1,378
Views
8
CrossRef citations to date
0
Altmetric
Review

Novel Technologies for Flavor Formation in the Processing of Meat Products: A Review

, , &

References

  • Maughan, C.; Tansawat, R.; Cornforth, D.; Ward, R.; Martini, S. Development of a Beef Flavor Lexicon and Its Application to Compare the Flavor Profile and Consumer Acceptance of Rib Steaks from Grass- or Grain-Fed Cattle. Meat Sci. 2012, 90(1), 116–121. DOI: 10.1016/j.meatsci.2011.06.006.
  • Kerth, C. R.; Miller, R. K. Beef Flavor: A Review from Chemistry to Consumer. Sci. Food Agric. 2015, 95(14), 2783–2798. DOI: 10.1002/jsfa.7204.
  • Begum, N.; Raza, A.; Song, H. L.; Zhang, Y.; Zhang, L.; Liu, P. Effect of Thermal Treatment on Aroma Generation from Bovine Bone Marrow Extract during Enzymatic Hydrolysis. Food Process. Pres. 2019, (10). DOI: 10.1111/jfpp.14105.
  • Sousa, B. C.; Pitt, A. R.; Spickett, C. M. Chemistry and Analysis of Hne and Other Prominent Carbonyl-Containing Lipid Oxidation Compounds. Free Radic. Biol. Med. 2017, 111, 294–308. DOI: 10.1016/j.freeradbiomed.2017.02.003.
  • Starowicz, M.; Zielinski, H. How Maillard Reaction Influences Sensorial Properties (Color, Flavor and Texture) of Food Products? Food Rev. Int. 2019, 35(8), 707–725. DOI: 10.1080/87559129.2019.1600538.
  • Dashdorj, D.; Amna, T.; Hwang, I. Influence of Specific Taste-Active Components on Meat Flavor as Affected by Intrinsic and Extrinsic Factors: An Overview. Eur. Food Res. Technol. 2015, 241(2), 157–171. DOI: 10.1007/s00217-015-2449-3.
  • Lou, X. W.; Ye, Y. F.; Wang, Y.; Sun, Y. Y.; Pan, D. D.; Cao, J. X. Effect of High-Pressure Treatment on Taste and Metabolite Profiles of Ducks with Two Different Vinasse-Curing Processes. Food Res. Int. 2018, 105, 703–712. DOI: 10.1016/j.foodres.2017.11.084.
  • Zhang, M.; Li, C. L.; Ding, X. L. Effects of Heating Conditions on the Thermal Denaturation of White Mushroom Suitable for Dehydration. Dry. Technol. 2005, 23(5), 1119–1125. DOI: 10.1081/Drt-200059145.
  • Wang, Y. Q.; Zhang, M.; Mujumdar, A. S. Trends in Processing Technologies for Dried Aquatic Products Pii 93460892410.1080/07373937.2011.551624. Dry. Technol. 2011, 29(4), 382–394. DOI: 10.1080/07373937.2011.551624.
  • Wang, Y. Q.; Zhang, M.; Mujumdar, A. S. Influence of Green Banana Flour Substitution for Cassava Starch on the Nutrition, Color, Texture and Sensory Quality in Two Types of Snacks. LWT-Food Sci. Technol. 2012, 47(1), 175–182. DOI: 10.1016/j.lwt.2011.12.011.
  • Wang, Q. B.; Zhang, M.; Adhikari, B.; Cao, P.; Yang, C. H. Effects of Various Thermal Processing Methods on the Shelf-Life and Product Quality of Vacuum-Packaged Braised Beef. Food Process Eng. 2019, 42(4). DOI: 10.1111/jfpe.13035.
  • Puertolas, E.; Saldana, G.; Condon, S.; Alvarez, I.; Raso, J. Evolution of Polyphenolic Compounds in Red Wine from Cabernet Sauvignon Grapes Processed by Pulsed Electric Fields during Aging in Bottle. Food Chem. 2010, 119(3), 1063–1070. DOI: 10.1016/j.foodchem.2009.08.018.
  • Bhat, Z. F.; Morton, J. D.; Mason, S. L.; Bekhit, A. E. A. Current and Future Prospects for the Use of Pulsed Electric Field in the Meat Industry. Crit. Rev. Food Sci. Nutri. 2019, 59(10), 1660–1674. DOI: 10.1080/10408398.2018.1425825.
  • Misra, N. N.; Koubaa, M.; Roohinejad, S.; Juliano, P.; Alpas, H.; Inacio, R. S.; Saraiva, J. A.; Barba, F. J. Landmarks in the Historical Development of Twenty First Century Food Processing Technologies. Food Res. Int. 2017, 97, 318–339. DOI: 10.1016/j.foodres.2017.05.001.
  • Moreno-Vilet, L.; Hernandez-Hernandez, H. M.; Villanueva-Rodriguez, S. J. Current Status of Emerging Food Processing Technologies in Latin America: Novel Thermal Processing. Innov. Food Sci. Emerg. Technol. 2018, 50, 196–206. DOI: 10.1016/j.ifset.2018.06.013.
  • Hernandez-Hernandez, H. M.; Moreno-Vilet, L.; Villanueva-Rodriguez, S. J. Current Status of Emerging Food Processing Technologies in Latin America: Novel Non-thermal Processing. Innov. Food Sci. Emerg. Technol. 2019, 58. DOI: 10.1016/j.ifset.2019.102233.
  • Suleman, R.; Wang, Z. Y.; Aadil, R. M.; Hui, T.; Hopkins, D. L.; Zhang, D. Q. Effect of Cooking on the Nutritive Quality, Sensory Properties and Safety of Lamb Meat: Current Challenges and Future Prospects. Meat Sci. 2020, 167. DOI: 10.1016/j.meatsci.2020.108172.
  • Kang, D. C.; Zhang, W. A.; Lorenzo, J. M.; Chen, X. Structural and Functional Modification of Food Proteins by High Power Ultrasound and Its Application in Meat Processing. Crit. Rev. Food Sci. Nutri. 2020. DOI: 10.1080/10408398.2020.1767538.
  • Song, X. J.; Zhang, M.; Mujumdar, A. S. Optimization of Vacuum Microwave Predrying and Vacuum Frying Conditions to Produce Fried Potato Chips. Dry. Technol. 2007, 25(12), 2027–2034. DOI: 10.1080/07373930701728638.
  • Jiang, H.; Zhang, M.; Mujumdar, A. S.; Lim, R. X. Comparison of Drying Characteristic and Uniformity of Banana Cubes Dried by Pulse-Spouted Microwave Vacuum Drying, Freeze Drying and Microwave Freeze Drying. Sci. Food Agric. 2014, 94(9), 1827–1834. DOI: 10.1002/jsfa.6501.
  • Zhang, M.; Tang, J.; Mujumdar, A. S.; Wang, S. Trends in Microwave-Related Drying of Fruits and Vegetables. Trends Food Sci. Technol. 2006, 17(10), 524–534. DOI: 10.1016/j.tifs.2006.04.011.
  • Chandrasekaran, S.; Ramanathan, S.; Basak, T. Microwave Food Processing-a Review. Food Res. Int. 2013, 52(1), 243–261. DOI: 10.1016/j.foodres.2013.02.033.
  • Hu, Q. G.; Zhang, M.; Mujumdar, A. S.; Wei-Hua, D.; Sun, J. C. Effects of Different Drying Methods on the Quality Changes of Granular Edamame. Dry. Technol. 2006, 24(8), 1025–1032. DOI: 10.1080/07373930600776217.
  • Wang, Y. C.; Zhang, M.; Mujumdar, A. S.; Mothibe, K. J. Microwave-Assisted Pulse-Spouted Bed Freeze-Drying of Stem Lettuce Slices-Effect on Product Quality. Food Bioprocess Technol. 2013, 6(12), 3530–3543. DOI: 10.1007/s11947-012-1017-0.
  • Xu, Y. Y.; Zhang, M.; Tu, D. Y.; Sun, J. C.; Zhou, L. Q.; Mujumdar, A. S. Two-stage convective a Air and Vacuum Freeze-Drying Technique for Bamboo Shoots. Int Food Sci. Technol. 2005, 40(6), 589–595. DOI: 10.1111/j.1365-2621.2005.00956.x.
  • Wang, R.; Zhang, M.; Mujumdar, A. S. Effect of Osmotic Dehydration on Microwave Freeze-Drying Characteristics and Quality of Potato Chips. Dry. Technol. 2010, 28(6), 798–806. DOI: 10.1080/07373937.2010.482700.
  • Zhang, M.; De Baerdemaeker, J.; Schrevens, E. Effects of Different Varieties and Shelf Storage Conditions of Chicory on Deteriorative Color Changes Using Digital Image Processing and Analysis. Food Res. Int. 2003, 36(7), 669–676. DOI: 10.1016/S0963-9969(03)00015-2.
  • Curet, S.; Rouaud, O.; Boillereaux, L. Estimation of Dielectric Properties of Food Materials during Microwave Tempering and Heating. Food Bioprocess Technol. 2014, 7(2), 371–384. DOI: 10.1007/s11947-013-1061-4.
  • Menendez, J. A.; Arenillas, A.; Fidalgo, B.; Fernandez, Y.; Zubizarreta, L.; Calvo, E. G.; Bermudez, J. M. Microwave Heating Processes Involving Carbon Materials. Fuel Process. Technol. 2010, 91(1), 1–8. DOI: 10.1016/j.fuproc.2009.08.021.
  • Guo, Q. S.; Sun, D. W.; Cheng, J. H.; Han, Z. Microwave Processing Techniques and Their Recent Applications in the Food Industry. Trends Food Sci. Technol. 2017, 67, 236–247. DOI: 10.1016/j.tifs.2017.07.007.
  • Icier, F.; Baysal, T. Dielectrical Properties of Food Materials - 1: Factors Affecting and Industrial Uses. Crit. Rev. Food Sci. Nutri. 2004, 44(6), 465–471. DOI: 10.1080/10408690490886692.
  • Wu, G. C.; Zhang, M.; Wang, Y. Q.; Mothibe, K. J.; Chen, W. X. Production of Silver Carp Bone Powder Using Superfine Grinding Technology: Suitable Production Parameters and Its Properties. Food. Eng. 2012, 109(4), 730–735. DOI: 10.1016/j.jfoodeng.2011.11.013.
  • Abidin, Z. Z.; Omar, F. N.; Biak, D. R. A.; Man, Y. C. Alternative for Rapid Detection and Screening of Pork, Chicken, and Beef Using Dielectric Properties in the Frequency of 0.5 To 50 Ghz. Int. Food Prop. 2016, 19(5), 1127–1138. DOI: 10.1080/10942912.2015.1058274.
  • Basaran, P.; Basaran-Akgul, N.; Rasco, B. A. Dielectric Properties of Chicken and Fish Muscle Treated with Microbial Transglutaminase. Food Chem. 2010, 120(2), 361–370. DOI: 10.1016/j.foodchem.2009.09.050.
  • Klinbun, W.; Rattanadecho, P. An Investigation of the Dielectric and Thermal Properties of Frozen Foods over a Temperature From-18 to 80 Degrees C. Int. Food Prop. 2017, 20(2), 455–464. DOI: 10.1080/10942912.2016.1166129.
  • Basaran-Akgul, N.; Rasco, B. A. Effect of Marination in Gravy on the Radio Frequency and Microwave Processing Properties of Beef. Food Sci. Technol. 2015, 52(2), 867–875. DOI: 10.1007/s13197-013-1093-9.
  • Farag, K. W.; Lyng, J. G.; Morgan, D. J.; Cronin, D. A. Dielectric and Thermophysical Properties of Different Beef Meat Blends over a Temperature Range Of-18 To+10 Degrees C. Meat Sci. 2008, 79(4), 740–747. DOI: 10.1016/j.meatsci.2007.11.005.
  • Zhang, L.; Lyng, J. G.; Brunton, N.; Morgan, D.; McKenna, B. Dielectric and Thermophysical Properties of Meat Batters over a Temperature Range of 5-85 Degrees C. Meat Sci. 2004, 68(2), 173–184. DOI: 10.1016/j.meatsci.2004.02.009.
  • Mudgett, R. E.; Goldblith, S. A.; Wang, D. I. C.; Westphal, W. B. Prediction of Dielectric Properties in Solid Foods of High Moisture Content at Ultrahigh and Microwave Frequencies. Food Process. Pres. 1977, 1(2), 119–151. DOI: 10.1111/j.1745-4549.1977.tb00319.x.
  • Basaran-Akgul, N.; Rasco, B. A. Effect of Marination in Gravy on the Radio Frequency and Microwave Processing Properties of Beef. Food Sci. Technol-Mysore. 2015, 52(2), 867–875. DOI: 10.1007/s13197-013-1093-9.
  • Altemimi, A.; Aziz, S. N.; Al-Hilphy, A. R. S.; Lakhssassi, N.; Watson, D. G.; Ibrahim, S. A. Critical Review of Radio-Frequency (Rf) Heating Applications in Food Processing. Food Qual. Saf. 2019, 3(2), 81–91. DOI: 10.1093/fqsafe/fyz002.
  • Zell, M.; Lyng, J. G.; Cronin, D. A.; Morgan, D. J. Ohmic Cooking of Whole Beef Muscle - Evaluation of the Impact of a Novel Rapid Ohmic Cooking Method on Product Quality. Meat Sci. 2010, 86(2), 258–263. DOI: 10.1016/j.meatsci.2010.04.007.
  • Gavahian, M.; Tiwari, B. K.; Chu, Y. H.; Ting, Y. W.; Farahnaky, A. Food Texture as Affected by Ohmic Heating: Mechanisms Involved, Recent Findings, Benefits, and Limitations. Trends Food Sci. Technol. 2019, 86, 328–339. DOI: 10.1016/j.tifs.2019.02.022.
  • Varghese, K. S.; Pandey, M. C.; Radhakrishna, K.; Bawa, A. S. Technology, Applications and Modelling of Ohmic Heating: A Review. Food Sci. Technol-Mysore. 2014, 51(10), 2304–2317. DOI: 10.1007/s13197-012-0710-3.
  • Zell, M.; Lyng, J. G.; Cronin, D. A.; Morgan, D. J. Ohmic Heating of Meats: Electrical Conductivities of Whole Meats and Processed Meat Ingredients. Meat Sci. 2009, 83(3), 563–570. DOI: 10.1016/j.meatsci.2009.07.005.
  • Zell, M.; Lyng, J. G.; Morgan, D. J.; Cronin, D. A. Development of Rapid Response Thermocouple Probes for Use in a Batch Ohmic Heating System. Food. Eng. 2009, 93(3), 344–347. DOI: 10.1016/j.jfoodeng.2009.01.039.
  • Huang, L. L.; Zhang, M. Trends in Development of Dried Vegetable Products as Snacks. Dry. Technol. 2012, 30(5), 448–461. DOI: 10.1080/07373937.2011.644648.
  • Cappato, L. P.; Ferreira, M. V. S.; Guimaraes, J. T.; Portela, J. B.; Costa, A. L. R.; Freitas, M. Q.; Cunha, R. L.; Oliveira, C. A. F.; Mercali, G. D.; Marzack, L. D. F.; et al. Ohmic Heating in Dairy Processing: Relevant Aspects for Safety and Quality. Trends Food Sci. Technol. 2017, 62, 104–112. DOI: 10.1016/j.tifs.2017.01.010.
  • Shirsat, N.; Lyng, J. G.; Brunton, N. P.; McKenna, B. Ohmic Processing: Electrical Conductivities of Pork Cuts. Meat Sci. 2004, 67(3), 507–514. DOI: 10.1016/j.meatsci.2003.12.003.
  • Llave, Y.; Udo, T.; Fukuoka, M.; Sakai, N. Ohmic Heating of Beef at 20 Khz and Analysis of Electrical Conductivity at Low and High Frequencies. Food. Eng. 2018, 228, 91–101. DOI: 10.1016/j.jfoodeng.2018.02.019.
  • Barba, F. J.; Parniakov, O.; Pereira, S. A.; Wiktor, A.; Grimi, N.; Boussetta, N.; Saraiva, J. A.; Raso, J.; Martin-Belloso, O.; Witrowa-Rajchert, D.; et al. Current Applications and New Opportunities for the Use of Pulsed Electric Fields in Food Science and Industry. Food Res. Int. 2015, 77, 773–798. DOI: 10.1016/j.foodres.2015.09.015.
  • Gudmundsson, M.; Hafsteinsson, H. 6 - Effect of High Intensity Electric Field Pulses on Solid Foods. In Emerg Technol. Food Process; Sun, D.-W., Ed.; Academic Press: London, 2005; pp 141–153.
  • Zimmermann, U.;. Electrical Breakdown, Electropermeabilization and Electrofusion. Rev. Physiol. Biochem. Pharmacol. 1986, 105, 176–256.
  • Chauhan, O. P.; Unni, L. E. 9 - Pulsed Electric Field (Pef) Processing of Foods and Its Combination with Electron Beam Processing. In Electron Beam Pasteurization and Complementary Food Processing Technologies; Pillai, S.D., Shayanfar, S., Eds.;  United Kingdom: Woodhead Publishing, 2015; pp 157–184. DOI:10.1533/9781782421085.2.157
  • Gomez, B.; Munekata, P. E. S.; Gavahian, M.; Barba, F. J.; Marti-Quijal, F. J.; Bolumar, T.; Campagnol, P. C. B.; Tomasevic, I.; Lorenzo, J. M. Application of Pulsed Electric Fields in Meat and Fish Processing Industries: An Overview. Food Res. Int. 2019, 123, 95–105. DOI: 10.1016/j.foodres.2019.04.047.
  • Bhat, Z. F.; Morton, J. D.; Mason, S. L.; Bekhit, A. E. A. Pulsed Electric Field Operates Enzymatically by Causing Early Activation of Calpains in Beef during Ageing. Meat Sci. 2019, 153, 144–151. DOI: 10.1016/j.meatsci.2019.03.018.
  • Chevalier, D.; Le Bail, A.; Ghoul, M. Effects of High Pressure Treatment (100-200 Mpa) at Low Temperature on Turbot (Scophthalmus Maximus) Muscle. Food Res. Int. 2001, 34(5), 425–429. DOI: 10.1016/S0963-9969(00)00187-3.
  • Bhat, Z. F.; Morton, J. D.; Mason, S. L.; Bekhit, A. E. A. Applied and Emerging Methods for Meat Tenderization: A Comparative Perspective. Compre. Rev. Food Sci. Food Safety. 2018, 17(4), 841–859. DOI: 10.1111/1541-4337.12356.
  • Koubaa, M.; Rosello-Soto, E.; Zlabur, J. S.; Jambrak, A. R.; Brncic, M.; Grimi, N.; Boussetta, N.; Barba, F. J. Current and New Insights in the Sustainable and Green Recovery of Nutritionally Valuable Compounds from Stevia Rebaudiana Bertoni. Agri Food Chem. 2015, 63(31), 6835–6846. DOI: 10.1021/acs.jafc.5b01994.
  • Cheng, X. F.; Zhang, M.; Xu, B. G.; Adhikari, B.; Sun, J. C. The Principles of Ultrasound and Its Application in Freezing Related Processes of Food Materials: A Review. Ultrason. Sonochem. 2015, 27, 576–585. DOI: 10.1016/j.ultsonch.2015.04.015.
  • Islam, M. N.; Zhang, M.; Adhikari, B.; Cheng, X. F.; Xu, B. G. The Effect of Ultrasound-Assisted Immersion Freezing on Selected Physicochemical Properties of Mushrooms. Int. Refrigeration-Revue Internationale Du Froid. 2014, 42, 121–133. DOI: 10.1016/j.ijrefrig.2014.02.012.
  • Carel, J. A.; Garcia-Perez, J. V.; Benedito, J.; Mulet, A. Food Process Innovation through New Technologies: Use of Ultrasound. Food. Eng. 2012, 110(2), 200–207. DOI: 10.1016/j.jfoodeng.2011.05.038.
  • O’Sullivan, J. J.; Park, M.; Beevers, J.; Greenwood, R. W.; Norton, I. T. Applications of Ultrasound for the Functional Modification of Proteins and Nanoemulsion Formation: A Review. Food Hydro. 2017, 71, 299–310. DOI: 10.1016/j.foodhyd.2016.12.037.
  • Ojha, K. S.; Mason, T. J.; O’Donnell, C. P.; Kerry, J. P.; Tiwari, B. K. Ultrasound Technology for Food Fermentation Applications. Ultrason. Sonochem. 2017, 34, 410–417. DOI: 10.1016/j.ultsonch.2016.06.001.
  • Tiwari, B. K.;. Ultrasound: A Clean, Green Extraction Technology. Trac-Trends Analytical Chem. 2015, 71, 100–109. DOI: 10.1016/j.trac.2015.04.013.
  • Barukcic, I.; Jakopovic, K. L.; Herceg, Z.; Karlovic, S.; Bozanic, R. Influence of High Intensity Ultrasound on Microbial Reduction, Physico-Chemical Characteristics and Fermentation of Sweet Whey. Innov. Food Sci. Emerg. Technol. 2015, 27, 94–101. DOI: 10.1016/j.ifset.2014.10.013.
  • Berlan, J.; Mason, T. J. Sonochemistry - from Research Laboratories to Industrial-Plants. Ultrason. 1992, 30(4), 203–212. DOI: 10.1016/0041-624x(92)90078-Z.
  • Ashokkumar, M.; Sunartio, D.; Kentish, S.; Mawson, R.; Simons, L.; Vilkhu, K.; Versteeg, C. Modification of Food Ingredients by Ultrasound to Improve Functionality: A Preliminary Study on A Model System. Innov. Food Sci. Emerg Technol. 2008, 9(2), 155–160. DOI: 10.1016/j.ifset.2007.05.005.
  • Carrillo-Lopez, L. M.; Luna-Rodriguez, L.; Alarcon-Rojo, A. D.; Huerta-Jimenez, M. High Intensity Ultrasound Homogenizes and Improves Quality of Beef Longissimus Dorsi. Food Sci. Technol. 2019, 39(suppl 1), 332–340. DOI: 10.1590/fst.05218.
  • Alarcon-Rojo, A. D.; Carrillo-Lopez, L. M.; Reyes-Villagrana, R.; Huerta-Jimenez, M.; Garcia-Galicia, I. A. Ultrasound and Meat Quality: A Review. Ultrason. Sonochem. 2019, 55, 369–382. DOI: 10.1016/j.ultsonch.2018.09.016.
  • Kang, D. C.; Gao, X. Q.; Ge, Q. F.; Zhou, G. H.; Zhang, W. G. Effects of Ultrasound on the Beef Structure and Water Distribution during Curing through Protein Degradation and Modification. Ultraso Sonochem. 2017, 38, 317–325. DOI: 10.1016/j.ultsonch.2017.03.026.
  • Ozuna, C.; Puig, A.; Garcia-Perez, J. V.; Mulet, A.; Carcel, J. A. Influence of High Intensity Ultrasound Application on Mass Transport, Microstructure and Textural Properties of Pork Meat (Longissimus Dorsi) Brined at Different Nacl Concentrations. Food. Eng. 2013, 119(1), 84–93. DOI: 10.1016/j.jfoodeng.2013.05.016.
  • Guyon, C.; Meynier, A.; De Lamballerie, M. Protein and Lipid Oxidation in Meat: A Review with Emphasis on High-pressure Treatments. Trends Food Sci. Technol. 2016, 50, 131–143. DOI: 10.1016/j.tifs.2016.01.026.
  • Hugas, M.; Garriga, M.; Monfort, J. M. New Mild Technologies in Meat Processing: High Pressure as a Model Technology. Meat Sci. 2002, 62(3), 359–371. DOI: 10.1016/S0309-1740(02)00122-5.
  • Zacconi, C.; Giosue, S.; Marudelli, M.; Scolari, G. Microbiological Quality and Safety of Smoothies Treated in Different Pressure-Temperature Domains: Effects on Indigenous Fruit Microbiota and Listeria Monocytogenes and Their Survival during Storage. Eur. Food Res. Technol. 2015, 241(3), 317–328. DOI: 10.1007/s00217-015-2460-8.
  • Bak, K. H.; Bolumar, T.; Karlsson, A. H.; Lindahl, G.; Orlien, V. Effect of High Pressure Treatment on the Color of Fresh and Processed Meats: A Review. Crit. Rev. Food Sci. Nutri. 2019, 59(2), 228–252. DOI: 10.1080/10408398.2017.1363712.
  • Martinez-Monteagudo, S. I.; Saldana, M. D. A.; Torres, J. A.; Kennelly, J. J. Effect of Pressure-Assisted Thermal Sterilization on Conjugated Linoleic Acid (Cla) Content in Cla-Enriched Milk. Innov. Food Sci. Emerg. Technol. 2012, 16, 291–297. DOI: 10.1016/j.ifset.2012.07.004.
  • Toldra, F.; Flores, M. The Role of Muscle Proteases and Lipases in Flavor Development during the Processing of Dry-Cured Ham. Crit. Rev. Food Sci. Nutri. 1998, 38(4), 331–352. DOI: 10.1080/10408699891274237.
  • Estevez, M.;. Protein Carbonyls in Meat Systems: A Review. Meat Sci. 2011, 89(3), 259–279. DOI: 10.1016/j.meatsci.2011.04.025.
  • Dominguez, R.; Gomez, M.; Fonseca, S.; Lorenzo, J. M. Effect of Different Cooking Methods on Lipid Oxidation and Formation of Volatile Compounds in Foal Meat. Meat Sci. 2014, 97(2), 223–230. DOI: 10.1016/j.meatsci.2014.01.023.
  • Aaslyng, M. D.; Meinert, L. Meat Flavour in Pork and Beef - from Animal to Meal. Meat Sci. 2017, 132, 112–117. DOI: 10.1016/j.meatsci.2017.04.012.
  • Dominguez, R.; Borrajo, P.; Lorenzo, J. M. The Effect of Cooking Methods on Nutritional Value of Foal Meat. Food Comp. Analysis. 2015, 43, 61–67. DOI: 10.1016/j.jfca.2015.04.007.
  • Soladoye, O. P.; Shand, P.; Dugan, M. E. R.; Gariepy, C.; Aalhus, J. L.; Estevez, M.; Juarez, M. Influence of Cooking Methods and Storage Time on Lipid and Protein Oxidation and Heterocyclic Aromatic Amines Production in Bacon. Food Res. Int. 2017, 99, 660–669. DOI: 10.1016/j.foodres.2017.06.029.
  • Song, S. Q.; Zhang, X. M.; Hayat, K.; Liu, P.; Jia, C. S.; Xia, S. Q.; Xiao, Z. B.; Tian, H. X.; Niu, Y. W. Formation of the Beef Flavour Precursors and Their Correlation with Chemical Parameters during the Controlled Thermal Oxidation of Tallow. Food Chem. 2011, 124(1), 203–209. DOI: 10.1016/j.foodchem.2010.06.010.
  • Wu, W. H.; Rule, D. C.; Busboom, J. R.; Field, R. A.; Ray, B. Starter Culture and Time Temperature of Storage Influences on Quality of Fermented Mutton Sausage. Food Sci. 1991, 56(4), 916–918. DOI: 10.1111/j.1365-2621.1991.tb14605.x.
  • Lorenzo, J. M.; Dominguez, R. Cooking Losses, Lipid Oxidation and Formation of Volatile Compounds in Foal Meat as Affected by Cooking Procedure. Flavour Fragrance. 2014, 29(4), 240–248. DOI: 10.1002/ffj.3201.
  • Mottram, D. S.;. Flavour Formation in Meat and Meat Products: A Review. Food Chem. 1998, 62(4), 415–424. DOI: 10.1016/S0308-8146(98)00076-4.
  • Broncano, J. M.; Petron, M. J.; Parra, V.; Timon, M. L. Effect of Different Cooking Methods on Lipid Oxidation and Formation of Free Cholesterol Oxidation Products (Cops) in Latissimus Dorsi Muscle of Iberian Pigs. Meat Sci. 2009, 83(3), 431–437. DOI: 10.1016/j.meatsci.2009.06.021.
  • Choi, Y. S.; Hwang, K. E.; Jeong, T. J.; Kim, Y. B.; Jeon, K. H.; Kim, E. M.; Sung, J. M.; Kim, H. W.; Kim, C. J. Comparative Study on the Effects of Boiling, Steaming, Grilling, Microwaving and Superheated Steaming on Quality Characteristics of Marinated Chicken Steak. Korean Food Sci. Animal Resources. 2016, 36(1), 1–7. DOI: 10.5851/kosfa.2016.36.1.1.
  • Wang, J. Y.; Zhang, M.; Fan, K.; Yang, C. H.; Fang, Z. X. Effects of Reheating Methods on the Product Quality of Hongsu Chicken Dish. Food Process. Pres. 2018, 42(11). DOI: 10.1111/jfpp.13823.
  • Ozcan, A. U.; Bozkurt, H. Physical and Chemical Attributes of a Ready-to-Eat Meat Product during the Processing: Effects of Different Cooking Methods. Int. Food Prop. 2015, 18(11), 2422–2432. DOI: 10.1080/10942912.2014.982256.
  • Taskiran, M.; Olum, E.; Candogan, K. Changes in Chicken Meat Proteins during Microwave and Electric Oven Cooking. Food Process. Pres. 2020, 44(2). DOI: 10.1111/jfpp.14324.
  • Lorenzo, J. M.; Cittadini, A.; Munekata, P. E.; Dominguez, R. Physicochemical Properties of Foal Meat as Affected by Cooking Methods. Meat Sci. 2015, 108, 50–54. DOI: 10.1016/j.meatsci.2015.05.021.
  • Wang, X. W.; Wang, X. J.; Muhoza, B.; Feng, T. T.; Xia, S. Q.; Zhang, X. M. Microwave Combined with Conduction Heating Effects on the Tenderness, Water Distribution, and Microstructure of Pork Belly. Innov Food Sci. Emerg. Technol. 2020, 62. DOI: 10.1016/j.ifset.2020.102344.
  • Tian, X. J.; Wu, W.; Yu, Q. Q.; Hou, M.; Jia, F.; Li, X. M.; Dai, R. T. Quality and Proteome Changes of Beef M.Longissimus Dorsi Cooked Using a Water Bath and Ohmic Heating Process. Innov. Food Sci. Emerg. Technol. 2016, 34, 259–266. DOI: 10.1016/j.ifset.2016.02.013.
  • Sengun, I. Y.; Turp, G. Y.; Icier, F.; Kendirci, P.; Kor, G. Effects of Ohmic Heating for Pre-Cooking of Meatballs on Some Quality and Safety Attributes. LWT-Food Sci. Technol. 2014, 55(1), 232–239. DOI: 10.1016/j.lwt.2013.08.005.
  • Turp, G. Y.; Icier, F.; Kor, G. Influence of Infrared Final Cooking on Color, Texture and Cooking Characteristics of Ohmically Pre-Cooked Meatball. Meat Sci. 2016, 114, 46–53. DOI: 10.1016/j.meatsci.2015.12.006.
  • Ozcan, A. U.; Maskan, M.; Bedir, M.; Bozkurt, H. Effect of Ohmic Cooking Followed by an Infrared Cooking Method on Lipid Oxidation and Formation of Polycylic Aromatic Hydrocarbons (Pah) of Beef Muscle. Grasas Y Aceites. 2018, 69(4). DOI: 10.3989/gya.0101181.
  • Li, K.; Kang, Z. L.; Zou, Y. F.; Xu, X. L.; Zhou, G. H. Effect of Ultrasound Treatment on Functional Properties of Reduced-Salt Chicken Breast Meat Batter. Food Sci. Technol-Mysore. 2015, 52(5), 2622–2633. DOI: 10.1007/s13197-014-1356-0.
  • Contreras, M.; Benedito, J.; Bon, J.; Garcia-Perez, J. V. Accelerated Mild Heating of Dry-Cured Ham by Applying Power Ultrasound in a Liquid Medium. Innov. Food Sci. Emerg. Technol. 2018, 50, 94–101. DOI: 10.1016/j.ifset.2018.10.010.
  • Zou, Y. H.; Kang, D. C.; Liu, R.; Qi, J.; Zhou, G. H.; Zhang, W. G. Effects of Ultrasonic Assisted Cooking on the Chemical Profiles of Taste and Flavor of Spiced Beef. Ultrason. Sonochem. 2018, 46, 36–45. DOI: 10.1016/j.ultsonch.2018.04.005.
  • Engchuan, W.; Jittanit, W.; Garnjanagoonchorn, W. The Ohmic Heating of Meat Ball: Modeling and Quality Determination. Innov. Food Sci. Emerg.Technol. 2014, 23, 121–130. DOI: 10.1016/j.ifset.2014.02.014.
  • Dai, Y.; Chang, H. J.; Cao, S. X.; Liu, D. Y.; Xu, X. L.; Zhou, G. H. Nonvolatile Taste Compounds in Cooked Chinese Nanjing Duck Meat following Postproduction Heat Treatment. Food Sci. 2011, 76(5), C674–C679. DOI: 10.1111/j.1750-3841.2011.02162.x.
  • Alahakoon, A. U.; Oey, I.; Silcock, P.; Bremer, P. Understanding the Effect of Pulsed Electric Fields on Thermostability of Connective Tissue Isolated from Beef Pectoralis Muscle Using a Model System. Food Res. Int. 2017, 100, 261–267. DOI: 10.1016/j.foodres.2017.08.025.
  • Alahakoon, A. U.; Faridnia, F.; Bremer, P. J.; Silcock, P.; Oey, I. Pulsed Electric Fields Effects on Meat Tissue Quality and Functionality. Switzerland: Handbook of Electroporation. D. Miklavcic. Springer International Publishing. 2016. 1–21. DOI: 10.1007/978-3-319-26779-1_179-1
  • Min, S.; Evrendilek, G. A.; Zhang, H. Q. Pulsed Electric Fields: Processing System, Microbial and Enzyme Inhibition, and Shelf Life Extension of Foods. IEEE Trans Plasma Sci. 2007, 35(1), 59–73. DOI: 10.1109/Tps.2006.889290.
  • Alahakoon, A. U.; Oey, I.; Bremer, P.; Silcock, P. Optimisation of Sous Vide Processing Parameters for Pulsed Electric Fields Treated Beef Briskets. Food Bioprocess Technol. 2018, 11(11), 2055–2066. DOI: 10.1007/s11947-018-2155-9.
  • Arroyo, C.; Eslami, S.; Brunton, N. P.; Arimi, J. M.; Noci, F.; Lyng, J. G. An Assessment of the Impact of Pulsed Electric Fields Processing Factors on Oxidation, Color, Texture, and Sensory Attributes of Turkey Breast Meat. Poult. Sci. 2015, 94(5), 1088–1095. DOI: 10.3382/ps/pev097.
  • Bekhit, A. E. A.; Van De Ven, R.; Suwandy, V.; Fahri, F.; Hopkins, D. L. Effect of Pulsed Electric Field Treatment on Cold-Boned Muscles of Different Potential Tenderness. Food Bioprocess Technol. 2014, 7(11), 3136–3146. DOI: 10.1007/s11947-014-1324-8.
  • Bekhit, A. E. D. A.; Suwandy, V.; Carne, A.; Van De Ven, R. V.; Hopkins, D. L. Effect of Repeated Pulsed Electric Field Treatment on the Quality of Hot-Boned Beef Loins and Topsides. Meat Sci. 2016, 111, 139–146. DOI: 10.1016/j.meatsci.2015.09.001.
  • Khan, A. A.; Randhawa, M. A.; Carne, A.; Ahmed, I. A. M.; Barr, D.; Reid, M.; Bekhit, A. E. A. Quality and Nutritional Minerals in Chicken Breast Muscle Treated with Low and High Pulsed Electric Fields. Food Bioprocess Technol. 2018, 11(1), 122–131. DOI: 10.1007/s11947-017-1997-x.
  • Gudmundsson, M.; Hafsteinsson, H. Effect of Electric Field Pulses on Microstructure of Muscle Foods and Roes. Trends Food Sci. Technol. 2001, 12(3–4), 122–128. DOI: 10.1016/S0924-2244(01)00068-1.
  • Blahovec, J.; Vorobiev, E.; Lebovka, N. Pulsed Electric Fields Pretreatments for the Cooking of Foods. Food Eng. Rev. 2017, 9(3), 226–236. DOI: 10.1007/s12393-017-9170-x.
  • Suwandy, V.; Carne, A.; Van De Ven, R.; Bekhit, A. E. A.; Hopkins, D. L. Effect of Pulsed Electric Field Treatment on the Eating and Keeping Qualities of Cold-Boned Beef Loins: Impact of Initial Ph and Fibre Orientation. Food Bioprocess Technol. 2015, 8(6), 1355–1365. DOI: 10.1007/s11947-015-1498-8.
  • Kantono, K.; Hamid, N.; Oey, I.; Wang, S.; Xu, Y.; Ma, Q. L.; Faridnia, F.; Farouk, M. Physicochemical and Sensory Properties of Beef Muscles after Pulsed Electric Field Processing. Food Res. Int. 2019, 121, 1–11. DOI: 10.1016/j.foodres.2019.03.020.
  • Ventanas, S.; Mustonen, S.; Puolanne, E.; Tuorila, H. Odour and Flavour Perception in Flavoured Model Systems: Influence of Sodium Chloride, Umami Compounds and Serving Temperature. Food Qual Prefer. 2010, 21(5), 453–462. DOI: 10.1016/j.foodqual.2009.11.003.
  • Amiri, A.; Sharifian, P.; Soltanizadeh, N. Application of Ultrasound Treatment for Improving the Physicochemical, Functional and Rheological Properties of Myofibrillar Proteins. Int. Biol Macromol. 2018, 111, 139–147. DOI: 10.1016/j.ijbiomac.2017.12.167.
  • Krasulya, O.; Tsirulnichenko, L.; Potoroko, I.; Bogush, V.; Novikova, Z.; Sergeev, A.; Kuznetsova, T.; Anandan, S. The Study of Changes in Raw Meat Salting Using Acoustically Activated Brine. Ultrason. Sonochem. 2019, 50, 224–229. DOI: 10.1016/j.ultsonch.2018.09.024.
  • Kang, D. C.; Wang, A. R.; Zhou, G. H.; Zhang, W. G.; Xu, S. M.; Guo, G. P. Power Ultrasonic on Mass Transport of Beef: Effects of Ultrasound Intensity and Nacl Concentration. Innov. Food Sci. Emerg. Technol. 2016, 35, 36–44. DOI: 10.1016/j.ifset.2016.03.009.
  • Li, X.; Wang, Y.; Sun, Y. Y.; Pan, D. D.; Cao, J. X. The Effect of Ultrasound Treatments on the Tenderizing Pathway of Goose Meat during Conditioning. Poult. Sci. 2018, 97(8), 2957–2965. DOI: 10.3382/ps/pey143.
  • Pena-Gonzalez, E. M.; Alarcon-Rojo, A. D.; Renteria, A.; Garcia, I.; Santellano, E.; Quintero, A.; Luna, L. Quality and Sensory Profile of Ultrasound-Treated Beef. Ital Food Sci. 2017, 29(3), 463–475.
  • Kang, D. C.; Zou, Y. H.; Cheng, Y. P.; Xing, L. J.; Zhou, G. H.; Zhang, W. G. Effects of Power Ultrasound on Oxidation and Structure of Beef Proteins during Curing Processing. Ultrason. Sonochem. 2016, 33, 47–53. DOI: 10.1016/j.ultsonch.2016.04.024.
  • Saleem, R.; Ahmad, R. Effect of Ultrasonication on Secondary Structure and Heat Induced Gelation of Chicken Myofibrils. Food Sci. Technol-Mysore. 2016, 53(8), 3340–3348. DOI: 10.1007/s13197-016-2311-z.
  • Leal-Ramos, M. Y.; Alarcon-Rojo, A. D.; Mason, T. J.; Paniwnyk, L.; Alarjah, M. Ultrasound-Enhanced Mass Transfer in Halal Compared with Non-Halal Chicken. Sci. Food Agri. 2011, 91(1), 130–133. DOI: 10.1002/jsfa.4162.
  • Contreras-Lopez, G.; Carnero-Hernandez, A.; Huerta-Jimenez, M.; Alarcon-Rojo, A. D.; Garcia-Galicia, I.; Carrillo-Lopez, L. M. High-Intensity Ultrasound Applied on Cured Pork: Sensory and Physicochemical Characteristics. Food Sci. Nutri. 2020, 8(2), 786–795. DOI: 10.1002/fsn3.1321.
  • Reyes-Villagrana, R. A.; Huerta-Jimenez, M.; Salas-Carrazco, J. L.; Carrillo-Lopez, L. M.; Alarcon-Rojo, A. D.; Sanchez-Vega, R.; Garcia-Galicia, I. A. High-Intensity Ultrasonication of Rabbit Carcases: A First Glance into A Small-Scale Model to Improve Meat Quality Traits. Italian Animal Sci. 2020, 19(1), 544–550. DOI: 10.1080/1828051x.2020.1763212.
  • Kim, Y. A.; Ba, H. V.; Dashdorj, D.; Hwang, I. Effect of High-Pressure Processing on the Quality Characteristics and Shelf-Life Stability of Hanwoo Beef Marinated with Various Sauces. Korean Food Sci Anim Resour. 2018, 38(4), 679–692. DOI: 10.5851/kosfa.2018.e4.
  • Clariana, M.; Guerrero, L.; Sarraga, C.; Diaz, I.; Valero, A.; Garcia-Regueiro, J. A. Influence of High Pressure Application on the Nutritional, Sensory and Microbiological Characteristics of Sliced Vacuum Packed Dry-Cured Ham. Effects along the Storage Period. Innov. Food Sci. Emerg. Technol. 2011, 12(4), 456–465. DOI: 10.1016/j.ifset.2010.12.008.
  • Yang, Y.; Sun, Y. Y.; Pan, D. D.; Wang, Y.; Cao, J. X. Effects of High Pressure Treatment on Lipolysis-Oxidation and Volatiles of Marinated Pork Meat in Soy Sauce. Meat Sci. 2018, 145, 186–194. DOI: 10.1016/j.meatsci.2018.06.036.
  • Lopez-Pedrouso, M.; Perez-Santaescolastica, C.; Franco, D.; Carballo, J.; Zapata, C.; Lorenzo, J. M. Molecular Insight into Taste and Aroma of Sliced Dry-Cured Ham Induced by Protein Degradation Undergone High-Pressure Conditions. Food Res. Int. 2019, 122, 635–642. DOI: 10.1016/j.foodres.2019.01.037.
  • Orel, R.; Tabilo-Munizaga, G.; Cepero-Betancourt, Y.; Reyes-Parra, J. E.; Badillo-Ortiz, A.; Perez-Won, M. Effects of High Hydrostatic Pressure Processing and Sodium Reduction on Physicochemical Properties, Sensory Quality, and Microbiological Shelf Life of Ready-to-Eat Chicken Breasts. LWT-Food Sci. Technol. 2020, 127. DOI: 10.1016/j.lwt.2020.109352.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.