288
Views
0
CrossRef citations to date
0
Altmetric
Review

Phytochemical Composition and Functional Potential of Uxi (Endopleura Uchi): An Overview

ORCID Icon, ORCID Icon, & ORCID Icon

References

  • Barba, F. J.; Mariutti, L. R. B.; Bragagnolo, N.; Mercadante, A. Z.; Barbosa-cánovas, G. V.; Orlien, V. Bioaccessibility of Bioactive Compounds from Fruits and Vegetables after Thermal and Nonthermal Processing. Trends Food Sci. Technol. 2017, 67, 195–206. doi:10.1016/j.tifs.2017.07.006.
  • Neves, L. C.; Tosin, J. M.; Benedette, R. M.; Cisneros-Zevallos, L. Post-Harvest Nutraceutical Behaviour during Ripening and Senescence of 8 Highly Perishable Fruit Species from the Northern Brazilian Amazon Region. Food Chem. 2015, 174, 188–196. doi:10.1016/j.foodchem.2014.10.111.
  • Rezaei, A.; Fathi, M.; Mahdi, S. Nanoencapsulation of Hydrophobic and Low-Soluble Food Bioactive Compounds within Different Nanocarriers. Food Hydrocoll. 2019, 88, 146–162. doi:10.1016/j.foodhyd.2018.10.003.
  • Barzegar-Amini, M.; Ghazizadeh, H.; Mohammad, S.; Reza, H.; Mohammadi, A.; Hassanzade-daloee, M.; Barati, E.; Mouhebati, M.; Ebrahimi, M.; Taye, M.;, et al. Serum Vitamin E as a Significant Prognostic Factor in Patients with Dyslipidemia Disorders. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13 (1), 666–671. doi:10.1016/j.dsx.2018.11.034.
  • Pezeshki, A.; Hamishehkar, H.; Ghanbarzadeh, B.; Fathollahy, I.; Keivani, F.; Khakbaz, M.; Mohammadi, M.Nanostructured Lipid Carriers as a Favorable Delivery System for β-Carotene. Food Biosci. 2018, 27(November 2019), 11–17. doi:10.1016/j.fbio.2018.11.004.
  • Cadwallader, K. R. Aromas. Encyclopedia of Food Chemistry, 1st ed; Elsevier: Champaign, 2018. doi:10.1016/B978-0-08-100596-5.21623-5.
  • Berto, A.; Fiori, A.; Vergilio, J.; Matsushita, M.; Evelázio, N.; Proximate Compositions, S. D.; Contents, M. Fatty Acid Compositions of Native Amazonian Fruits. Food Res. Int. 2015, 77, 441–449. doi:10.1016/j.foodres.2015.08.018.
  • Albuquerque, E. D. M.; Silva, M. K. F. D.; Silva, A. C. M. D.; Olortegui, R. D. S.; Silva, R. T. L. D. Biometria De Frutos De Uxi, Em Vegetação Nativa De Capitão Poço-Pa. Enciclopédia Biosf. Goiânia. 2014, 10(9), 2787–2796.
  • Tacon, L. A.; Freitas, L. A. P. Box-Behnken Design to Study the Bergenin Content and Antioxidant Activity of Endopleura Uchi Bark Extracts Obtained by Dynamic Maceration. Braz. J. Pharmacogn. 2013, 23(1), 65–71. doi:10.1590/S0102-695X2012005000134.
  • Magalhães, L. A. M.; Lima, P.; Marinho, H. A.; Ferreira, A. G. Identificação De Bergenina E Carotenóides No Fruto De Uchi (Endopleura Uchi, Humiriaceae). Acta Amaz. 2007, 37(3), 447–450. doi:10.1590/S0044-59672007000300016.
  • Marx, F.; Helena, E.; Zoghbi, G. B.; Maia, J. G. S. Studies of Edible Amazonian Plants. Part 5: Chemical Characterisation of Amazonian Endopleura Uchi Fruits. Eur. Food Res. Technol. 2002, 214(4), 331–334. doi:10.1007/s00217-001-0477-7.
  • Politi, F. A.; De Mello, J. C.; Migliato, K. F.; Nepomuceno, A. L. Antimicrobial, Cytotoxic and Antioxidant Activities and Determination of the Total Tannin Content of Bark Extracts Endopleura Uchi. Int. J. Mol. Sci. 2011, 12(4), 2757–2768. doi:10.3390/ijms12042757.
  • Patel, D. K.; Patel, K.; Kumar, R.; Gadewar, M.; Tahilyani, V. Pharmacological and Analytical Aspects of Bergenin: A Concise Report. Asian Pacific J. Trop. Dis. 2012, 2(2), 163–167. doi:10.1016/S2222-1808(12)60037-1.
  • Nunomura, R. C. S.; Oliveira, V. G.; Silva, S. L. D.; Nunomura, S. M. Characterization of Bergenin in In Endopleura Uchi Bark and Its Anti-Inflammatory Activity. J. Braz. Chem. Soc. 2009, 20(6), 1060–1064. doi:10.1590/S0103-50532009000600009.
  • Shanley, P.; Silva, S.; Melo, T.; Carmenta, R.; Nasi, R. From Conflict of Use to Multiple Use: Forest Management Innovations by Small Holders in Amazonian Logging Frontiers. For. Ecol. Manage. 2012, 268, 70–80. doi:10.1016/j.foreco.2011.05.041.
  • Da Silva, S. L.; Oliveira, V. G. D.; Yano, T.; Nunomura, R. D. C. S. Antimicrobial Activity of Bergenin from Endople Urauchi (Huber) Cuatrec. Acta Amaz. 2009, 39(1), 187–192. doi:10.1590/S0044-59672009000100019.
  • Shanley, P.; Medina, G. Frutíferas E Plantas Úteis Na Vida Amazônica Frutíferas E Plantas Úteis Na Vida Amazônica, 2005.
  • Bezerra, V. S.; Pereira, S. S. C.; Ferreira, L. A. M. Características Físicas E Físico-Químicas Do Uxi (Endopleura Uchi Cuatrec). Embrapa Amapá-Artigo Em An. Congr. - Congr. Bras. PLANTAS Ol. ÓLEOS, GORDURAS E BIODIESEL. 2006, 6, 379–383.
  • Calder, P. C. Mechanisms of Action of (N-3) Fatty Acids. J. Nutr. 2012, 142(3), 592S–599S. doi:10.3945/jn.111.155259.desaturase.
  • Calder, P. C.; Yaqoob, P.; Calder, P. C. Understanding Omega-3 Polyunsaturated Fatty Acids. Postgrad. Med. 2009, 121(6), 148–157. doi:10.3810/pgm.2009.11.2083.
  • Gupta, C.; Prakash, D. Phytonutrients as Therapeutic Agents. J. Complement Integr. Med. 2014, 11(3), 151–169. doi:10.1515/jcim-2013-0021.
  • Bot, A.; Unilever, R.; Vlaardingen, D. Phytosterols. In Reference Module in Food Science, 2018, pp. 1–4. doi: 10.1016/B978-0-08-100596-5.21626-0.
  • Fakih, O.; Sanver, D.; Kane, D.; Thorne, J. L. Exploring the Biophysical Properties of Phytosterols in the Plasma Membrane for Novel Cancer Prevention Strategies. Biochimie. 2018, 153, 150–161. doi:10.1016/j.biochi.2018.04.028.
  • Trautwein, E. A.; Demonty, I. Phytosterols: Natural Compounds with Established and Emerging Health Benefits. Oléagineux, Corps Gras, Lipides. 2007, 14(5), 259–266. doi:10.1051/ocl.2007.0145.
  • Shahzad, N.; Khan, W.; Ali, A.; Singh, S.; Sharma, S.; Al-allaf, F. A.; Abduljaleel, Z.; Abdel, I.; Ibrahim, A.; Abdel-wahab, A. F.;, et al. Phytosterols as a Natural Anticancer Agent : Current Status and Future Perspective.” Biomed. Pharmacother. 2017, 88, 786–794. doi:10.1016/j.biopha.2017.01.068.
  • Zychowski, L. M.; Logan, A.; Ann, M.; Kelly, A. L.; Mahony, J. A. O.; Conn, C. E.; Auty, M. A. E. Phytosterol Crystallisation within Bulk and Dispersed Triacylglycerol Matrices as in Fluenced by Oil Droplet Size and Low Molecular Weight Surfactant Addition. Food Chem. 2017 October, 2018(264), 24–33. doi:10.1016/j.foodchem.2018.04.026.
  • Da Costa, P. A.; Ballus, C. A.; Teixeira-Filho, J.; Godoy, H. T. Phytosterols and Tocopherols Content of Pulps and Nuts of Brazilian Fruits. Food Res. Int. 2010, 43(6), 1603–1606. doi:10.1016/j.foodres.2010.04.025.
  • Keys, A.; Anderson, J. T.; Grande, F. Prediction of Serum-Cholesterol Responses of Man to Changes in Fats in the Diet. Lancet. 1957, 273(7003), 959–966. doi:10.1016/S0140-6736(57)91998-0.
  • Abreu, V. G. D. C.; Corrêa, G. M.; Lagos, I. A. D. S.; Silva, R. R.; Alcântara, A. F. D. C. Pentacyclic Triterpenes and Steroids from the Stem Bark of Uchi (Sacoglottis Uchi, Humiriaceae). Acta Amaz. 2013, 43(4), 525–528. doi:10.1590/S0044-59672013000400015.
  • De Marco, I.; Riemma, S.; Iannone, R.Life Cycle Assessment of Supercritical Impregnation: Starch Aerogel +α-Tocopherol Tablets. J. Supercrit. Fluids. 2018, 143(2019 September), 305–312. doi:10.1016/j.supflu.2018.09.003.
  • Zhang, F.; Aslam, M.; Cheng, H.; Liang, L.Co-Encapsulation of α-Tocopherol and Resveratrol within Zein Nanoparticles: Impact on Antioxidant Activity and Stability. J. Food Eng. 2018, 247(2019 September), 9–18. doi:10.1016/j.jfoodeng.2018.11.021.
  • Eggersdorfer, M.; Wyss, A. Carotenoids in Human Nutrition and Health. Arch. Biochem. Biophys. 2018, 652, 18–26. doi:10.1016/j.abb.2018.06.001.
  • Ngamwonglumlert, L.; Devahastin, S. Carotenoids. Reference Module in Food Science Encyclopedia of Food Chemistry, 2018, pp. 40–42. doi:10.1016/B978-0-12-814026-0.21608-9.
  • Khalid, M.; Bilal, M.; Iqbal, H. M. N.; Biosynthesis, H. D.Biomedical Perspectives of Carotenoids with Special Reference to Human Health-Related Applications. Biocatal. Agric. Biotechnol. 2019(November 2018), 399–407. doi:10.1016/j.bcab.2018.11.027.
  • Mariutti, L. R. B.; Mercadante, A. Z. Carotenoid Esters Analysis and Occurrence: What Do We Know so Far? Arch. Biochem. Biophys. 2018, 648, 36–43. doi:10.1016/j.abb.2018.04.005.
  • National Research Council – NCR. Recommended Dietary Allowances, 10th ed.; National Academy Press: Washington (DC), 1989.
  • Cong-Cong, X. U.; Bing, W.; Yi-qiong, P. U.; Jian-sheng, T. A. O.; Tong, Z. Advances in Extraction and Analysis of Phenolic Compounds from Plant Materials. Chin. J. Nat. Med. 2017, 15(10), 721–731. doi:10.1016/S1875-5364(17)30103-6.
  • Guan, S.; Qin, X.; Zhou, Z.; Zhang, Q.; Huang, Y. Investigation of the Mechanisms of Improved Oral Bioavailability of Bergenin Using Bergenin–Phospholipid Complex. Drug Dev. Ind. Pharm. 2014, 9045(2), 163–171. doi:10.3109/03639045.2012.752500.
  • Bajracharya, G. B. Diversity, Pharmacology and Synthesis of Bergenin and Its Derivatives: Potential Materials for Therapeutic Usages. Fitoterapia. 2015, 101, 133–152. doi:10.1016/j.fitote.2015.01.001.
  • Nazir, N.; Koul, S.; Qurishi, M. A.; Najar, M. H.; Zargar, M. I. Evaluation of Antioxidant and Antimicrobial Activities of Bergenin and Its Derivatives Obtained by Chemoenzymatic Synthesis. Eur. J. Med. Chem. 2011, 46(6), 2415–2420. doi:10.1016/j.ejmech.2011.03.025.
  • De Abreu, H. A.; Souza, G. P.; Pil, D. Antioxidant Activity of (+)-bergenin—a Phytoconstituent Isolated from the Bark of Sacoglottis Uchi Huber (Humireaceae)†. Org. Biomol. Chem. 2008, 6(15), 2713–2718. doi:10.1039/b804385j.
  • Sánchez-Rodríguez, L.; Ali, N. S.; Cano-Lamadrid, M.; Noguera-Artiaga, L.; Lipan, L.; Carbonell-Barrachina, Á. A.; Sendra, E. Flavors and Aromas; Elsevier Inc., 2019. doi:10.1016/B978-0-12-813278-4.00019-1.
  • Da Costa, W. A.; De Oliveira, M. S.; Da Silva, M. P.; Cunha, V. M. B.; Pinto, R. H. H.; Bezerra, F. W. F.; De Carvalho Junior, R. N. Açaí (Euterpe Oleracea) and Bacaba (Oenocarpus Bacaba) as Functional Food. Superfood and Functional Food-An Overview of Their Processing and Utilization, 2017, pp. 155–172. doi: 10.5772/65881.
  • Freitas, L. V. D.; Montes, A. C. R.; Campos, E. I. A.; Conceição, E. C.; Tacon, L. A.; Lanchote, A. D.; Freitas, L. A. P. Rice Spouted Bed for Manufacturing Inclusion Complexes of Endopleura Uchi L Extracts in β-Cyclodextrin L.V.D. Particuology. 2018, 42, 208–215. doi:10.1016/j.partic.2018.03.014.
  • Carvalho Jr., R. N.; Moura, L. S.; Rosa, P. T. V.; Meireles, M. A. A. Supercritical Fluid Extraction from Rosemary (Rosmarinus Officinalis): Kinetic Data, extract’s Global Yield, Composition, and Antioxidant Activity. J. Supercrit. Fluids. 2005, 35(3), 197–204. doi:10.1016/j.supflu.2005.01.009.
  • Da Silva, R. P. F. F.; Rocha-Santos, T. A. P.; Duarte, A. C. Supercritical Fluid Extraction of Bioactive Compounds. TrAC - Trends Anal. Chem. 2016, 76, 40–51. doi:10.1016/j.trac.2015.11.013.
  • De Melo, M. M. R.; Silvestre, A. J. D.; Silva, C. M. Supercritical Fluid Extraction of Vegetable Matrices: Applications, Trends and Future Perspectives of a Convincing Green Technology. J. Supercrit. Fluids. 2014, 92, 115–176. doi:10.1016/j.supflu.2014.04.007.
  • Triana-Maldonado, D. M.; Torijano-Gutiérrez, S. A. Giraldo-Estrada, C. Supercritical CO2 Extraction of Oil and Omega-3 Concentrate from Sacha Inchi (Plukenetia Volubilis L.) From Antioquia, Colombia. Grasas Y Aceites. 2017, 68 (e172), 1–11. doi:10.3989/gya.0786161.
  • Cunha, V. M. B.; Silva, M. P. D.; Sousa, S. H. B. D.; Bezerra, P. D. N.; Menezes, E. G. O.; Silva, N. J. N. D.; Banna, D. A. D. D. S.; Araújo, M. E.; Carvalho Junior, R. N. D. Bacaba-de-Leque (Oenocarpus Distichus Mart.) Oil Extraction Using Supercritical CO2 and Bioactive Compounds Determination in the Residual Pulp. J. Supercrit. Fluids. 2019, 144, 81–90. doi:10.1016/j.supflu.2018.10.010.
  • Batista, C. C. R.; Oliveira, M. S.; Araújo, M. E.; Rodrigues, A. M. C.; Botelho Filho, J. R. S.; Souza Filho, A.; Machado, N.; Carvalho Junior, R. N. Supercritical CO2 Extraction of Açaí (Euterpe Oleracea) Berry Oil: Global Yield, Fatty Acids, Allelopathic Activities, and Determination of Phenolic and Anthocyanins Total Compounds in the Residual Pulp. J. Supercrit. Fluids. 2016, 107, 364–369. doi:10.1016/j.supflu.2015.10.006.
  • Pinto, R. H. H.; Sena, C.; Santos, O. V.; Da Costa, W. A.; Rodrigues, A. M. C.; Carvalho Junior, R. N. Extraction of Bacaba (Oenocarpus Bacaba) Oil with Supercritical CO2: Global Yield Isotherms, Fatty Acid Composition, Functional Quality, Oxidative Stability, Spectroscopic Profile and Antioxidant Activity. Grasas Y Aceites. 2018, 69(2), 246. doi:10.3989/gya.0883171.
  • Pedrollo, C. T.; Kinupp, V. F., Jr.; Heinrich, M., G. S. Medicinal Plants at Rio Jauaperi, Brazilian Amazon : Ethnobotanical Survey and Environmental Conservation. J. Ethnopharmacol. 2016, 186, 111–124. doi:10.1016/j.jep.2016.03.055.
  • Bento, J. F.; Noleto, G. R.; Lúcia, C.; Petkowicz, D. O. Isolation of an Arabinogalactan from Endopleura Uchi Bark Decoction and Its Effect on HeLa Cells. Carbohydr. Polym. 2014, 101, 871–877. doi:10.1016/j.carbpol.2013.10.014.
  • Silva, L. R.; Teixeira, R. Phenolic Profile and Biological Potential of Endopleura Uchi Extracts. Asian Pac. J. Trop. Med. 2015, 8(11), 889–897. doi:10.1016/j.apjtm.2015.10.013.
  • Politi, F. A. S.; Moreira, R. R. D.; Salgado, H. R. N.; Pietro, R. C. L. R. Preliminary Tests on Acute Oral Toxicity and Intestinal Motility with Extract of Pulverized Bark of Endopleura Uchi (Huber) Cuatrec. (Humiriaceae) in Mice. Rev. Pan-Amazônica Saúde. 2010, 1(1), 187–189. doi:10.5123/S2176-62232010000100026.
  • Piacente, S.; Pizza, C.; De Tommasi, N.; Mahmood, N. Constituents of Ardisia Japonica and Their in Vitro Anti-HIV Activity. J. Nat. Prod. 1996, 59(6), 565–569. doi:10.1021/np960074h.
  • Bessong, P. O.; Obi, C. L.; Andréola, M. L.; Rojas, L. B.; Pouységu, L.; Igumbor, E.; Meyer, J. J. M.; Quideau, S.; Litvak, S. Evaluation of Selected South African Medicinal Plants for Inhibitory Properties against Human Immunodeficiency Virus Type 1 Reverse Transcriptase and Integrase. J. Ethnopharmacol. 2005, 99(1), 83–91. doi:10.1016/j.jep.2005.01.056.
  • Zuo, G. Y.; Li, Z. Q.; Chen, L. R.; Xu, X. J. Vitro Anti-HCV Activities of Saxifraga Melanocentra and Its Related Polyphenolic Compounds. Antivir. Chem. Chemother. 2005, 16(6), 393–398. doi:10.1177/095632020501600606.
  • Rajbhandari, M.; Lalk, M.; Mentel, R.; Lindequist, U. Antiviral Activity and Constituents of the Nepalese Medicinal Plant Astilbe Rivularis. Rec. Nat. Prod. 2011, 5(2), 138–142.
  • Shanley, P.; Gaia, G. A Fruta Do Pobre Se Torna Lucrativa: A Endopleura Uchi Cuatrec. Em Áreas Manejadas Próximo A Belém, Brasil. Productos forestales, medios de subsistencia y conservacion, vol 3; Alexiades, M.N., Shanley, P., Eds.; CIFOR: Bogor, 2004, pp. 219–240.
  • Barai, P.; Raval, N.; Acharya, S.; Borisa, A.; Bhatt, H.; Acharya, N. Neuroprotective Effects of Bergenin in Alzheimer’s Disease: Investigation through Molecular Docking, in Vitro and in Vivo Studies. Behav. Brain Res. 2019, 356(August 2018), 18–40. doi:10.1016/j.bbr.2018.08.010.
  • Monge-Fuentes, V.; Muehlmann, L. A.; Longo, J. P. F.; Silva, J. R.; Fascineli, M. L.; Azevedo, R. B.; De Souza, P.; Faria, F.; Degterev, I. A.; Rodriguez, A.;, et al. Photodynamic Therapy Mediated by Acai Oil (Euterpe Oleracea Martius) in Nanoemulsion: A Potential Treatment for Melanoma. J. Photochem. Photobiol. B Biol. 2017, 166, 301–310. doi:10.1016/j.jphotobiol.2016.12.002.
  • Vermaak, I.; Kamatou, G. P. P.; Komane-Mofokeng, B.; Viljoen, A. M.; Beckett, K. African Seed Oils of Commercial Importance - Cosmetic Applications. South Afr. J. Bot. 2011, 77(4), 920–933. doi:10.1016/j.sajb.2011.07.003.
  • Ubeyitogullari, A.; Ciftci, O. N. Generating Phytosterol Nanoparticles in Nanoporous Bioaerogels via Supercritical Carbon Dioxide Impregnation: Effect of Impregnation Conditions. J. Food Eng. 2017, 207, 99–107. doi:10.1016/j.jfoodeng.2017.03.022.
  • Villegas, M.; Oliveira, A. L.; Bazito, R. C.; Vidinha, P. Development of an Integrated One-Pot Process for the Production and Impregnation of Starch Aerogels in Supercritical Carbon Dioxide. J. Supercrit. Fluids. 2019, 154, 104592. doi:10.1016/j.supflu.2019.104592.
  • Costa, D. C.; Costa, H. S.; Albuquerque, T. G.; Ramos, F.; Castilho, M. C.; Sanches-Silva, A. Advances in Phenolic Compounds Analysis of Aromatic Plants and Their Potential Applications. Trends Food Sci. Technol. 2015, 45(2), 336–354. doi:10.1016/j.tifs.2015.06.009.
  • Lima, L. G. B.; Montenegro, J.; Abreu, J. P.; Santos, M. C. B.; Nascimento, T. P.; Santos, M. S.; Ferreira, A. G.; Cameron, L. C.; Ferreira, M. S. L.; Teodoro, A. J. Metabolite Profiling by UPLC-MSE, NMR, and Antioxidant Properties of Amazonian Fruits: Mamey Apple (Mammea Americana), Camapu (Physalis Angulata), and Uxi (Endopleura Uchi). Molecules. 2020, 25(2), 342. doi:10.3390/molecules25020342.
  • Roman, M. J.; Decker, E. A.; Goddard, J. M. Biomimetic Polyphenol Coatings for Antioxidant Active Packaging Applications. Colloids Interface Sci. Commun. 2016, 13, 10–13. doi:10.1016/j.colcom.2016.06.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.