers Opposite Effects on Seed Germination and Longevity. Transgenic Res. 2014, 23, 643–655. DOI: 10.1007/s11248-014-9803-2.
  • Wang, R.; Shen, W.; Liu, L.; Jiang, L.; Liu, Y.; Su, N.; Wan, J. A. Novel Lipoxygenase Gene from Developing Rice Seeds Confers Dual Position Specificity and Responds to Wounding and Insect Attack. Plant Mol. Biol. 2008, 66, 401–414. DOI: 10.1007/s11103-007-9278-0.
  • Yixiong, L.; Lin, H.; Chen, Y.; Wang, H.; Ritenour, M. A.; Lin, Y. Hydrogen Peroxide-induced Changes in Activities of Membrane Lipids-degrading Enzymes and Contents of Membrane Lipids Composition in Relation to Pulp Breakdown of Longan Fruit during Storage. Food Chem. 2019, 297. DOI: 10.1016/j.foodchem.2019.124955.
  • Vincenti, S.; Mariani, M.; Alberti, J. C.; Jacopini, S.; De Caraffa, V. B. B.; Berti, L.; Maury, J. Biocatalytic Synthesis of Natural Green Leaf Volatiles Using the Lipoxygenase Metabolic Pathway. Catalysts. 2019, 9. DOI: 10.3390/catal9100873.
  • Umate, P. Genome-wide Analysis of Lipoxygenase Gene Family in Arabidopsis and Rice. Plant Signal. Behav. 2011, 6, 335–338. DOI: 10.4161/psb.6.3.13546.
  • Ma, L.; Zhu, F.; Li, Z.; Zhang, J.; Li, X.; Dong, J.; Wang, T. TALEN-Based Mutagenesis of Lipoxygenase LOX3 Enhances the Storage Tolerance of Rice (Oryza Sativa) Seeds. PLoS One. 2015, 10. DOI: 10.1371/journal.pone.0143877.
  • Shirasawa, K.; Takeuchi, Y.; Ebitani, T.; Suzuki, Y. Identification of Gene for Rice (Oryza Sativa) Seed Lipoxygenase-3 Involved in the Generation of Stale Flavor and Development of SNP Markers for Lipoxygenase-3 Deficiency. Breed. Sci. 2008, 58, 169–176. DOI: 10.1270/jsbbs.58.169.
  • Long, Q.; Zhang, W.; Wang, P.; Shen, W.; Zhou, T.; Liu, N.; Wang, R.; Jiang, L.; Huang, J.; Wang, Y.; et al. Molecular Genetic Characterization of Rice Seed Lipoxygenase 3 and Assessment of Its Effects on Seed Longevity. J. Plant Biol. 2013, 56, 232–242. DOI: 10.1007/s12374-013-0085-7.
  • Xu, H.; Wei, Y.; Zhu, Y.; Lian, L.; Xie, H.; Cai, Q.; Chen, Q.; Lin, Z.; Wang, Z.; Xie, H.; et al. Antisense Suppression of LOX3 Gene Expression in Rice Endosperm Enhances Seed Longevity. Plant Biotechnol. J. 2015, 13, 526–539. DOI: 10.1111/pbi.12277.
  • Schaffrath, U.; Zabbai, F.; Dudler, R. Characterization of RCI-1, a Chloroplastic Rice Lipoxygenase Whose Synthesis Is Induced by Chemical Plant Resistance Activators. Eur. J. Biochem. 2000, 267, 5935–5942. DOI: 10.1046/j.1432-1327.2000.01660.x.
  • Wang, R.; Shen, W.; Liu, L.; Jiang, L.; Liu, Y.; Su, N.; Wan, J. A Novel Lipoxygenase Gene from Developing Rice Seeds Confers Dual Position Specificity and Responds to Wounding and Insect Attack. Plant Mol. Biol. 2008, 66, 401–414.
  • Losvik, A.; Beste, L.; Glinwood, R.; Ivarson, E.; Stephens, J.; Zhu, L. H.; Jonsson, L. Overexpression and Down-regulation of Barley Lipoxygenase LOX2.2 Affects Jasmonate-regulated Genes and Aphid Fecundity. Int. J. Mol. Sci. 2017, 18. DOI: 10.3390/ijms18122765.
  • Hwang, I. S.; Hwang, B. K. The Pepper 9-lipoxygenase Gene CaLOX1 Functions in Defense and Cell Death Responses to Microbial Pathogens. Plant Physiol. 2010, 152, 948–967. DOI: 10.1104/pp.109.147827.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.