1,341
Views
12
CrossRef citations to date
0
Altmetric
Research Article

A Review on Agro-industrial Waste as Cellulose and Nanocellulose Source and Their Potentials in Food Applications

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank Publications: Washington, 2018.
  • Mussatto, S. I.; Ballesteros, L. F.; Martins, S.; Teixeira, J. A. Use of Agro-Industrial Wastes in Solid-State Fermentation Processes. In Industrial Waste; Show, K.Y., Ed.; Intech: Rijeka, 2012; pp 121–140.
  • Malucelli, L. C.; Lacerda, L. G.; Dziedzic, M.; Da Silva Carvalho, F. M. A. Preparation, Properties and Future Perspectives of Nanocrystals from Agro-industrial Residues: A Review of Recent Research. Rev. Environ. Sci. Bio/Technol. 2017, 16(1), 131–145. DOI: 10.1007/s11157-017-9423-4.
  • Beck, S.; Bouchard, J.; Berry, R. Controlling the Reflection Wavelength of Iridescent Solid Films of Nanocrystalline Cellulose. Biomacromolecules. 2010, 12(1), 167–172. DOI: 10.1021/bm1010905.
  • Kargarzadeh, H.; Mariano, M.; Huang, J.; Lin, N.; Ahmad, I.; Dufresne, A.; Thomas, S. Recent Developments on Nanocellulose Reinforced Polymer Nanocomposites: A Review. Polymer. 2017, 132, 368–393.
  • Gardner, D. J.; Oporto, G. S.; Mills, R.; Samir, M. A. S. A. Adhesion and Surface Issues in Cellulose and Nanocellulose. J. Adhes. Sci. Technol. 2008, 22(5–6), 545–567. DOI: 10.1163/156856108X295509.
  • Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites. Chem. Soc. Rev. 2011, 40(7), 3941–3994. DOI: 10.1039/c0cs00108b.
  • Klemm, D.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A. Nanocelluloses: A New Family of Nature‐based Materials. Angew. Chem. Int. Ed. 2011, 50(24), 5438–5466.
  • Brinchi, L.; Cotana, F.; Fortunati, E.; Kenny, J. M. Production of Nanocrystalline Cellulose from Lignocellulosic Biomass: Technology and Applications. Carbohydr. Polym. 2013, 94(1), 154–169. DOI: 10.1016/j.carbpol.2013.01.033.
  • Deepa, B.; Abraham, E.; Cherian, B. M.; Bismarck, A.; Blaker, J. J.; Pothan, L. A.; Leao, A. L.; De Souza, S. F.; Kottaisamy, M. Structure, Morphology and Thermal Characteristics of Banana Nano Fibers Obtained by Steam Explosion. Bioresour. Technol. 2011, 102(2), 1988–1997. DOI: 10.1016/j.biortech.2010.09.030.
  • Strom, G.; Ohgren, C.; Ankerfors, M. Nanocellulose as an Additive in Foodstuff. Innvent. Rep. 2013, 403, 1–25.
  • Mishra, R. K.; Sabu, A.; Tiwari, S. K. Materials Chemistry and the Futurist Eco-friendly Applications of Nanocellulose: Status and Prospect. J. Saudi Chem. Soc. 2018, 22(8), 949–978. DOI: 10.1016/j.jscs.2018.02.005.
  • Dourado, F.; Leal, M.; Martins, D.; Fontão, A.; Rodrigues, A. C.; Gama, M. Cellulose as Food Ingredients/additives: Is There a Room for BNC? In Bacterial Nanocellulose; Gama, M., Dourado, F., Bielecki, S., Ed(s).; Elsevier Science Ltd: Amsterdam, 2016; pp 123–133.
  • Shi, Z.; Zhang, Y.; Phillips, G. O.; Yang, G. Utilization of Bacterial Cellulose in Food. Food Hydrocoll. 2014, 35, 539–545. DOI: 10.1016/j.foodhyd.2013.07.012.
  • United Nations. World Population Policies Database. Population Division of the Department of Economic and Social Affairs. Available from: https://www.unfpa.org/data/world-population-dashboard 2018 [20 March 2019].
  • Bharathiraja, S.; Suriya, J.; Krishnan, M.; Manivasagan, P.; Kim, S. K. Production of Enzymes from Agricultural Wastes and Their Potential Industrial Applications. In Advances in Food and Nutrition Research, Kim, S.-K., Toldrá, F. , Ed(s).; Academic Press: Cambridge, 2017; Vol. 80, pp 125–148.
  • Khuriyati, N.; Kumalasari, D.; Kumalasari, D. Cleaner Production Strategy for Improving Environmental Performance of Small-scale Cracker Industry. Agric. Agric. Sci. Procedia. 2014, 3, 102–107. DOI: 10.1016/j.aaspro.2015.01.021.
  • Yadav, C.; Saini, A.; Maji, P. K. Energy Efficient Facile Extraction Process of Cellulose Nanofibers and Their Dimensional Characterization Using Light Scattering Techniques. Carbohydr. Polym. 2017, 165, 276–284. DOI: 10.1016/j.carbpol.2017.02.049.
  • Ravindran, R.; Hassan, S.; Williams, G.; Jaiswal, A. A Review on Bioconversion of Agro-industrial Wastes to Industrially Important Enzymes. Bioengineering. 2018, 5(4), 93. DOI: 10.3390/bioengineering5040093.
  • Yusuf, M.;. Agro-Industrial Waste Materials and Their Recycled Value-Added Applications. Handbook Ecomater. 2017, 2017, 1–11.
  • Sadh, P. K.; Duhan, S.; Duhan, J. S. Agro-industrial Wastes and Their Utilization Using Solid State Fermentation: A Review. Bioresources Bioprocess. 2018, 5(1), 1. DOI: 10.1186/s40643-017-0187-z.
  • Ravindran, R.; Jaiswal, A. K. Exploitation of Food Industry Waste for High-value Products. Trends Biotechnol. 2016, 34(1), 58–69. DOI: 10.1016/j.tibtech.2015.10.008.
  • Loehr, R. C.;. Hazardous Solid Waste from Agriculture. Environ. Health Perspect. 1978, 27, 261–273. DOI: 10.1289/ehp.7827261.
  • Sundarraj, A. A.; Ranganathan, T. V. A Review on Cellulose and Its Utilization from Agro-industrial Waste. Drug Invention Today. 2018, 10(1), 89–94.
  • Alemdar, A.; Sain, M. Isolation and Characterization of Nanofibers from Agricultural residues–Wheat Straw and Soy Hulls. Bioresour. Technol. 2008, 99(6), 1664–1671. DOI: 10.1016/j.biortech.2007.04.029.
  • Jonoobi, M.; Oladi, R.; Davoudpour, Y.; Oksman, K.; Dufresne, A.; Hamzeh, Y.; Davoodi, R. Different Preparation Methods and Properties of Nanostructured Cellulose from Various Natural Resources and Residues: A Review. Cellulose. 2015, 22(2), 935–969. DOI: 10.1007/s10570-015-0551-0.
  • Faruk, O.; Bledzki, A. K.; Fink, H. P.; Sain, M. Biocomposites Reinforced with Natural Fibers: 2000–2010. Prog. Polym. Sci. 2012, 37(11), 1552–1596.
  • Keijsers, E. R.; Yılmaz, G.; Van Dam, J. E. The Cellulose Resource Matrix. Carbohydr. Polym. 2013, 93(1), 9–21. DOI: 10.1016/j.carbpol.2012.08.110.
  • García, A.; Gandini, A.; Labidi, J.; Belgacem, N.; Bras, J. Industrial and Crop Wastes: A New Source for Nanocellulose Biorefinery. Ind. Crops Prod. 2016, 93, 26–38. DOI: 10.1016/j.indcrop.2016.06.004.
  • Raj, A. A.; Ranganathan, T. V. Characterization of Cellulose from Jackfruit (Artocarpus Integer) Peel. J. Pharm. Res. 2018, 12(3), 311.
  • Rachtanapun, P.; Luangkamin, S.; Tanprasert, K.; Suriyatem, R. Carboxymethyl Cellulose Film from Durian Rind. LWT Food Sci. Technol. 2012, 48(1), 52–58. DOI: 10.1016/j.lwt.2012.02.029.
  • Penjumras, P.; Rahman, R. B. A.; Talib, R. A.; Abdan, K. Extraction and Characterization of Cellulose from Durian Rind. Agric. Agric. Sci. Procedia. 2014, 2, 237–243. DOI: 10.1016/j.aaspro.2014.11.034.
  • Harini, K.; Ramya, K.; Sukumar, M. Extraction of Nano Cellulose Fibers from the Banana Peel and Bract for Production of Acetyl and Lauroyl Cellulose. Carbohydr. Polym. 2018, 201, 329–339. DOI: 10.1016/j.carbpol.2018.08.081.
  • Widiarto, S.; Yuwono, S. D.; Rochliadi, A.; Arcana, I. M. Preparation and Characterization of Cellulose and Nanocellulose from Agro-industrial Waste-Cassava Peel. In IOP Conference Series: Materials Science and Engineering. 2017 (Vol. 176, No. 1, p. 12052). International Conference on Advanced Materials for Better Future, Indonesia, October 4, 2016; IOP Publishing.
  • Winuprasith, T.; Suphantharika, M. Microfibrillated Cellulose from Mangosteen (Garcinia Mangostana L.) Rind: Preparation, Characterization, and Evaluation as an Emulsion Stabilizer. Food Hydrocolloids. 2013, 32(2), 383–394. DOI: 10.1016/j.foodhyd.2013.01.023.
  • Szymańska-Chargot, M.; Chylińska, M.; Gdula, K.; Kozioł, A.; Zdunek, A. Isolation and Characterization of Cellulose from Different Fruit and Vegetable Pomaces. Polymers. 2017, 9(10), 495. DOI: 10.3390/polym9100495.
  • Coelho, C. C.; Michelin, M.; Cerqueira, M. A.; Gonçalves, C.; Tonon, R. V.; Pastrana, L. M.; Freitas-Silva, O.; Vicente, A. A.; Cabral, L. M. C.; Teixeira, J. A. Cellulose Nanocrystals from Grape Pomace: Production, Properties and Cytotoxicity Assessment. Carbohydr. Polym. 2018, 192, 327–336. DOI: 10.1016/j.carbpol.2018.03.023.
  • Reddy, J. P.; Rhim, J. W. Extraction and Characterization of Cellulose Microfibers from Agricultural Wastes of Onion and Garlic. J. Nat. Fibers. 2018, 15(4), 465–473. DOI: 10.1080/15440478.2014.945227.
  • Tibolla, H.; Pelissari, F. M.; Rodrigues, M. I.; Menegalli, F. C. Cellulose Nanofibers Produced from Banana Peel by Enzymatic Treatment: Study of Process Conditions. Ind. Crops Prod. 2018, 95, 664–674. DOI: 10.1016/j.indcrop.2016.11.035.
  • Li, P.; Wang, Y.; Hou, Q.; Li, X. Isolation and Characterization of Microfibrillated Cellulose from Agro-industrial Soybean Residue (Okara). BioResources. 2018, 13(4), 7944–7956. DOI: 10.15376/biores.13.4.7944-7956.
  • Lamaming, J.; Hashim, R.; Sulaiman, O.; Leh, C. P.; Sugimoto, T.; Nordin, N. A. Cellulose Nanocrystals Isolated from Oil Palm Trunk. Carbohydr. Polym. 2015, 127, 202–208. DOI: 10.1016/j.carbpol.2015.03.043.
  • Andrade-Mahecha, M. M.; Pelissari, F. M.; Tapia-Blácido, D. R.; Menegalli, F. C. Achira as a Source of Biodegradable Materials: Isolation and Characterization of Nanofibers. Carbohydr. Polym. 2015, 123, 406–415. DOI: 10.1016/j.carbpol.2015.01.027.
  • Johar, N.; Ahmad, I.; Dufresne, A. Extraction, Preparation and Characterization of Cellulose Fibres and Nanocrystals from Rice Husk. Ind. Crops Prod. 2012, 37(1), 93–99. DOI: 10.1016/j.indcrop.2011.12.016.
  • Prasad, R.; Bhattacharyya, A.; Nguyen, Q. D. Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives. Front. Microbiol. 2017, 8(1014), 1–13. DOI: 10.3389/fmicb.2017.01014.
  • Phanthong, P.; Ma, Y.; Guan, G.; Abudula, A. Extraction of Nanocellulose from Raw Apple Stem. J. Japan Inst. Energy. 2015, 94(8), 787–793. DOI: 10.3775/jie.94.787.
  • Wang, W.; Liu, C.; Huang, F.; Li, W.; Zheng, C. Preparation and Characterization of Nanocellulose from Rapeseed Hull. Oil Crop Sci. 2019, 4(1), 55–64.
  • Leite, A. L. M. P.; Zanon, C. D.; Menegalli, F. C. Isolation and Characterization of Cellulose Nanofibers from Cassava Root Bagasse and Peelings. Carbohydr. Polym. 2017, 157, 962–970. DOI: 10.1016/j.carbpol.2016.10.048.
  • Oksman, K.; Etang, J. A.; Mathew, A. P.; Jonoobi, M. Cellulose Nanowhiskers Separated from a Bio-residue from Wood Bioethanol Production. Biomass Bioenergy. 2011, 35(1), 146–152. DOI: 10.1016/j.biombioe.2010.08.021.
  • Rahman, A.; Hayati, N.; Chieng, B. W.; Ibrahim, N. A.; Abdul Rahman, N. Extraction and Characterization of Cellulose Nanocrystals from Tea Leaf Waste Fibers. Polymers. 2017, 9(11), 588. DOI: 10.3390/polym9110588.
  • Khorairi, A. N. S. A.; Sofian-Seng, N. S.; Othaman, R.; Kassim, K. F. Cellulose Powder from Piper Nigrum Agro-Industrial Waste: Effect of Preparation Condition on Chemical Structure and Thermal Degradation. Sains Malays. 2020, 49(80), 1949–1955.
  • Fareez, I. M.; Ibrahim, N. A.; Yaacob, W. M. H. W.; Razali, N. A. M.; Jasni, A. H.; Aziz, F. A. Characteristics of Cellulose Extracted from Josapine Pineapple Leaf Fibre after Alkali Treatment Followed by Extensive Bleaching. Cellulose. 2018, 25(8), 4407–4421. DOI: 10.1007/s10570-018-1878-0.
  • Novovic, A.; Lazwardi, D. R.; Zulfia, A.; Chalid, M. Microfibrillated Cellulose (MFC) Isolation Based on Stalk Sweet Sorghum through Alkalinization-bleaching Treatment: Effect of Soaking Temperature. In IOP Conference Series: Materials Science and Engineering, 2019, The 13th Joint Conference on Chemistry (13th JCC), Indonesia, September 7-8, 2018, (Vol. 509, No. 1, p. 012079). IOP Publishing.
  • Kallel, F.; Bettaieb, F.; Khiari, R.; García, A.; Bras, J.; Chaabouni, S. E. Isolation and Structural Characterization of Cellulose Nanocrystals Extracted from Garlic Straw Residues. Indus. Crops Prod. 2016, 87, 287–296. DOI: 10.1016/j.indcrop.2016.04.060.
  • Cherian, B. M.; Leão, A. L.; De Souza, S. F.; Thomas, S.; Pothan, L. A.; Kottaisamy, M. Isolation of Nanocellulose from Pineapple Leaf Fibres by Steam Explosion. Carbohydr. Polym. 2010, 81(3), 720–725. DOI: 10.1016/j.carbpol.2010.03.046.
  • Madureira, A. R.; Atatoprak, T.; Çabuk, D.; Sousa, F.; Pullar, R. C.; Pintado, M. E. Extraction and Characterisation of Cellulose Nanocrystals from Pineapple Peel. Int. J. Food Stud. 2018, 7, 24–33. DOI:10.7455/ijfs/7.1.2018.a3.
  • Pitkänen, M.; Honkalampi, U.; Von Wright, A.; Sneck, A.; Hentze, H. P.; Sievänen, J.; Hiltunen, J.; Hellen, E. S. Nanofibrillar Cellulose–in Vitro Study of Cytotoxic and Genotoxic Properties. Tappi 2010 International Conference on Nanotechnology for the Forest Products Industry, Finland, September 27–29, 2010; United States: TAPPI Press, 2010.
  • TAPPI, Standard Terms and Their Definition for Cellulose Nanomaterial. WI 3021. 2011. Available: http://www.tappi.org [18 August 2018]
  • Dong, H.; Snyder, J. F.; Williams, K. S.; Andzelm, J. W. Cation-induced Hydrogels of Cellulose Nanofibrils with Tunable Moduli. Biomacromolecules. 2013, 14(9), 3338–3345. DOI: 10.1021/bm400993f.
  • Wang, B.; Sain, M.; Oksman, K. Study of Structural Morphology of Hemp Fiber from the Micro to the Nanoscale. Appl. Compos. Mater. 2007, 14(2), 89. DOI: 10.1007/s10443-006-9032-9.
  • Kim, J. H.; Shim, B. S.; Kim, H. S.; Lee, Y. J.; Min, S. K.; Jang, D.; Abas, Z.; Kim, J. Review of Nanocellulose for Sustainable Future Materials. Int. J. Precis. Eng. Manuf. Green Technol. 2015, 2(2), 197–213. DOI: 10.1007/s40684-015-0024-9.
  • Abitbol, T.; Rivkin, A.; Cao, Y.; Nevo, Y.; Abraham, E.; Ben-Shalom, T.; Lapidot, S.; Shoseyov, O. Nanocellulose, a Tiny Fiber with Huge Applications. Curr. Opin. Biotechnol. 2016, 39, 76–88. DOI: 10.1016/j.copbio.2016.01.002.
  • Nechyporchuk, O.; Belgacem, M. N.; Bras, J. Production of Cellulose Nanofibrils: A Review of Recent Advances. Indus. Crops Prod. 2016, 93, 2–25. DOI: 10.1016/j.indcrop.2016.02.016.
  • Costa, A. L. R.; Gomes, A.; Tibolla, H.; Menegalli, F. C.; Cunha, R. L. Cellulose Nanofibers from Banana Peels as a Pickering Emulsifier: High-energy Emulsification Processes. Carbohydr. Polym. 2018, 194, 122–131. DOI: 10.1016/j.carbpol.2018.04.001.
  • Valdebenito, F.; Pereira, M.; Ciudad, G.; Azocar, L.; Briones, R.; Chinga-Carrasco, G. On the Nanofibrillation of Corn Husks and Oat Hulls Fibers. Indus. Crops Prod. 2017, 95, 528–534. DOI: 10.1016/j.indcrop.2016.11.006.
  • Xu, J.; Krietemeyer, E. F.; Boddu, V. M.; Liu, S. X.; Liu, W. C. Production and Characterization of Cellulose Nanofibril (CNF) from Agricultural Waste Corn Stover. Carbohydr. Polym. 2018, 192, 202–207. DOI: 10.1016/j.carbpol.2018.03.017.
  • Malladi, R.; Nagalakshmaiah, M.; Robert, M.; Elkoun, S. Importance of Agriculture and Industrial Waste in the Field of Nano Cellulose and Its Recent Industrial Developments: A Review. ACS Sustainable Chem. Eng. 2018, 6(3), 2807–2828. DOI: 10.1021/acssuschemeng.7b03437.
  • Ioelovich, M.;. Cellulose: Nanostructured Natural Polymer; Lambart Academic Publishing: German, 2014.
  • Lavoine, N.; Desloges, I.; Dufresne, A.; Bras, J. Microfibrillated cellulose–Its Barrier Properties and Applications in Cellulosic Materials: A Review. Carbohydr. Polym. 2012, 90(2), 735–764. DOI: 10.1016/j.carbpol.2012.05.026.
  • Siró, I.; Plackett, D. Microfibrillated Cellulose and New Nanocomposite Materials: A Review. Cellulose. 2010, 17(3), 459–494.
  • Rebouillat, S.; Pla, F. State of the Art Manufacturing and Engineering of Nanocellulose: A Review of Available Data and Industrial Applications. J. Biomater. Nanobiotechnol. 2013, 4(2), 165. DOI: 10.4236/jbnb.2013.42022.
  • Frone, A. N.; Panaitescu, D. M.; Donescu, D. Some Aspects Concerning the Isolation of Cellulose Micro-and Nano-fibers. UPB Bull. Stiintific, Ser. B: Chem. Mater. Sci. 2011, 73(2), 133–152.
  • Li, J.; Wei, X.; Wang, Q.; Chen, J.; Chang, G.; Kong, L.; Su, J.; Liu, Y. Homogeneous Isolation of Nanocellulose from Sugarcane Bagasse by High Pressure Homogenization. Carbohydr. Polym. 2012, 90(4), 1609–1613. DOI: 10.1016/j.carbpol.2012.07.038.
  • Cheng, Q.; Wang, S.; Rials, T. G. Poly (Vinyl Alcohol) Nanocomposites Reinforced with Cellulose Fibrils Isolated by High Intensity Ultrasonication. Compos. Part A Appl. Sci. Manuf. 2009, 40(2), 218–224. DOI: 10.1016/j.compositesa.2008.11.009.
  • Paschoal, G. B.; Muller, C. M.; Carvalho, G. M.; Tischer, C. A.; Mali, S. Isolation and Characterization of Nanofibrillated Cellulose from Oat Hulls. Quím. Nova. 2015, 38(4), 478–482.
  • Xiao, S.; Gao, R.; Gao, L.; Li, J. Poly (Vinyl Alcohol) Films Reinforced with Nanofibrillated Cellulose (NFC) Isolated from Corn Husk by High Intensity Ultrasonication. Carbohydr. Polym. 2016, 136, 1027–1034. DOI: 10.1016/j.carbpol.2015.09.115.
  • Hiasa, S.; Iwamoto, S.; Endo, T.; Edashige, Y. Isolation of Cellulose Nanofibrils from Mandarin (Citrus Unshiu) Peel Waste. Ind. Crops Prod. 2014, 62, 280–285. DOI: 10.1016/j.indcrop.2014.08.007.
  • Hideno, A.; Abe, K.; Yano, H. Preparation Using Pectinase and Characterization of Nanofibers from Orange Peel Waste in Juice Factories. J. Food Sci. 2014, 79(6), 1218–1224. DOI: 10.1111/1750-3841.12471.
  • Fortunati, E.; Puglia, D.; Monti, M.; Peponi, L.; Santulli, C.; Kenny, J. M.; Torre, L. Extraction of Cellulose Nanocrystals from Phormium Tenax Fibres. J. Polym. Environ. 2013, 21(2), 319–328. DOI: 10.1007/s10924-012-0543-1.
  • Siqueira, G.; Bras, J.; Dufresne, A. Luffa Cylindrica as a Lignocellulosic Source of Fiber, Microfibrillated Cellulose and Cellulose Nanocrystals. BioResources. 2010, 5(2), 727–740.
  • Gomez, H. C.; Serpa, A.; Velasquez-Cock, J.; Ganan, P.; Castro, C.; Velez, L.; Zuluaga, R. Vegetable Nanocellulose in Food Science: A Review. Food Hydrocolloid. 2016, 57, 178–186. DOI: 10.1016/j.foodhyd.2016.01.023.
  • Khalil, H. A.; Davoudpour, Y.; Islam, M. N.; Mustapha, A.; Sudesh, K.; Dungani, R.; Jawaid, M. Production and Modification of Nanofibrillated Cellulose Using Various Mechanical Processes: A Review. Carbohydr. Polym. 2014, 99, 649–665. DOI: 10.1016/j.carbpol.2013.08.069.
  • Moriana, R.; Vilaplana, F.; Ek, M. Cellulose Nanocrystals from Forest Residues as Reinforcing Agents for Composites: A Study from Macro-to Nano-dimensions. Carbohydr. Polym. 2016, 139, 139–149. DOI: 10.1016/j.carbpol.2015.12.020.
  • Lu, P.; Hsieh, Y. L. Preparation and Characterization of Cellulose Nanocrystals from Rice Straw. Carbohydr. Polym. 2012, 87(1), 564–573. DOI: 10.1016/j.carbpol.2011.08.022.
  • Sadeghifar, H.; Filpponen, I.; Clarke, S. P.; Brougham, D. F.; Argyropoulos, D. S. Production of Cellulose Nanocrystals Using Hydrobromic Acid and Click Reactions on Their Surface. J. Mater. Sci. 2011, 46(22), 7344–7355. DOI: 10.1007/s10853-011-5696-0.
  • Pirani, S.; Hashaikeh, R. Nanocrystalline Cellulose Extraction Process and Utilization of the Byproduct for Biofuels Production. Carbohydr. Polym. 2013, 93(1), 357–363. DOI: 10.1016/j.carbpol.2012.06.063.
  • Wijaya, C. J.; Saputra, S. N.; Soetaredjo, F. E.; Putro, J. N.; Lin, C. X.; Kurniawan, A.; Ju, Y. H.; Ismadji, S. Cellulose Nanocrystals from Passion Fruit Peels Waste as Antibiotic Drug Carrier. Carbohydr. Polym. 2017, 175, 370–376. DOI: 10.1016/j.carbpol.2017.08.004.
  • Sheltami, R. M.; Abdullah, I.; Ahmad, I.; Dufresne, A.; Kargarzadeh, H. Extraction of Cellulose Nanocrystals from Mengkuang Leaves (Pandanus Tectorius). Carbohydr. Polym. 2012, 88(2), 772–779. DOI: 10.1016/j.carbpol.2012.01.062.
  • Beck-Candanedo, S.; Roman, M.; Gray, D. G. Effect of Reaction Conditions on the Properties and Behaviour of Wood Cellulose Nanocrystal Suspensions. Biomacromolecules. 2005, 6, 1048–1054. DOI: 10.1021/bm049300p.
  • Saito, T.; Hirota, M.; Tamura, N.; Kimura, S.; Fukuzumi, H.; Heux, L.; Isogai, A. Individualization of Nano-sized Plant Cellulose Fibrils by Direct Surface Carboxylation Using TEMPO Catalyst under Neutral Conditions. Biomacromolecules. 2009, 10(7), 1992–1996. DOI: 10.1021/bm900414t.
  • El-Saied, H.; Basta, A. H.; Gobran, R. H. Research Progress in Friendly Environmental Technology for the Production of Cellulose Products (Bacterial Cellulose and Its Application). Polymer-Plastics Technol. Eng. 2004, 43(3), 797–820. DOI: 10.1081/PPT-120038065.
  • Jozala, A. F.; De Lencastre-novaes, L. C.; Lopes, A. M.; De Carvalho Santos-ebinuma, V.; Mazzola, P. G.; Pessoa-Jr, A.; Grotto, G.; Gerenutti, M.; Chaud, M. V. Bacterial Nanocellulose Production and Application: A 10-year Overview. Appl. Microbiol. Biotechnol. 2016, 100(5), 2063–2072. DOI: 10.1007/s00253-015-7243-4.
  • Phanthong, P.; Reubroycharoen, P.; Hao, X.; Xu, G.; Abudula, A.; Guan, G. Nanocellulose: Extraction and Application. Carb. Res. Conv. 2018, 1, 32–43. DOI: 10.1016/j.crcon.2018.05.004.
  • Guhados, G.; Wan, W.; Hutter, J. L. Measurement of the Elastic Modulus of Single Bacterial Cellulose Fibers Using Atomic Force Microscopy. Langmuir. 2005, 21(14), 6642–6646. DOI: 10.1021/la0504311.
  • Czaja, W.; Romanovicz, D.; Brown, R. M. Structural Investigations of Microbial Cellulose Produced in Stationary and Agitated Culture. Cellulose. 2004, 11, 403–411. DOI: 10.1023/B:CELL.0000046412.11983.61.
  • Kamel, S.;. Nanotechnology and Its Applications in Lignocellulosic Composites, a Mini Review. Express Polym. Lett. 2007, 1(9), 546–575. DOI: 10.3144/expresspolymlett.2007.78.
  • Czaja, W.; Krystynowicz, A.; Bielecki, S.; Brownjr, R. M., Jr. Microbial Cellulose—the Natural Power to Heal Wounds. Biomaterials. 2006, 27(2), 145–151. DOI: 10.1016/j.biomaterials.2005.07.035.
  • Andritsou, V.; De Melo, E. M.; Tsouko, E.; Ladakis, D.; Maragkoudaki, S.; Koutinas, A. A.; Matharu, A. S. Synthesis and Characterization of Bacterial Cellulose from Citrus-Based Sustainable Resources. ACS Omega. 2018, 3(8), 10365–10373. DOI: 10.1021/acsomega.8b01315.
  • Güzel, M.; Akpınar, Ö. Production and Characterization of Bacterial Cellulose from Citrus Peels. Waste Biomass Valorization. 2019, 10(8), 2165–2175. DOI: 10.1007/s12649-018-0241-x.
  • Dórame-Miranda, R. F.; Gámez-Meza, N.; Medina-Juárez, L. Á.; Ezquerra-Brauer, J. M.; Ovando-Martínez, M.; Lizardi-Mendoza, J. Bacterial Cellulose Production by Gluconacetobacter Entanii Using Pecan Nutshell as Carbon Source and Its Chemical Functionalization. Carbohydr. Polym. 2019, 207, 91–99. DOI: 10.1016/j.carbpol.2018.11.067.
  • Algar, I.; Fernandes, S. C.; Mondragon, G.; Castro, C.; Garcia‐Astrain, C.; Gabilondo, N.; Eceiza, A.; Eceiza, A. Pineapple Agro-industrial Residues for the Production of High Value Bacterial Cellulose with Different Morphologies. J. Appl. Polym. Sci. 2015, 132(1). DOI: 10.1002/app.41237.
  • Lima, H. L. S.; Nascimento, E. S.; Andrade, F. K.; Brígida, A. I. S.; Borges, M. D. F.; Cassales, A. R.; MRosa, M. D. F.; Souza Filho, M. D. S. M.; Morais, J. P. S.; Rosa, M. D. F. Bacterial Cellulose Production by Komagataeibacter Hansenii ATCC 23769 Using Sisal Juice-An Agroindustry Waste. Braz. J. Chem. Eng. 2017, 34(3), 671–680. DOI: 10.1590/0104-6632.20170343s20150514.
  • Nelson, K.; Retsina, T.; Iakovlev, M.; Van Heiningen, A.; Deng, Y.; Shatkin, J. A.; Mulyadi, A. American Process: Production of Low Cost Nanocellulose for Renewable, Advanced Materials Applications. Springer Ser. Mater. Sci. 2016, 224, 267–302.
  • TAPPI. Summary of International Activities on Cellulosic Nanomaterials. 2015.
  • Hassan, S. S.; Williams, G. A.; Jaiswal, A. K. Emerging Technologies for the Pretreatment of Lignocellulosic Biomass. Bioresour. Technol. 2018, 262, 310–318. DOI: 10.1016/j.biortech.2018.04.099.
  • Tran, A. T.; Cao, N. H.; Le, P. T. K.; Mai, P. T.; Nguyen, Q. D. Reusing Alkaline Solution in Lignocellulose Pretreatment to Save Consumable Chemicals without Losing Efficiency. Chem. Eng. Trans. 2020, 78, 307–312.
  • Nguyen, Q. D.; Le, T. K. P.; Tran, T. A. T. A. Technique to Smartly Re-Use Alkaline Solution in Lignocellulose Pre-treatment. Chem. Eng. Trans. 2018, 63, 157–162.
  • Jongaroontaprangsee, S.; Chiewchan, N.; Devahastin, S. Production of Nanocellulose from Lime Residues Using Chemical-free Technology. Mater. Today Proc. 2018, 5(5), 11095–11100.
  • Zhu, H.; Helander, M.; Moser, C.; Stahlkranz, A.; Soderberg, D.; Henriksson, G.; Lindstrom, M. A Novel Nano Cellulose Preparation Method and Size Fraction by Cross Flow Ultra-filtration. Curr. Org. Chem. 2012, 16(16), 1871–1875. DOI: 10.2174/138527212802651197.
  • Castro-Muñoz, R.; Barragán-Huerta, B. E.; Fíla, V.; Denis, P. C.; Ruby-Figueroa, R. Current Role of Membrane Technology: From the Treatment of Agro-industrial By-products up to the Valorization of Valuable Compounds. Waste Biomass Valorization. 2018, 9(4), 513–529. DOI: 10.1007/s12649-017-0003-1.
  • ElHadidy, A. M.; Peldszus, S.; Van Dyke, M. I. Development of a Pore Construction Data Analysis Technique for Investigating Pore Size Distribution of Ultrafiltration Membranes by Atomic Force Microscopy. J. Membr. Sci. 2013, 429, 373–383. DOI: 10.1016/j.memsci.2012.11.054.
  • Ng, L. Y.; Ng, C. Y.; Mahmoudi, E.; Ong, C. B.; Mohammad, A. W. A Review of the Management of Inflow Water, Wastewater and Water Reuse by Membrane Technology for A Sustainable Production in Shrimp Farming. J. Water Process Eng. 2018, 23, 27–44. DOI: 10.1016/j.jwpe.2018.02.020.
  • Ventura-Cruz, S.; Tecante, A. Extraction and Characterization of Cellulose Nanofibers from Rose Stems (Rosa Spp.). Carbohydr. Polym. 2019, 220, 53–59. DOI: 10.1016/j.carbpol.2019.05.053.
  • Castro-Muñoz, R.; Conidi, C.; Cassano, A. Membrane-based Technologies for Meeting the Recovery of Biologically Active Compounds from Foods and Their By-products. Crit. Rev. Food Sci. Nutr. 2019, 59(18), 2927–2948. DOI: 10.1080/10408398.2018.1478796.
  • Li, J.; Chase, H. A. Applications of Membrane Techniques for Purification of Natural Products. Biotechnol. Lett. 2010, 32(5), 601–608. DOI: 10.1007/s10529-009-0199-7.
  • Castro-Muñoz, R.; Yáñez-Fernández, J.; Fíla, V. Phenolic Compounds Recovered from Agro-food By-products Using Membrane Technologies: An Overview. Food Chem. 2016, 213, 753–762. DOI: 10.1016/j.foodchem.2016.07.030.
  • Tingaut, P.; Zimmermann, T.; Sèbe, G. Cellulose Nanocrystals and Microfibrillated Cellulose as Building Blocks for the Design of Hierarchical Functional Materials. J. Mater. Chem. 2012, 22(38), 20105–20111. DOI: 10.1039/c2jm32956e.
  • Doyle, M. E.; Nanotechnology: A Brief Literature Review. Food Research Institute, UW-Madison, 2006.
  • Binks, B. P.;. Particles as Surfactants—similarities and Differences. Curr. Opin. Colloid Interface Sci. 2002, 7(1–2), 21–41. DOI: 10.1016/S1359-0294(02)00008-0.
  • Berton-Carabin, C. C.; Schroën, K. Pickering Emulsions for Food Applications: Background, Trends, and Challenges. Ann. Rev. Food Sci. Technol. 2015, 6, 263–297. DOI: 10.1146/annurev-food-081114-110822.
  • Yang, Y.; Fang, Z.; Chen, X.; Zhang, W.; Xie, Y.; Chen, Y.; Yuan, W.; Yuan, W. An Overview of Pickering Emulsions: Solid-particle Materials, Classification, Morphology, and Applications. Front. Pharmacol. 2017, 8, 287. DOI: 10.3389/fphar.2017.00287.
  • Robson, A.;. Tackling Obesity: Can Food Processing Be a Solution Rather than a Problem? Agro-Food Ind. HiTech. 2012, 23(Suppl. 2), 10–11.
  • Sanchez-Salvador, J. L.; Balea, A.; Monte, M. C.; Blanco, A.; Negro, C. Pickering Emulsions Containing Cellulose Microfibers Produced by Mechanical Treatments as Stabilizer in the Food Industry. Appl. Sci. 2019, 9(2), 359. DOI: 10.3390/app9020359.
  • Winuprasith, T.; Suphantharika, M. Properties and Stability of Oil-in-water Emulsions Stabilized by Microfibrillated Cellulose from Mangosteen Rind. Food Hydrocolloids. 2015, 43, 690–699. DOI: 10.1016/j.foodhyd.2014.07.027.
  • Choublab, P.; Winuprasith, T. Storage Stability of Mayonnaise Using Mangosteen Nanofibrillated Cellulose as a Single Emulsifier. J. Food Sci. Agric. Technol. 2018, 4, 59–66.
  • Kasiri, N.; Fathi, M. Production of Cellulose Nanocrystals from Pistachio Shells and Their Application for Stabilizing Pickering Emulsions. Int. J. Biol. Macromol. 2018, 106, 1023–1031. DOI: 10.1016/j.ijbiomac.2017.08.112.
  • Tenorio, A. T.; Gieteling, J.; Nikiforidis, C. V.; Boom, R. M.; Van Der Goot, A. J. Interfacial Properties of Green Leaf Cellulosic Particles. Food Hydrocolloids. 2017, 71, 8–16. DOI: 10.1016/j.foodhyd.2017.04.030.
  • Paximada, P.; Tsouko, E.; Kopsahelis, N.; Koutinas, A. A.; Mandala, I. Bacterial Cellulose as Stabilizer of O/w Emulsions. Food Hydrocolloids. 2016, 53, 225–232. DOI: 10.1016/j.foodhyd.2014.12.003.
  • Zhai, X.; Lin, D.; Liu, D.; Yang, X. Emulsions Stabilized by Nanofibers from Bacterial Cellulose: New Potential Food-grade Pickering Emulsions. Food Res. Int. 2018, 103, 12–20. DOI: 10.1016/j.foodres.2017.10.030.
  • Slavin, J. L.; Savarino, V.; Paredes-Diaz, A.; Fotopoulos, G. A Review of the Role of Soluble Fiber in Health with Specific Reference to Wheat Dextrin. J. Int. Med. Res. 2009, 37(1), 1–17. DOI: 10.1177/147323000903700101.
  • Alzate-Arbeláez, A. F.; Dorta, E.; López-Alarcón, C.; Cortés, F. B.; Rojano, B. A. Immobilization of Andean Berry (Vaccinium Meridionale) Polyphenols on Nanocellulose Isolated from Banana Residues: A Natural Food Additive with Antioxidant Properties. Food Chem. 2019, 294, 503–517. DOI: 10.1016/j.foodchem.2019.05.085.
  • Wang, Y.; Wang, W.; Jia, H.; Gao, G.; Wang, X.; Zhang, X.; Wang, Y. Using Cellulose Nanofibers and Its Palm Oil Pickering Emulsion as Fat Substitutes in Emulsified Sausage. J. Food Sci. 2018, 83(6), 1740–1747. DOI: 10.1111/1750-3841.14164.
  • Andrade, D. R. M.; Mendonça, M. H.; Helm, C. V.; Magalhães, W. L.; De Muniz, G. I. B.; Kestur, S. G. Assessment of Nano Cellulose from Peach Palm Residue as Potential Food Additive: Part II: Preliminary Studies. J. Food Sci. Technol. 2015, 52(9), 5641–5650. DOI: 10.1007/s13197-014-1684-0.
  • Saba, N.; Jawaid, M. Recent Advances in Nanocellulose-based Polymer Nanocomposites. In Cellulose-Reinforced Nanofibre Composites; Woodhead Publishing: Duxford, 2017; pp 89–112.
  • Yusop, S. M.; Zain, N. F. M.; Babji, A. S.; Kamaruzaman, N. Utilization of Cellulose from Pomelo (Citrus Grandis) Albedo as Functional Ingredient in Meat Marination. Food Environ. Sci. II. 2016, 92, 18.
  • Sebayang, F.; Sembiring, H. Synthesis of CMC from Palm Midrib Cellulose as Stabilizer and Thickening Agent in Food. Orient. J. Chem. 2017, 33(1), 519. DOI: 10.13005/ojc/330162.
  • Coles, R.; McDowell, D.; Kirwan, M. J. Eds. Food Packaging Technology; CRC Press: Boca Raton, Vol. 5, 2003.
  • Shchipunov, Y.;. Bionanocomposites: Green Sustainable Materials for the near Future. Pure Appl. Chem. 2012, 84(12), 2579–2607. DOI: 10.1351/PAC-CON-12-05-04.
  • Nair, S. S.; Zhu, J. Y.; Deng, Y.; Ragauskas, A. J. High Performance Green Barriers Based on Nanocellulose. Sustainable Chem. Processes. 2014, 2(1), 23. DOI: 10.1186/s40508-014-0023-0.
  • De Moura, M. R.; Mattoso, L. H.; Zucolotto, V. Development of Cellulose-based Bactericidal Nanocomposites Containing Silver Nanoparticles and Their Use as Active Food Packaging. J. Food Eng. 2012, 109(3), 520–524. DOI: 10.1016/j.jfoodeng.2011.10.030.
  • Wu, J.; Du, X.; Yin, Z.; Xu, S.; Xu, S.; Zhang, Y. Preparation and Characterization of Cellulose Nanofibrils from Coconut Coir Fibers and Their Reinforcements in Biodegradable Composite Films. Carbohydr. Polym. 2019, 211, 49–56. DOI: 10.1016/j.carbpol.2019.01.093.
  • Sánchez-Safont, E. L.; Aldureid, A.; Lagarón, J. M.; Gámez-Pérez, J.; Cabedo, L. Biocomposites of Different Lignocellulosic Wastes for Sustainable Food Packaging Applications. Compos. B Eng. 2018, 145, 215–225. DOI: 10.1016/j.compositesb.2018.03.037.
  • Bharimalla, A. K.; Deshmukh, S. P.; Vigneshwaran, N.; Patil, P. G.; Prasad, V. Nanocellulose-polymer Composites for Applications in Food Packaging: Current Status, Future Prospects and Challenges. Polym.-Plast. Technol. Eng. 2017, 56(8), 805–823. DOI: 10.1080/03602559.2016.1233281.
  • Penjumras, P.; Rahman, R. A.; Wattananapakasem, I. 2017.Release of Antioxidants from Biocomposites Based on Poly(Lactic Acid) and Durian Rind Cellulose. 5th International Conference on Chemical, Agricultural, Biological and Environmental Sciences (CAFES-17), Kyoto, Japan, April 18-19, 2017. DOI:10.15242/dirpub.dir0417240.
  • Zhao, G.; Lyu, X.; Lee, J.; Cui, X.; Chen, W. N. Biodegradable and Transparent Cellulose Film Prepared Eco-friendly from Durian Rind for Packaging Application. Food Packag. Shelf Life. 2019, 21, 100345. DOI: 10.1016/j.fpsl.2019.100345.
  • Ghaderi, M.; Mousavi, M.; Yousefi, H.; Labbafi, M. All-cellulose Nanocomposite Film Made from Bagasse Cellulose Nanofibers for Food Packaging Application. Carbohydr. Polym. 2014, 104, 59–65. DOI: 10.1016/j.carbpol.2014.01.013.
  • Reddy, J. P.; Rhim, J. W. Characterization of Bionanocomposite Films Prepared with Agar and Paper-mulberry Pulp Nanocellulose. Carbohydr. Polym. 2014, 110, 480–488. DOI: 10.1016/j.carbpol.2014.04.056.
  • Tibolla, H.; Pelissari, F. M.; Martins, J. T.; Vicente, A. A.; Menegalli, F. C. Cellulose Nanofibers Produced from Banana Peel by Chemical and Mechanical Treatments: Characterization and Cytotoxicity Assessment. Food Hydrocoll. 2017, 75, 192–201. DOI: 10.1016/j.foodhyd.2017.08.027.
  • Chumee, J.; Khemmakama, P. Carboxymethyl Cellulose from Pineapple Peel: Useful Green Bioplastic. In Advanced Materials Research, Mekhum, W., Sangwaranatee, N., Limsuwan, Pichet, Kim, H, Djamal, M, Kaewkhao, J., Ed(s).; Switzerland: Trans Tech Publications, 2014; Vol. 979, pp 366–369.
  • Rachtanapun, P.; Kumthai, S.; Mulkarat, N.; Pintajam, N.; Suriyatem, R. Value Added of Mulberry Paper Waste by Carboxymethylation for Preparation a Packaging Film. IOP Conference Series: Materials Science and Engineering. Global Conference on Polymer and Composite Materials (PCM2015), May 16–18, 2015, Beijing, China. (Vol. 87, No. 1, p. 012081). IOP Publishing. 2015
  • Suriyatem, R.; Auras, R. A.; Rachtanapun, P. Utilization of Carboxymethyl Cellulose from Durian Rind Agricultural Waste to Improve Physical Properties and Stability of Rice Starch-Based Film. J. Polym. Environ. 2019, 27(2), 286–298. DOI: 10.1007/s10924-018-1343-z.
  • Lähtinen, K.; Valve, H.; Jouttijärvi, T.; Kautto, P.; Koskela, S.; Leskinen, P.; Tukiainen, P. Piecing Together Research Needs: Safety, Environmental Performance and Regulatory Issues of Nanofibrillated Cellulose (NFC). 2012.
  • Börjesson, M.; Gunnar, W. Crystalline Nanocellulose — Preparation, Modification, and Properties. Cellulose - Fundamental Aspects and Current Trends, pp. 159–191. Intech. 2015.
  • Halib, N.; Ahmad, I. Nanocellulose: Insight into Health and Medical Applications. Handbook Ecomater. (Vol. 2, p. 1–19). : New York: Springer International Publishing. 2017.
  • Jones, C. F.; Grainger, D. W. In Vitro Assessments of Nanomaterial Toxicity. Adv. Drug Delivery Rev. 2009, 61(6), 438–456. DOI: 10.1016/j.addr.2009.03.005.
  • Szakal, C.; Roberts, S. M.; Westerhoff, P.; Bartholomaeus, A.; Buck, N.; Illuminato, I.; Rogers, M.; Rogers, M. Measurement of Nanomaterials in Foods: Integrative Consideration of Challenges and Future Prospects. ACS Nano. 2014, 8(4), 3128–3135. DOI: 10.1021/nn501108g.
  • Harper, B. J.; Clendaniel, A.; Sinche, F.; Way, D.; Hughes, M.; Schardt, J.; Harper, S. L.; Stefaniak, A. B.; Harper, S. L. Impacts of Chemical Modification on the Toxicity of Diverse Nanocellulose Materials to Developing Zebrafish. Cellulose. 2016, 23(3), 1763–1775. DOI: 10.1007/s10570-016-0947-5.
  • Nowak, A.; Sójka, M.; Klewicka, E.; Lipińska, L.; Klewicki, R.; Kołodziejczyk, K. Ellagitannins from Rubus Idaeus L. Exert Geno- and Cytotoxic Effects against Human Colon Adenocarcinoma Cell Line Caco-2. J. Agric. Food Chem. 2017, 65(14), 2947–2955. DOI: 10.1021/acs.jafc.6b05387.
  • Sawai, J.;. Quantitative Evaluation of Antibacterial Activities of Metallic Oxide Powders (Zno, MgO and CaO) by Conductimetric Assay. J. Microbiol. Methods. 2003, 54(2), 177–182. DOI: 10.1016/S0167-7012(03)00037-X.
  • Motaung, T. E.; Mtibe, A. Alkali Treatment and Cellulose Nanowhiskers Extracted from Maize Stalk Residues. Mater. Sci. Appl. 2015, 6(11), 1022. DOI: 10.4236/msa.2015.611102.
  • Costa, L. A.; Fonseca, A. F.; Pereira, F. V.; Druzian, J. I. Extraction and Characterization of Cellulose Nanocrystals from Corn Stover. Cell Chem Technol. 2015, 49(2), 127–133.
  • Zain, N. F. M.; Yusop, S. M.; Ahmad, I. Preparation and Characterization of Cellulose and Nanocellulose from Pomelo (Citrus Grandis) Albedo. J. Nutr. Food Sci. 2014, 5(1), 334.
  • Hemmati, F.; Jafari, S. M.; Kashaninejad, M.; Motlagh, M. B. Synthesis and Characterization of Cellulose Nanocrystals Derived from Walnut Shell Agricultural Residues. Int. J. Biol. Macromol. 2018, 120, 1216–1224. DOI: 10.1016/j.ijbiomac.2018.09.012.
  • Wicaksono, R.; Syamsu, K.; Yuliasih, I.; Nasir, M.; Street, K. Cellulose Nanofibers from Cassava Bagasse: Characterization and Application on Tapioca-film. Cellulose. 2013, 3(13), 79–87.
  • Ferreira, F. V.; Mariano, M.; Rabelo, S. C.; Gouveia, R. F.; Lona, L. M. F. Isolation and Surface Modification of Cellulose Nanocrystals from Sugarcane Bagasse Waste: From a Micro-to a Nano-scale View. Appl. Surf. Sci. 2018, 436, 1113–1122. DOI: 10.1016/j.apsusc.2017.12.137.
  • Wulandari, W. T.; Rochliadi, A.; Arcana, I. M. Nanocellulose Prepared by Acid Hydrolysis of Isolated Cellulose from Sugarcane Bagasse. In IOP Conference Series: Materials Science and Engineering. 10th Joint Conference on Chemistry, September 8–9, 2015, (Vol. 107, No. 1, p. 012045). IOP Publishing, 2016.
  • Fathi, H. I.; El-Shazly, A. H.; Elkady, M. F.; Madih, K. Assessment of New Technique for Production Cellulose Nanocrystals from Agricultural Waste. In Materials Science Forum,  Zhu, X. H., Ed. United States: Trans Tech Publications, 2018; Vol. 928, pp 83–88.
  • Collazo-Bigliardi, S.; Ortega-Toro, R.; Boix, A. C. Isolation and Characterisation of Microcrystalline Cellulose and Cellulose Nanocrystals from Coffee Husk and Comparative Study with Rice Husk. Carbohydr. Polym. 2018, 191, 205–215. DOI: 10.1016/j.carbpol.2018.03.022.
  • Kampeerapappun, P.;. Extraction and Characterization of Cellulose Nanocrystals Produced by Acid Hydrolysis from Corn Husk. J. Met. Mater. Miner. 2015, 25(1), 19–26.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.