346
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Probiotic and Potentially Probiotic Bacteria with Hypocholesterolemic Properties

ORCID Icon, & ORCID Icon

References

  • WHO (World Health Organization) Cardiovascular Diseases (CVDs). WHO, Geneva, Switzerland. 2017. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (Accessed Feb 14, 2020).
  • Intestinal Probiotics:, L. G.;. Interactions with Bile Salts and Reduction of Cholesterol. Procedia. Environ. Sci. 2012, 12, 1180–1186. DOI: 10.1016/j.proenv.2012.01.405.
  • Manson, J. E.; Tosteson, H.; Ridker, P. M.; Sattereld, S.; Herbert, P.; O’Conner, G. T. The Primary Prevention of Myocardial Infarction. N. Engl. J. Med. 1992, 326(21), 1406–1416. DOI: 10.1056/NEJM199205213262107.
  • Lin, C. J.; Lai, C. K.; Kao, M. C.; Wu, L. T.; Lo, U. G.; Lin, L. C.; Chen, Y. A.; Lin, H.; Hsieh, J. T.; Lai, C. H.;, et al. Impact of Cholesterol on Disease Progression. BioMed 2015, 5, 2. DOI: 10.7603/s40681-015-0007-8.
  • Aboseidah, A. A.; Rasmey, A. H. M.; Osman, M. M.; Desouky, S. G.; Kamal, N. Cholesterol Reduction in Vitro by Novel Probiotic Lactic Acid Bacterial Strains of Enterococcus Isolated from Healthy Infants’ Stool. Afr. J. Microbiol. Res. 2017, 11(38), 1434–1444. DOI: 10.5897/ajmr2017.8580.
  • Albano, C.; Morandi, S.; Silvetti, T.; Casiraghi, M. C.; Manini, F.; Brasca, M. Lactic Acid Bacteria with Cholesterol-Lowering Properties for Dairy Applications: In Vitro and in Situ Activity. J. Dairy Sci. 2018, 101(12), 10807–10818. DOI: 10.3168/jds.2018-15096.
  • Ding, W.; Shi, C.; Chen, M.; Zhou, J.; Long, R.; Guo, X. Screening for Lactic Acid Bacteria in Traditional Fermented Tibetan Yak Milk and Evaluating Their Probiotic and Cholesterol-Lowering Potentials in Rats Fed a High-Cholesterol Diet. J. Funct. Foods. 2017, 32, 324–332. DOI: 10.1016/j.jff.2017.03.021.
  • Prakash, S.; Tomaro-Duchesneau, C.; Saha, S.; Cantor, A. The Gut Microbiota and Human Health with an Emphasis on the Use of Microencapsulated Bacterial Cells. BioMed. Res. Int. 2011, 981214. DOI: 10.1155/2011/981214.
  • Ijaz, M. U.; Ahmed, M. I.; Zou, X.; Hussain, M.; Zhang, M.; Zhao, F.; Xu, X.; Zhou, G.; Beef, L. C. Casein, and Soy Proteins Differentially Affect Lipid Metabolism, Triglycerides Accumulation and Gut Microbiota of High-Fat Diet-Fed C57BL/6J Mice. Front. Microbiol. 2018, 9, 2200. DOI: 10.3389/fmicb.2018.02200.
  • Kubeck, R.; Bonet-Ripoll, C.; Hoffmann, C.; Walker, A.; Muller, V. M.; Schuppel, V. L.; Lagkouvardos, I.; Scholz, B.; Engel, K. H.; Daniel, H.;, et al. Dietary Fat and Gut Microbiota Interactions Determine Diet-Induced Obesity in Mice. Mol. Metab. 2016, 5(12), 1162–1174. DOI: 10.1016/j.molmet.2016.10.001.
  • Gérard, P.;. Metabolism of Cholesterol and Bile Acids by the Gut Microbiota. Pathogens. 2014, 3(1), 14–24. DOI: 10.3390/pathogens3010014.
  • Lozupone, C. A.; Stombaugh, J. I.; Gordon, J. I.; Jansson, J. K.; Diversity, K. R. Stability and Resilience of the Human Gut Microbiota. Nature. 2012, 489(7415), 220–230. DOI: 10.1038/nature11550.
  • Reid, G.;. Probiotics: Definition, Scope and Mechanisms of Action. Best Pract. Res. Clin. Gastroenterol. 2016, 30(1), 17–25. DOI: 10.1016/j.bpg.2015.12.001.
  • Aminlari, L.; Shekarforoush, S. S.; Hosseinzadeh, S.; Nazifi, S.; Sajedianfard, J.; Eskandari, M. H. Effect of Probiotics Bacillus Coagulans and Lactobacillus Plantarum on Lipid Profile and Feces Bacteria of Rats Fed Cholesterol-Enriched Diet. Probiotics Antimicro. Proteins. 2019, 11(4), 1163–1171. DOI: 10.1007/s12602-018-9480-1.
  • Tsai, C. C.; Lin, P. P.; Hsieh, Y. M.; Zhang, Z. Y.; Wu, H. C.; Huang, C. C. Cholesterol-Lowering Potentials of Lactic Acid Bacteria Based on Bile-Salt Hydrolase Activity and Effect of Potent Strains on Cholesterol Metabolism in Vitro and in Vivo. Sci. World J. 2014, 690752. DOI: 10.1155/2014/690752.
  • Zhang, F.; Qiu, L.; Xu, X.; Liu, Z.; Zhan, H.; Tao, X.; Shah, N. P.; Beneficial, W. H. Effects of Probiotic Cholesterol-Lowering Strain of Enterococcus Faecium WEFA23 from Infants on Diet-Induced Metabolic Syndrome in Rats. J. Dairy Sci. 2017, 100(3), 1618–1628. DOI: 10.3168/jds.2016-11870.
  • Zhu, Y.; Li, T.; Din, A. U.; Hassan, A.; Wang, Y.; Wang, G. Beneficial Effects of Enterococcus Faecalis in Hypercholesterolemic Mice on Cholesterol Transportation and Gut Microbiota. Appl. Microbiol. Biotechnol. 2019, 103(7), 3181–3191. DOI: 10.1007/s00253-019-09681-7.
  • Huang, Y.; Zheng, Y. The Probiotic Lactobacillus Acidophilus Reduces Cholesterol Absorption through the Down-Regulation of Niemann-Pick C1-like 1 in Caco-2 Cells. Br. J. Nutr. 2010, 103(4), 473–478. DOI: 10.1017/S0007114509991991.
  • Kim, Y.; Whang, J. Y.; Whang, K. Y.; Oh, S.; Kim, S. H. Characterization of the Cholesterol-Reducing Activity in a Cell-Free Supernatant of Lactobacillus Acidophilus ATCC 43121. Biosci. Biotechn. Bioch. 2008, 0804300862. DOI: 10.1271/bbb.70802.
  • Lye, H.; Rusul, G.; Liong, M. Removal of Cholesterol by Lactobacilli via Incorporation and Conversion to Coprostanol. J. Dairy Sci. 2010, 93(4), 1383–1392. DOI: 10.3168/jds.2009-2574.
  • Lye, H. S.; Rusul, G.; Liong, M. T. Mechanisms of Cholesterol Removal by Lactobacilli under Conditions that Mimic the Human Gastrointestinal Tract. Int. Dairy J. 2010, 20(3), 169–175. DOI: 10.1016/j.idairyj.2009.10.003.
  • Song, M.; Park, S.; Lee, H.; Min, B.; Jung, S.; Kim, E.; Oh, S. Effect of Lactobacillus Acidophilus NS1 on Plasma Cholesterol Levels in Diet-Induced Obese Mice. J. Dairy Sci. 2015, 98(3), 1492–1501. DOI: 10.3168/jds.2014-8586.
  • Mahrous, H.; Shaalan, U. F.; Ibrahim, A. M. The Role of Some Probiotic Lactic Acid Bacteria in the Reduction of Cholesterol on Mice. Int. Res. J. Microbiol. 2011, 2(7), 242–248.
  • Iranmanesh, M.; Ezzatpanah, H.; Mojgani, N. Antibacterial Activity and Cholesterol Assimilation of Lactic Acid Bacteria Isolated from Traditional Iranian Dairy Products. LWT-Food Sci. Technol. 2014, 58(2), 355–359. DOI: 10.1016/j.lwt.2013.10.005.
  • Tok, E.; Aslim, B. Cholesterol Removal by Some Lactic Acid Bacteria that Can Be Used as Probiotic. Microbiol. Immunol. 2010, 54(5), 257–264. DOI: 10.1111/j.1348-0421.2010.00219.x.
  • Ahire, J. J.; Bhat, A. A.; Thakare, J. M.; Pawar, P. B.; Zope, D. G.; Jain, R. M.; Chaudhari, B. L. Cholesterol Assimilation and Biotransformation by Lactobacillus Helveticus. Biotechnol. Lett. 2012, 34(1), 103–107. DOI: 10.1007/s10529-011-0733-2.
  • Dehkohneh, A.; Jafari, P.; Fahimi, H. Effects of Probiotic Lactobacillus Paracasei TD3 on Moderation of Cholesterol Biosynthesis Pathway in Rats. Iran. J. Basic Med. Sci. 2019, 22(9), 1004. DOI: 10.22038/ijbms.2019.33933.8073.
  • Tomaro-Duchesneau, C.; Jones, M. L.; Shah, D.; Jain, P.; Saha, S.; Prakash, S. Cholesterol Assimilation by Lactobacillus Probiotic Bacteria: An in Vitro Investigation. BioMed. Res. Int. 2014, 2014, 1–9. DOI: 10.1155/2014/380316.
  • Ha, C. G.; Cho, J. K.; Lee, C. H.; Chai, Y. G.; Ha, Y.; Shin, S. H. Cholesterol Lowering Effect of Lactobacillus Plantarum Isolated from Human Feces. J. Microbiol. Biotechnol. 2006, 16(8), 1201–1209.
  • Huang, Y.; Wang, X.; Wang, J.; Wu, F.; Sui, Y.; Yang, L.; Wang, Z. Lactobacillus Plantarum Strains as Potential Probiotic Cultures with Cholesterol-Lowering Activity. J. Dairy Sci. 2013, 96(5), 2746–2753. DOI: 10.3168/jds.2012-6123.
  • Huang, Y.; Wu, F.; Wang, X.; Sui, Y.; Yang, L.; Wang, J. Characterization of Lactobacillus Plantarum Lp27 Isolated from Tibetan Kefir Grains: A Potential Probiotic Bacterium with Cholesterol-Lowering Effects. J. Dairy Sci. 2013, 96(5), 2816–2825. DOI: 10.3168/jds.2012-6371.
  • Liu, Y.; Zhao, F.; Liu, J.; Wang, H.; Han, X.; Zhang, Y.; Yang, Z. Selection of Cholesterol-Lowering Lactic Acid Bacteria and Its Effects on Rats Fed with High-Cholesterol Diet. Curr. Microbiol. 2017, 74(5), 623–631. DOI: 10.1007/s00284-017-1230-1.
  • Nogacka, A. M.; Salazar, N.; Arboleya, S.; Ruas-Madiedo, P.; Mancabelli, L.; Suarez, A.; Martinez-Faedo, C.; Ventura, M.; Tochio, T.; Hirano, K.;, et al. In Vitro Evaluation of Different Prebiotics on the Modulation of Gut Microbiota Composition and Function in Morbid Obese and Normal-Weight Subjects. Int. J. Mol. Sci. 2020, 21(3), 906. DOI: 10.3390/ijms21030906.
  • Shehata, M. G.; El-Sahn, M. A.; El Sohaimy, S. A.; Youssef, M. M. In Vitro Assessment of Hypocholesterolemic Activity of Lactococcus Lactis Subsp. Lactis. Bull. Natl. Res. Cent. 2019, 43(1), 60. DOI: 10.1186/s42269-019-0090-1.
  • Jitpakdee, J.; Kantachote, D.; Kanzaki, H.; Nitoda, T. Selected Probiotic Lactic Acid Bacteria Isolated from Fermented Foods for Functional Milk Production: Lower Cholesterol with More Beneficial Compounds. LWT-Food Sci. Technol. 2021, 135, 110061. DOI: 10.1016/j.lwt.2020.110061.
  • Lee, D. K.; Park, S. Y.; Jang, S.; Baek, E. H.; Kim, M. J.; Huh, S. M.; Choi, K. S.; Chung, M. J.; Kim, J. E.; Lee, K. O.;, et al. The Combination of Mixed Lactic Acid Bacteria and Dietary Fiber Lowers Serum Cholesterol Levels and Fecal Harmful Enzyme Activities in Rats. Arch. Pharm. Res. 2011, 34(1), 23–29. DOI: 10.1007/s12272-011-0102-7.
  • Liu, H.; Yang, C.; Jing, Y.; Li, Z.; Zhong, W.; Li, G. Ability of Lactic Acid Bacteria Isolated from Mink to Remove Cholesterol: In Vitro and in Vivo Studies. Can. J. Microbiol. 2013, 59(8), 563–569. DOI: 10.1139/cjm-2013-0200.
  • Moroti, C.; Souza Magri, L.; De Rezende Costa, M.; Cavallini, D. C.; Sivieri, K. Effect of the Consumption of a New Symbiotic Shake on Glycemia and Cholesterol Levels in Elderly People with Type 2 Diabetes Mellitus. Lipids Health Dis. 2012, 11(1), 29. DOI: 10.1186/1476-511x-11-2.
  • Lee, S.; Kim, M. Leuconostoc Mesenteroides MKSR Isolated from Kimchi Possesses α-glucosidase Inhibitory Activity, Antioxidant Activity, and Cholesterol-Lowering Effects. LWT-Food Sci. Technol. 2019, 116, 108570. DOI: 10.1016/j.lwt.2019.108570.
  • Hofmann, A. F.; Borgstrom, B. J. The Intraluminal Phase of Fate Digestion in Man: The Lipid Content of the Micellar and Oil Phases of Intestinal Content Obtained during Fat Digestion and Absorption. J. Clin. Invest. 1964, 43(2), 247–257. DOI: 10.1172/JCI104909.
  • Anandharaj, M.; Sivasankari, B.; Parveen, R. R. Effects of Probiotics, Prebiotics, and Synbiotics on Hypercholesterolemia: A Review. Chin. J. Biol. 2014, 2014, 1–7. DOI: 10.1155/2014/572754.
  • Grundy, S. M.;. Absorption and Metabolism of Dietary Cholesterol. Ann. Rev. Nutr. 1983, 3(1), 71–96. DOI: 10.1146/annurev.nu.03.070183.000443.
  • Öner, Ö.; Aslim, B.; Aydas, S. B. Mechanisms of Cholesterol-Lowering Effects of Lactobacilli and Bifidobacteria Strains as Potential Probiotics with Their Bsh Gene Analysis. J. Mol. Microb. Biotechnol. 2013, 24(1), 12–18. DOI: 10.1159/000354316.
  • Bhat, B.; Bajaj, B. K. Multifarious Cholesterol Lowering Potential of Lactic Acid Bacteria Equipped with Desired Probiotic Functional Attributes. 3 Biotech. 2020, 10(5), 200. DOI: 10.1007/s13205-020-02183-8.
  • Li, C.; Ji, Q.; Liu, Y.; Ma, Y. Characterization of a Recombinant Bile Salt Hydrolase (BSH) from Bifidobacterium Bifidum for Its Glycine-Conjugated Bile Salts Specificity. Biocatal. Biotransform. 2020, 1–10. DOI: 10.1080/10242422.2020.1804881.
  • Kazemian, N.; Mahmoudi, M.; Halperin, F.; Wu, J. C.; Pakpour, S. Gut Microbiota and Cardiovascular Disease: Opportunities and Challenges. Microbiome. 2020, 8, 36. DOI: 10.1186/s40168-020-00821-0.
  • Lim, P. S.; Loke, C. F.; Ho, Y. W.; Tan, H. Y. Cholesterol Homeostasis Associated with Probiotic Supplementation in Vivo. J. Appl. Microbiol. 2020, 129(5), 1374–1388. DOI: 10.1111/jam.14678.
  • Lichtenstein, A. H.;. Intestinal Cholesterol Metabolism. Ann. Med. 1990, 22(1), 49–52. DOI: 10.3109/07853899009147241.
  • Ooi, L. G.; Liong, M. T. Cholesterol-Lowering Effects of Probiotics and Prebiotics: A Review of in Vivo and in Vitro Findings. Int. J. Mol. Sci. 2010, 11(6), 2499–2522. DOI: 10.3390/ijms11062499.
  • Lv, C.; Tang, Y.; Wang, L.; Ji, W.; Chen, Y.; Yang, S.; Wang, W. Bioconversion of Yolk Cholesterol by Extracellular Cholesterol Oxidase from Brevibacterium Sp. Food Chem. 2002, 77(4), 457–463. DOI: 10.1016/S0308-8146(01)00381-8.
  • Kumar, M.; Nagpal, R.; Kumar, R.; Hemalatha, R.; Verma, V.; Kumar, A.; Chakraborty, C.; Singh, B.; Marotta, F.; Jain, S.;, et al. Cholesterol-Lowering Probiotics as Potential Biotherapeutics for Metabolic Diseases. J. Diabetes Res. 2012, 902–917. DOI: 10.1155/2012/902917.
  • Kimoto, H.; Ohmomo, S.; Okamoto, T. Cholesterol Removal from Media by Lactococci. J. Dairy Sci. 2002, 85(12), 3182–3188. DOI: 10.3168/jds.S0022-0302(02)74406-8.
  • Ramasamy, K.; Shafawi, Z. M.; Mani, V.; Wan, H. Y.; Majeed, A. B. A. Hypocholesterolaemic Effects of Probiotics. In: Complementary Therapies for the Contemporary Healthcare, Marcelo Saad and Roberta De Medeiros. IntechOpen. 2012. DOI: 10.5772/50785.
  • Kimoto-Nira, H.; Mizumachi, K.; Nomura, M.; Kobayashi, M.; Fujita, Y.; Okamoto, T.; Suzuki, I.; Tsuji, N. M.; Kurisaki, J.; Ohmomo, S. Lactococcus Sp. As Potential Probiotic Lactic Acid Bacteria. Jpn. Agr. Res. Q. 2007, 41(3), 181–189. DOI: 10.6090/jarq.41.181.
  • Yamasaki, M.; Minesaki, M.; Iwakiri, A.; Miyamoto, Y.; Ogawa, K.; Nishiyama, K.; Tsend-Ayush, A.; Oyunsuren, T.; Li, Y.; Nakano, T.;, et al. Lactobacillus Plantarum 06CC2 Reduces Hepatic Cholesterol Levels and Modulates Bile Acid Deconjugation in Balb/c Mice Fed a High-Cholesterol Diet. Food Sci. Nutr. 2020, 1–10. DOI: 10.1002/fsn3.1909.
  • Jia, L.; Betters, J. L.; Yu, L. Niemann-Pick C1-like 1 (NPC1L1) Protein in Intestinal and Hepatic Cholesterol Transport. Ann. Rev. Physiol. 2011, 73(1), 239–259. DOI: 10.1146/annurev-physiol-012110-142233.
  • Liang, X.; Zhang, Z.; Zhou, X.; Lu, Y.; Li, R.; Yu, Z.; Tong, L.; Gong, P.; Yi, H.; Liu, T.; et al. Probiotics Improved Hyperlipidemia in Mice Induced by High Cholesterol Diet via Downregulation FXR. Food Funct. 2020, 1–10. DOI: 10.1039/D0FO02255A.
  • Wang, Y.; Rogers, P.; Su, C.; Varga, G.; Stayrook, K. R.; Burris, T. P. Regulation of Cholesterologenesis by the Oxysterol Receptor, LXR Alpha. J. Biol. Chem. 2008, 283(39), 26332–26339. DOI: 10.1074/jbc.M804808200.
  • Yoon, H.; Ju, J.; Lee, J.; Park, H.; Lee, J. M.; Shin, H. K.; Holzapfel, W.; Park, H. Y.; Do, M. S. The Probiotic Lactobacillus Rhamnosus BFE5264 and Lactobacillus Plantarum NR74 promote Cholesterol Efflux and Suppress Inflammation in THP-1 Cells. J. Sci. Food Agric. 2013, 93(4), 781–787. DOI: 10.1002/jsfa.5797.
  • Wolever, T. M.; Fernandes, J.; Rao, A. V. Serum Acetate: Propionate Ratio Is Related to Serum Cholesterol in Men but Not Women. J. Nutr. 1996, 126(11), 2790–2797. DOI: 10.1093/jn/126.11.2790.
  • Marcil, V.; Delvin, E.; Garofalo, C.; Levy, E. Butyrate Impairs Lipid Transport by Inhibiting Microsomal Triglyceride Transfer Protein in Caco-2 Cells. J. Nutr. 2003, 133(7), 2180–2183. DOI: 10.1093/jn/133.7.2180.
  • Valcheva, R.; Dieleman, L. A. Prebiotics: Definition and Protective Mechanisms. Best Prac. Res. Clin. Gastroenterol. 2016, 30(1), 27–37. DOI: 10.1016/j.bpg.2016.02.008.
  • Levrat, M. A.; Favier, M. L.; Moundras, C.; Remesy, C.; Demigne, C.; Morand, C. Role of Dietary Propionic Acid and Bile Acid Excretion in the Hypocholesterolemic Effects of Oligosaccharides in Rats. J. Nutr. 1994, 124(4), 531–538. DOI: 10.1093/jn/124.4.531.
  • Yang, J.; Martínez, I.; Walter, J.; Keshavarzian, A.; Rose, D. J. In Vitro Characterization of the Impact of Selected Dietary Fibers on Fecal Microbiota Composition and Short Chain Fatty Acid Production. Anaerobes. 2013, 23, 74e81. DOI: 10.1016/j.anaerobe.2013.06.012.
  • Regalado-Rentería, E.; Aguirre-Rivera, J. R.; Godínez-Hernández, C. I.; García-López, J. C.; Oros-Ovalle, A. C.; Martínez-Gutiérrez, F.; Martinez-Martinez, M.; Ratering, S.; Schnell, S.; Ruíz-Cabrera, M. A.; et al. Effects of Agave Fructans, Inulin, and Starch on Metabolic Syndrome Aspects in Healthy Wistar Rats. ACS Omega. 2020, 19(19), 10740–10749. DOI: 10.1021/acsomega.0c00272.
  • Baek, Y. J.; Lee, B. H. Probiotics and Prebiotics as Bioactive Components in Dairy Products. In Bioactive Components in Milk and Dairy Products; Park, Y.W., Ed.; Wiley-Blackwell: New York, 2009; pp 440. DOI: 10.1002/9780813821504.ch12.
  • Liong, M. T.; Shah, N. P. Effects of a Lactobacillus Casei Synbiotic on Serum Lipoprotein, Intestinal Microflora, and Organic Acids in Rats. J. Dairy Sci. 2006, 89(5), 1390–1399. DOI: 10.3168/jds.S0022-0302(06)72207-X.
  • Schaafsma, G.; Meuling, W. J. A.; Van Dokkum, W.; Bouley, C. Effects of a Milk Product, Fermented by Lactobacillus Acidophilus and with Fructo-Oligosaccharides Added, on Blood Lipids in Male Volunteers. Eur. J. Clin. Nutr. 1998, 52(6), 436–440. DOI: 10.1038/sj.ejcn.1600583.
  • Causey, J. L.; Feirtag, J. M.; Gallaher, D. D.; Tungland, B. C.; Slavin, J. L. Effects of Dietary Inulin on Serum Lipids, Blood Glucose and the Gastrointestinal Environment in Hypercholesterolemic Men. Nutr. Res. 2000, 20(2), 191–201. DOI: 10.1016/S0271-5317(99)00152-9.
  • Favier, M. L.; Moundras, C.; Demigné, C.; Rémésy, C. Fermentable Carbohydrates Exert a More Potent Cholesterol-Lowering Effect than Cholestyramine. Biochim. Biophys. Acta, Lipids Lipid Metab. 1995, 1258(2), 115–121. DOI: 10.1016/0005-2760(95)00107-n.
  • Fernandez, M. L.; Roy, S.; Vergara-Jimenez, M. Resistant Starch and Cholestyramine Have Distinct Effects on Hepatic Cholesterol Metabolism in Guinea Pigs Fed a Hypercholesterolemic Diet. Nutr. Res. 2000, 20(6), 837–849. DOI: 10.1016/S0271-5317(00)00170-6.
  • Mortensen, A.; Poulsen, M.; Frandsen, H. Effect of a Long-Chained Fructan Raftiline HP on Blood Lipids and Spontaneous Atherosclerosis in Low Density Receptor Knockout Mice. Nutr. Res. 2002, 22(4), 473–480. DOI: 10.1016/S0271-5317(02)00358-5.
  • Firmansyah, A.; Chongviriyaphan, N.; Dillon, D. H.; Khan, N. C.; Morita, T.; Tontisirin, K.; Tuyen, L. D.; Wang, W.; Bindels, J.; Deurenberg, P.;, et al. Fructans in the First 1000 Days of Life and Beyond, and for Pregnancy. Asia Pac. J. Clin. Nutr.2016, 25(4), 652–675. DOI: 10.6133/apjcn.092016.02.
  • Van Arkel, J.; Vergauwen, R.; Sévenier, R.; Hakkert, J. C.; Van Laere, A.; Bouwmeester, H. J.; Koops, A. J.; Van Der Meer, I. M. Sink Filling, Inulin Metabolizing Enzymes and Carbohydrate Status in Field Grown Chicory (Cichorium Intybus L.). J. Plant Physiol. 2012, 169(15), 1520–1529. DOI: 10.1016/j.jplph.2012.06.005.
  • Boets, E.; Deroover, L.; Houben, E.; Vermeulen, K.; Gomand, S. V.; Delcour, J. A.; Verbeke, K. Quantification of in Vivo Colonic Short Chain Fatty Acid Production from Inulin. Nutrients. 2015, 7(11), 8916–8929. DOI: 10.3390/nu7115440.
  • Yang, J.; Zhang, S.; Henning, S. M.; Lee, R.; Hsu, M.; Grojean, E.; Pisegna, R.; Ly, A.; Heber, D.; Li, L. Z. Cholesterol-lowering Effects of Dietary Pomegranate Extract and Inulin in Mice Fed an Obesogenic Diet. J. Nutr. Biochem. 2018, 52, 62–69. DOI: 10.1016/j.jnutbio.2017.10.003.
  • Melanie, H.; Susilowati, A.; Maryati, Y. Fermented Inulin Hydrolysate by Bifidobacterium Breve as Cholesterol Binder in Functional Food Application. AIP Conf. Proc. 2017, 1803(1), 020034. DOI: 10.1063/1.4973161.
  • Susilowati, A.; Aspiyanto, G. M. Drying Process of Fermented Inulin Fiber Concentrate by Bifidobacterium Bifidum as a Dietary Fiber Source for Cholesterol Binder. AIP Conf. Proc. 2017, 1904(1), 020025. DOI: 10.1063/1.5011882.
  • Yu, Q.; Zhao, J.; Xu, Z.; Chen, Y.; Shao, T.; Long, X.; Liu, Z.; Gao, X.; Rengel, Z.; Shi, J.;, et al. Inulin from Jerusalem Artichoke Tubers Alleviates Hyperlipidemia and Increases Abundance of Bifidobacteria in the Intestines of Hyperlipidemic Mice. J. Funct. Foods 2018, 40, 187–196. DOI: 10.1016/j.jff.2017.11.010.
  • Mistry, R. H.; Gu, F.; Schols, H. A.; Verkade, H. J.; Tietge, U. J. Effect of the Prebiotic Fiber Inulin on Cholesterol Metabolism in Wildtype Mice. Sci. Rep. 2018, 8(1), 1–8. DOI: 10.1038/s41598-018-31698-7.
  • Hoving, L. R.; Katiraei, S.; Pronk, A.; Heijink, M.; Vonk, K. K.; Amghar-el Bouazzaoui, F.; Vermeulen, R.; Drinkwaard, L.; Giera, M.; Van Harmelen, V.;, et al. The Prebiotic Inulin Modulates Gut Microbiota but Does Not Ameliorate Atherosclerosis in Hypercholesterolemic APOE* 3-Leiden. CETP Mice. Sci. Rep. 2018, 8(1), 1–10. DOI: 10.1038/s41598-018-34970-y.
  • Baghurst, P. A.; Baghurst, K. I.; Record, S. J. Dietary Fibre, Non-Starch Polysaccharides and Resistant Starch: A Review. Food Aust. 1996, 48(3), S3–S35.
  • Raigond, P.; Ezekiel, R.; Raigond, B. Resistant Starch in Food: A Review. J. Sci. Food Agric. 2015, 95(10), 1968–1978. DOI: 10.1002/jsfa.6966.
  • Halajzadeh, J.; Milajerdi, A.; Reiner, Ž.; Amirani, E.; Kolahdooz, F.; Barekat, M.; Mirzaei, H.; Mirhashemi, S. M.; Asemi, Z. Effects of Resistant Starch on Glycemic Control, Serum Lipoproteins and Systemic Inflammation in Patients with Metabolic Syndrome and Related Disorders: A Systematic Review and Meta-Analysis of Randomized Controlled Clinical Trials. Crit. Rev. Food Sci. Nutr. 2019, 59(1), 1–13. DOI: 10.1080/10408398.2019.1680950.
  • Yuan, H. C.; Meng, Y.; Bai, H.; Shen, D. Q.; Wan, B. C.; Chen, L. Y. Meta-Analysis Indicates that Resistant Starch Lowers Serum Total Cholesterol and Low-Density Cholesterol. Nutr. Res. 2018, 54, 1–11. DOI: 10.1016/j.nutres.2018.02.008.
  • Wang, A.; Liu, M.; Shang, W.; Liu, J.; Dai, Z.; Strappe, P.; Zhou, Z. Attenuation of Metabolic Syndrome in the Ob/ob Mouse Model by Resistant Starch Intervention Is Dose Dependent. Food Funct. 2019, 10(12), 7940–7951. DOI: 10.1039/c9fo01771b.
  • Eshghi, F.; Bakhshimoghaddam, F.; Rasmi., Y.; Alizadeh, M. Effects of Resistant Starch Supplementation on Glucose Metabolism, Lipid Profile, Lipid Peroxidation Marker, and Oxidative Stress in Overweight and Obese Adults: Randomized, Double-Blind, Crossover Trial. Clin. Nutr. Res. 2019, 8(4), 318–328. DOI: 10.7762/cnr.2019.8.4.318.
  • García-Vázquez, C.; Ble-Castillo, J. L.; Arias-Córdova, Y.; Córdova-Uscanga, R.; Tovilla-Zárate, C. A.; Juárez-Rojop, I. E.; Olvera-Hernández, V.; Alvarez-Villagomez, C. S.; Nolasco-Coleman, A. M.; Díaz-Zagoya, J. C. Effects of Resistant Starch Ingestion on Postprandial Lipemia and Subjective Appetite in Overweight or Obese Subjects. Int. J. Environ. Res. Public Health. 2019, 16(20), 3827. DOI: 10.3390/ijerph16203827.
  • Banguela, A.; Hernández, L. Fructans: From Natural Sources to Transgenic Plants. Biotecnol. Apl. 2006, 23(3), 202–210.
  • Moreno-Vilet, L.; Garcia-Hernandez, M. H.; Delgado-Portales, R. E.; Corral-Fernandez, N. E.; Cortez-Espinosa, N.; Ruiz-Cabrera, M. A.; Portales-Perez, D. P. In Vitro Assessment of Agave Fructans (Agave Salmiana) as Prebiotics and Immune System Activators. Int. J. Biol. Macromol. 2014, 63, 181–187. DOI: 10.1016/j.ijbiomac.2013.10.039.
  • Mancilla-Margalli, N. A.; López, M. G. Water-Soluble Carbohydrates and Fructan Structure Patterns from Agave and Dasylirion Species. J. Agric. Food Chem. 2006, 54(20), 7832–7839. DOI: 10.1021/jf060354v.
  • Márquez-Aguirre, A. L.; Camacho-Ruiz, R. M.; Arriaga-Alba, M.; Padilla-Camberos, E.; Kirchmayr, M. R.; Blasco, J. L.; González-Avila, M. Effects of Agave Tequilana Fructans with Different Degree of Polymerization Profiles on the Body Weight, Blood Lipids and Count of Fecal Lactobacilli/Bifidobacteria in Obese Mice. Food Funct. 2013, 4(8), 1237–1244. DOI: 10.1039/c3fo60083a.
  • Xiao, Z.; Zhang, Y.; Deng, H.; Wang, K.; Bhagavathula, S.; Almuhairi, J.; Ryan, P. M.; Rahmani, J.; Dang, M.; Kontogiannis, V.; et al. The Effect of Psyllium Consumption on Weight, Body Mass Index, Lipid Profile, and Glucose Metabolism in Diabetic Patients: A Systematic Review and Dose-Response Meta-Analysis of Randomized Controlled Trials. Phytotherapy Res. 2020, 34(6), 1237–1247. DOI: 10.1002/ptr.6609.
  • Jasso‐Padilla, I.; Juárez‐Flores, B.; Alvarez‐Fuentes, G.; De La Cruz‐martínez, A.; González‐Ramírez, J.; Moscosa‐Santillán, M.; González-Chávez, M.; Oros-Ovalle, C.; Prell, F.; Czermak, P.;, et al. Effect of Prebiotics of Agave Salmiana Fed to Healthy Wistar Rats. J. Sci. Food Agric.2017, 97(2), 556–563. DOI: 10.1002/jsfa.7764.
  • Rendón-Huerta, J. A.; Juárez-Flores, B.; Pinos-Rodríguez, J. M.; Aguirre-Rivera, J. R.; Delgado-Portales, R. E. Effects of Different Sources of Fructans on Body Weight, Blood Metabolites and Fecal Bacteria in Normal and Obese Non-Diabetic and Diabetic Rats. Plant Foods Hum. Nutr. 2012, 67(1), 64–70. DOI: 10.1007/s11130-011-0266-9.
  • Castillo-Andrade, A.; Rivera-Bautista, C.; Godínez-Hernández, C.; Ruiz-Cabrera, M.; Fuentes-Ahumada, C.; García-Chávez, E.; Grajales-Lagunes, A. Physiometabolic Effects of Agave Salmiana Fructans Evaluated in Wistar Rats. Int. J. Biol. Macromol. 2018, 108, 1300–1309. DOI: 10.1016/j.ijbiomac.2017.11.043.
  • Yu, L. L.; Lutterodt, H.; Cheng, Z. Beneficial Health Properties of Psyllium and Approaches to Improve Its Functionalities. Adv. Food Nutr. Res. 2008, 55, 193–220.
  • Jalanka, J.; Major, G.; Murray, K.; Singh, G.; Nowak, A.; Kurtz, C.; Silos-Santiago, I.; Johnston, J. M.; De Vos, W. M.; Spiller, R. The Effect of Psyllium Husk on Intestinal Microbiota in Constipated Patients and Healthy Controls. Int. J. Mol. Sci. 2019, 20(2), 433. DOI: 10.3390/ijms20020433.
  • Lertpipopmetha, K.; Kongkamol, C.; Sripongpun, P. Effect of Psyllium Fiber Supplementation on Diarrhea Incidence in Enteral Tube‐Fed Patients: A Prospective, Randomized, and Controlled Trial. J. Parenter. Enter. Nutr. 2019, 43(6), 759–767. DOI: 10.1002/jpen.1489.
  • Fernández-Bañares, F.; Hinojosa, J.; Sánchez-Lombraña, J. L.; Navarro, E.; Martínez-Salmerón, J. F.; García-Pugés, A.; González-Huix, F.; Riera, J.; González-Lara, V.; Domínguez-Abascal, F.;, et al. Randomized Clinical Trial of Plantago Ovata Seeds (Dietary Fiber) as Compared with Mesalamine in Maintaining Remission in Ulcerative Colitis. Spanish Group for the Study of Crohn’s Disease and Ulcerative Colitis (GETECCU). Am. J. Gastroenterol. 1999, 94(2), 427–433. DOI: 10.1111/j.1572-0241.1999.872_a.x.
  • Pal, S.; McKay, J.; Jane, M.; Ho, S. Using Psyllium to Prevent and Treat Obesity Comorbidities. In: Nutrition in the Prevention and Treatment of Abdominal Obesity. Academic Press, 2019; pp 245–260. doi: 10.1016/B978-0-12-816093-0.00019-7.
  • McRorie, J. W.; Gibb, R. D.; Womack, J. B.; Pambianco, D. J. Psyllium Is Superior to Wheat Dextrin for Lowering Elevated Serum Cholesterol. Nutr. Today. 2017, 52(6), 289–294. DOI: 10.1097/NT.0000000000000243.
  • Vuksan, V.; Jenkins, A. L.; Rogovik, A. L.; Fairgrieve, C. D.; Jovanovski, E.; Leiter, L. A. Viscosity Rather than Quantity of Dietary Fiber Predicts Cholesterol-Lowering Effect in Healthy Individuals. Br. J. Nutr. 2011, 106(9), 1349–1352. DOI: 10.1017/S0007114511001711.
  • Elli, M.; Cattivelli, D.; Soldi, S.; Bonatti, M.; Morelli, L. Evaluation of Prebiotic Potential of Refined Psyllium (Plantago Ovata) Fiber in Healthy Women. J. Clin. Gastroenterol. 2008, 42(Supplement 3), S174–S176. DOI: 10.1097/MCG.0b013e31817f183a.
  • Satija, A.; Hu, F. B. Cardiovascular Benefits of Dietary Fiber. Curr. Atheroscler. Rep. 2012, 14(6), 505–514. DOI: 10.1007/s11883-012-0275-7.
  • Brown, L.; Rosner, B.; Willett, W. W.; Sacks, F. M. Cholesterol-Lowering Effects of Dietary Fiber: A Meta-Analysis. Am. J. Clin. Nutr. 1999, 69(1), 30–42. DOI: 10.1093/ajcn/69.1.30.
  • Jovanovski, E.; Yashpal, S.; Komishon, A.; Zurbau, A.; Blanco Mejia, S.; Ho, H. V. T.; Li, D.; Sievenpiper, J.; Duvnjak, V. V. Effect of Psyllium (Plantago Ovata) Fiber on LDL Cholesterol and Alternative Lipid Targets, Non-HDL Cholesterol and Apolipoprotein B: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Am. J. Clin. Nutr. 2018, 108(5), 922–932. DOI: 10.1093/ajcn/nqy115.
  • Wei, Z. H.; Wang, H.; Chen, X. Y.; Wang, B. S.; Rong, Z. X.; Su, B. H.; Chen, H. Z. Time-and Dose-Dependent Effect of Psyllium on Serum Lipids in Mild-to-Moderate Hypercholesterolemia: A Meta-Analysis of Controlled Clinical Trials. Eur. J. Clin. Nutr. 2009, 63(7), 821–827. DOI: 10.1038/ejcn.2008.49.
  • Adetunji, C. O.; Roli, O. I.; Adentunji, J. B. Exopolysaccharides Derived from Beneficial Microorganisms: Antimicrobial, Food, and Health Benefits. In Innovations in Food Technology; Mishra, R.R., Adetunji, C.O. Eds.; Springer: Singapure, 2020; pp 147–160. DOI: 10.1007/978-981-15-6121-4_10.
  • Brum, J.; Ramsey, D.; McRorie, J.; Bauer, B.; Kopecky, S. L. Meta-Analysis of Usefulness of Psyllium Fiber as Adjuvant Antilipid Therapy to Enhance Cholesterol Lowering Efficacy of Statins. Am. J. Cardiol. 2018, 122(7), 1169–1174. DOI: 10.1016/j.amjcard.2018.06.040.
  • Yadav, N.; Sharma, V.; Kapila, S.; Malik, R. K.; Arora, S. Hypocholesterolaemic and Prebiotic Effect of Partially Hydrolyzed Psyllium Husk Supplemented Yoghurt. J. Funct. Foods. 2016, 24, 351–358. DOI: 10.1016/j.jff.2016.04.028.
  • Talk Paper, F. D. A.;. (1998). FDA Allows Foods Containing Psyllium to Make Health Claim on Reducing Risk of Heart Disease. http://www3.scienceblog.com/community/older/archives/M/1/fda0459.htm ( accessed April 3, 2020).
  • Maeda, H.; Zhu, X.; Omura, K.; Suzuki, S.; Kitamura, S. Effects of an Exopolysaccharide (Kefiran) on Lipids, Blood Pressure, Blood Glucose, and Constipation. Biofactors. 2004, 22(1–4), 197–200. DOI: 10.1002/biof.5520220141.
  • Lindström, C.; Holst, O.; Nilsson, L.; Öste, R.; Andersson, K. Effects of Pediococcus Parvulus 2.6 And Its Exopolysaccharide on Plasma Cholesterol Levels and Inflammatory Markers in Mice. AMB Express. 2012, 2(66), 66. DOI: 10.1186/2191-0855-2-66.
  • London, L. E.; Kumar, A. H.; Wall, R.; Casey, P. G.; O’Sullivan, O.; Shanahan, F.; Hill, C.; Cotter, P. D.; Fitzgerald, G. F.; Ross, R. P.;, et al. Exopolysaccharide-Producing Probiotic Lactobacilli Reduce Serum Cholesterol and Modify Enteric Microbiota in ApoE-Deficient Mice. J. Nutr. 2014, 144(12), 1956–1962. DOI: 10.3945/jn.114.191627.
  • Sasikumar, K.; Vaikkath, D. K.; Devendra, L.; Nampoothiri, K. M. An Exopolysaccharide (EPS) from a Lactobacillus Plantarum BR2 with Potential Benefits for Making Functional Foods. Bioresour. Technol. 2017, 241, 1152–1156. DOI: 10.1016/j.biortech.2017.05.075.
  • Adebola, O. O.; Corcoran, O.; Morgan, W. A. Prebiotics May Alter Bile Salt Hydrolase Activity: Possible Implications for Cholesterol Metabolism. PharmaNutrition. 2020, 12, 100182. DOI: 10.1016/j.phanu.2020.100182.
  • Dilna, S. V.; Surya, H.; Aswathy, R. G.; Varsha, K. K.; Sakthikumar, D. N.; Pandey, A.; Nampoothiri, K. M. Characterization of an Exopolysaccharide with Potential Health-Benefit Properties from a Probiotic Lactobacillus Plantarum RJF4. LWT-Food Sci. Technol. 2015, 64(2), 1179–1186. DOI: 10.1016/j.lwt.2015.07.040.
  • Ellegård, L.; Andersson, H. Oat Bran Rapidly Increases Bile Acid Excretion and Bile Acid Synthesis: An Ileostomy Study. Eur. J. Clin. Nutr. 2007, 61(8), 938–945. DOI: 10.1038/sj.ejcn.1602607.
  • Vanhoof, K.; De Schrijver, R. Effect of Unprocessed and Baked Inulin on Lipid Metabolism in Normo-and Hypercholesterolemic Rats. Nutr. Res. 1637–1646, 1995(15). DOI: 10.1016/0271-5317(95)02034-3.
  • Zhao, Y.; Liu, J.; Hao, W.; Zhu, H.; Liang, N.; He, Z.; Ma, K. Y.; Chen, Z. Y. Structure-Specific Effects of Short-Chain Fatty Acids on Plasma Cholesterol Concentration in Male Syrian Hamsters. J. Agric. Food Chem. 2017, 65(50), 10984–10992. DOI: 10.1021/acs.jafc.7b04666.
  • Miremadi, F.; Ayyash, M.; Sherkat, F.; Stojanovska, L. Cholesterol Reduction Mechanisms and Fatty Acid Composition of Cellular Membranes of Probiotic Lactobacilli and Bifidobacteria. J. Funct. Foods. 2014, 9, 295–305. DOI: 10.1016/j.jff.2014.05.002.
  • Ahire, J. J.; Mokashe, N. U.; Patil, H. J.; Chaudhari, B. L. Antioxidative Potential of Folate Producing Probiotic Lactobacillus Helveticus CD6. J. Food Sci. Technol. 2011. DOI: 10.1007/s13197-011-0244-0.
  • Rudel, L. L.; Morris, M. D. Determination of Cholesterol Using O-phthalaldehyde. J. Lipid Res. 1973, 14(3), 364–366. DOI: 10.1016/S0022-2275(20)36896-6.
  • Nishiya, Y.; Harada, N.; Teshima, S.; Yamashita, M.; Fujii, I.; Hirayama, N.; Murooka, Y. Improvement of Thermal Stability of Streptomyces Cholesterol Oxidase by Random Mutagenesis and a Structural Interpretation. Protein Eng. 1997, 10(3), 231–235. DOI: 10.1093/protein/10.3.231.
  • Kulkarni, N. S.; Lokhande, A. P.; Pachori, R. R.; Agrawal, P. N.; Dalal, J. M. Screening of the Cholesterol Degrading Bacteria from Cow’s Milk. Curr. Res. Microbiol. Biotechnol. 2013, 1(3), 92–94.
  • Tahri, K.; Crociani, J.; Ballongue, J.; Schneider, F. Effects of Three Strains of Bifidobacteria on Cholesterol. Lett. Appl. Microbiol. 1995, 21(3), 149–151. DOI: 10.1111/j.1472-765x.1995.tb01028.x.
  • Walker, D. K.; Gilliland, S. E. Relationships among Bile Tolerance, Bile Salt Deconjugation, and Assimilation of Cholesterol by Lactobacillus Acidophilus. J. Dairy Sci. 1993, 76(4), 956–961. DOI: 10.3168/jds.s0022-0302(93)77422-6.
  • Salè, F. O.; Marchesini, S.; Fishman, P. H.; Berra, B. A Sensitive Enzymatic Assay for Determination of Cholesterol in Lipid Extracts. Anal. Biochem. 1984, 142(2), 347–350. DOI: 10.1016/0003-2697(84)90475-5.
  • Sun, H.; Sun, W.; Zhang, A.; Wang, X. Metabolite Profiling and Biomarkers Analysis of Jaundice Syndrome-Related Animal Models. In Chinmedomics; Wang, X., Zhang, A., Sun, H., Eds. Academic Press: Cambridge, MA, 2015; pp 109–145. doi:10.1016/B978-0-12-803117-9.00008-1
  • Liong, M. T.; Shah, N. P. Bile Salt Deconjugation Ability, Bile Salt Hydrolase Activity and Cholesterol Co-Precipitation Ability of Lactobacilli Strains. Int. Dairy J. 2005, 15(4), 391–398. DOI: 10.1016/j.idairyj.2004.08.007.
  • Shehata, M. G.; El Sohaimy, S. A.; El-Sahn, M. A.; Youssef, M. M. Screening of Isolated Potential Probiotic Lactic Acid Bacteria for Cholesterol Lowering Property and Bile Salt Hydrolase Activity. Ann. Agric. Sci. 2016, 61(1), 65–75. DOI: 10.1016/j.aoas.2016.03.001.
  • Tanaka, H.; Hashiba, H.; Kok, J.; Mierau, I. Bile Salt Hydrolase of Bifidobacterium Longum —biochemical and Genetic Characterization. Appl. Environ. Microbiol. 2000, 66(6), 2502–2512. DOI: 10.1128/aem.66.6.2502-2512.2000.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.