892
Views
4
CrossRef citations to date
0
Altmetric
Research Article

An Overview of the Composition, Applications, and Recovery Techniques of the Components of Okara Aimed at the Biovalorization of This Soybean Processing Residue

ORCID Icon & ORCID Icon

References

  • Singh, P.; Kumar, R.; Sabapathy, S. N.; Bawa, A. S. Functional and Edible Uses of Soy Protein Products. Compr. Rev. Food Sci. Food Saf. 2008, 7(1), 14–28. DOI: 10.1111/j.1541-4337.2007.00025.x.
  • Zhang, Q.; Wang, C.; Li, B.; Li, L.; Lin, D.; Chen, H.; Liu, Y.; Li, S.; Qin, W.; Liu, J.;, et al. Research Progress in Tofu Processing: From Raw Materials to Processing Conditions. Crit. Rev. Food Sci. Nutr. 2018, 58(9), 1448–1467. DOI: 10.1080/10408398.2016.1263823.
  • Guimarães, R. M.; Silva, T. E.; Lemes, A. C.; Boldrin, M. C. F.; Silva, M. A. P. D.; Silva, F. G.; Egea, M. B. Okara: A Soybean by-Product as an Alternative to Enrich Vegetable Paste. LWT- Food Sci. Technol. 2018, 92(February), 593–599. DOI: 10.1016/j.lwt.2018.02.058.
  • O’Toole, D. K.; Soybean, Soymilk, Tofu, and Okara. Ref. Modul. Food Sci. 2016, 3, 185–195. DOI: 10.1016/B978-0-08-100596-5.00130-X.
  • Van Der Riet, W. B.; Wight, A. W.; Cilliers, J. J. L.; Datel, J. M. Food Chemical Investigation of Tofu and Its Byproduct Okara. Food Chem. 1989, 34(3), 193–202. DOI: 10.1016/0308-8146(89)90140-4.
  • Khare, S. K.; Jha, K.; Gandhi, A. P. Citric Acid Production from Okara (Soy-residue) by Solid-State Fermentation. Bioresour. Technol. 1995, 54(3), 323–325. DOI: 10.1016/0960-8524(95)00155-7.
  • SoyStats. International World Soybean Production. http://soystats.com/international-world-soybean-production/. (accessed May 22, 2020).
  • Liu, X.; Yu, X.; Xia, J.; Lv, J.; Xu, J.; Dai, B.; Xu, X.; Xu, J. Erythritol Production by Yarrowia Lipolytica from Okara Pretreated with the In-House Enzyme Pools of Fungi. Bioresour. Technol. 2017, 244(August), 1089–1095. DOI: 10.1016/j.biortech.2017.08.014.
  • Rinaldi, V. E. A.; Ng, P. K. W.; Bennink, M. R. Effects of Extrusion on Dietary Fiber and Isoflavone Contents of Wheat Extrudates Enriched with Wet Okara. Cereal Chem. J. 2000, 77(2), 237–240. DOI: 10.1094/CCHEM.2000.77.2.237.
  • Grizotto, R. K.; Andrade, J. C.; Miyagusku, L.; Yamada, E. A. Physical, Chemical, Technological and Sensory Characteristics of Frankfurter Type Sausage Containing Okara Flour. Food Sci. Technol. 2012, 32(3), 538–546. DOI: 10.1590/s0101-20612012005000076.
  • Park, J.; Choi, I.; Kim, Y. Cookies Formulated from Fresh Okara Using Starch, Soy Flour and Hydroxypropyl Methylcellulose Have High Quality and Nutritional Value. LWT - Food Sci. Technol. 2015, 63(1), 660–666. DOI: 10.1016/j.lwt.2015.03.110.
  • Nguyen, T. H.; Ra, C. H.; Sunwoo, I. Y.; Sukwong, P.; Jeong, G. T.; Kim, S. K. Bioethanol Production from Soybean Residue via Separate Hydrolysis and Fermentation. Appl. Biochem. Biotechnol. 2018, 184(2), 513–523. DOI: 10.1007/s12010-017-2565-6.
  • Lu, F.; Liu, Y.; Li, B. Okara Dietary Fiber and Hypoglycemic Effect of Okara Foods. Bioact. Carbohydr. Dietary Fibre. 2013, 2(2), 126–132. DOI:10.1016/j.bcdf.2013.10.002.
  • Jankowiak, L.; Kantzas, N.; Boom, R.; Van Der Goot, A. J. Isoflavone Extraction from Okara Using Water as Extractant. Food Chem. 2014, 160, 371–378. DOI: 10.1016/j.foodchem.2014.03.082.
  • El-Saidy, D. M. S. D. Effect of Using Okara Meal, a by-Product from Soymilk Production as a Dietary Protein Source for Nile Tilapia (Oreochromis Niloticus L.) Mono-Sex Males. Aquac. Nutr. 2011, 17(4), 380–386. DOI: 10.1111/j.1365-2095.2010.00810.x.
  • Harthan, L. B.; Cherney, D. J. R. Okara as a Protein Supplement Affects Feed Intake and Milk Composition of Ewes and Growth Performance of Lambs. Anim. Nutr. 2017, 3(2), 171–174. DOI: 10.1016/j.aninu.2017.04.001.
  • Hermann, J. R.; Honeyman, M. S. Okara: A Possible High Protein Feedstuff For Organic Pig Diets, Animal Industry Report. 2004,AS 650, ASL R1965. DOI: 10.31274/ans_air-180814-197.
  • Appelt, P.; Cunha, M. A. A.; Guerra, A. P.; Kalinke, C.; Lima, V. A. Development and Characterization of Cereal Bars Made with Flour of Jabuticaba Peel and Okara. Acta Sci. Technol. 2015, 37(1), 117. DOI: 10.4025/actascitechnol.v37i1.21070.
  • Hawa, A.; Satheesh, N.; Kumela, D. Nutritional and Anti-Nutritional Evaluation of Cookies Prepared from Okara, Red Teff and Wheat Flours. Int. Food Res. J. 2018, 25(5), 2042–2050.
  • Ostermann-Porcel, M. V.; Quiroga-Panelo, N.; Rinaldoni, A. N.; Campderrós, M. E. Incorporation of Okara into Gluten-Free Cookies with High Quality and Nutritional Value. J. Food Qual. 2017, 2017, 1–8. DOI: 10.1155/2017/4071585.
  • Ostermann-Porcel, M. V.; Rinaldoni, A. N.; Rodriguez-Furlán, L. T.; Campderrós, M. E. Quality Assessment of Dried Okara as a Source of Production of Gluten-Free Flour. J. Sci. Food Agric. 2017, 97(9), 2934–2941. DOI: 10.1002/jsfa.8131.
  • Kang, M. J.; Bae, I. Y.; Lee, H. G. Rice Noodle Enriched with Okara: Cooking Property, Texture, and in Vitro Starch Digestibility. Food Biosci. 2018, 22(August 2017), 178–183. DOI: 10.1016/j.fbio.2018.02.008.
  • Zhang, M.; Wang, P.; Zou, M.; Yang, R.; Tian, M.; Gu, Z. Microbial Transglutaminase-Modified Protein Network and Its Importance in Enhancing the Quality of High-Fiber Tofu with Okara. Food Chem. 2019, 289(March), 169–176. DOI: 10.1016/j.foodchem.2019.03.038.
  • Mbaeyi-Nwaoha, I. E.; Uchendu, N. O. Production and Evaluation of Breakfast Cereals from Blends of Acha and Fermented Soybean Paste (Okara). J. Food Sci. Technol. 2016, 53(1), 50–70. DOI: 10.1007/s13197-015-2032-8.
  • Moraes Filho, M. L.; Busanello, M.; Prudencio, S. H.; Garcia, S. Soymilk with Okara Flour Fermented by Lactobacillus Acidophilus: Simplex-Centroid Mixture Design Applied in the Elaboration of Probiotic Creamy Sauce and Storage Stability. LWT- Food Sci. Technol. 2018, 93(October 2017), 339–345. DOI: 10.1016/j.lwt.2018.03.046.
  • O’Toole, D. K. Characteristics and Use of Okara, the Soybean Residue from Soy Milk Production - A Review. J. Agric. Food Chem. American Chemical Society. 1999, 47(2), 363–371. DOI: 10.1021/jf980754l.
  • Vong, W. C.; Liu, S. Q. Biovalorisation of Okara (Soybean Residue) for Food and Nutrition. Trends Food Sci. Technol. 2016, 52, 139–147. DOI: 10.1016/j.tifs.2016.04.011.
  • Liener, I. E. Implications of Antinutritional Components in Soybean Foods. Crit. Rev. Food Sci. Nutr. 1994, 34(1), 31–67. DOI: 10.1080/10408399409527649.
  • Orts, A.; Cabrera, S.; Gómez, I.; Parrado, J.; Rodriguez-Morgado, B.; Tejada, M. Use of Okara in the Bioremediation of Chlorpyrifos in Soil: Effects on Soil Biochemical Properties. Appl. Soil Ecol. 2017, 121, 172–176. DOI: 10.1016/j.apsoil.2017.09.042.
  • Chan, W.-M.; Ma, C.-Y. Acid Modification of Proteins from Soymilk Residue (Okara). Food Res. Int. 1999, 32(2), 119–127. DOI: 10.1016/S0963-9969(99)00064-2.
  • Chan, W.-M.; Ma, C.-Y. Modification of Proteins from Soymilk Residue (Okara) by Trypsin. J. Food Sci. 1999, 64(5), 781–786. DOI: 10.1111/j.1365-2621.1999.tb15911.x.
  • Ma, C.-Y.; Liu, W.-S.; Kwok, K. C.; Kwok, F. Isolation and Characterization of Proteins from Soymilk Residue (Okara). Food Res. Int. 1997, 29(8), 799–805. DOI: 10.1016/0963-9969(95)00061-5.
  • Tao, X.; Cai, Y.; Liu, T.; Long, Z.; Huang, L.; Deng, X.; Zhao, Q.; Zhao, M. Effects of Pretreatments on the Structure and Functional Properties of Okara Protein. Food Hydrocoll. 2019, 90, 394–402. DOI: 10.1016/j.foodhyd.2018.12.028.
  • Vishwanathan, K. H.; Singh, V.; Subramanian, R. Influence of Particle Size on Protein Extractability from Soybean and Okara. J. Food Eng. 2011, 102(3), 240–246. DOI: 10.1016/j.jfoodeng.2010.08.026.
  • Vishwanathan, K. H.; Govindaraju, K.; Singh, V.; Subramanian, R. Production of Okara and Soy Protein Concentrates Using Membrane Technology. J. Food Sci. 2011, 76(1), E158–E164. DOI: 10.1111/j.1750-3841.2010.01917.x.
  • Quintana, G.; Gerbino, E.; Gómez-Zavaglia, A. Valorization of Okara Oil for the Encapsulation of Lactobacillus Plantarum. Food Res. Int. 2018, 106(3), 81–89. DOI: 10.1016/j.foodres.2017.12.053.
  • Quitain, A. T.; Oro, K.; Katoh, S.; Moriyoshi, T. Recovery of Oil Components of Okara by Ethanol-Modified Supercritical Carbon Dioxide Extraction. Bioresour. Technol. 2006, 97(13), 1509–1514. DOI: 10.1016/j.biortech.2005.06.010.
  • Li, B.; Lu, F.; Nan, H.; Liu, Y. Isolation and Structural Characterisation of Okara Polysaccharides. Molecules. 2012, 17(1), 753–761. DOI: 10.3390/molecules17010753.
  • Li, P.; Wang, Y.; Hou, Q.; Li, X. Isolation and Characterization of Microfibrillated Cellulose from Agro-Industrial Soybean Residue (Okara). BioResources. 2018, 13(4), 7944–7956. DOI: 10.15376/biores.13.4.7944-7956.
  • Mateos-Aparicio, I.; Mateos-Peinado, C.; Rupérez, P. High Hydrostatic Pressure Improves the Functionality of Dietary Fibre in Okara By-Product from Soybean. Innov. Food Sci. Emerg. Technol. 2010, 11(3), 445–450. DOI: 10.1016/j.ifset.2010.02.003.
  • Ullah, I.; Yin, T.; Xiong, S.; Zhang, J.; Din, Z. U.; Zhang, M. Structural Characteristics and Physicochemical Properties of Okara (Soybean Residue) Insoluble Dietary Fiber Modified by High-Energy Wet Media Milling. LWT - Food Sci. Technol. 2017, 82, 15–22. DOI: 10.1016/j.lwt.2017.04.014.
  • Jankowiak, L.; Trifunovic, O.; Boom, R. M.; Van Der Goot, A. J. The Potential of Crude Okara for Isoflavone Production. J. Food Eng. 2014, 124, 166–172. DOI: 10.1016/j.jfoodeng.2013.10.011.
  • Sevillano, D. M.; Jankowiak, L.; Van Gaalen, T. L. T.; Van Der Wielen, L. A. M.; Hooshyar, N.; Van Der Goot, A.-J.; Ottens, M. Mechanism of Isoflavone Adsorption from Okara Extracts onto Food-Grade Resins. Ind. Eng. Chem. Res. 2014, 53(39), 15245–15252. DOI: 10.1021/ie5026419.
  • Santos, V. A. Q.; Nascimento, C. G.; Schmidt, C. A. P.; Mantovani, D.; Dekker, R. F. H.; Da Cunha, M. A. A. Solid-State Fermentation of Soybean Okara : Isoflavones Biotransformation, Antioxidant Activity and Enhancement of Nutritional Quality. LWT - Food Sci. Technol. 2018, 92, 509–515. DOI: 10.1016/j.lwt.2018.02.067.
  • Li, B.; Qiao, M.; Lu, F. Composition, Nutrition, and Utilization of Okara (Soybean Residue). Food Rev. Int. 2012, 28(3), 231–252. DOI: 10.1080/87559129.2011.595023.
  • Kamble, D. B.; Rani, S. Bioactive Components, in Vitro Digestibility, Microstructure and Application of Soybean Residue (Okara): A Review. Legum. Sci. 2020, 2(1), 2–10. DOI:10.1002/leg3.32.
  • Faraj, A.; Vasanthan, T. Soybean Isoflavones: Effects of Processing and Health Benefits. Food Rev. Int. 2004, 20(1), 51–75. DOI: 10.1081/FRI-120028830.
  • Giri, S. K.; Mangaraj, S. Processing Influences on Composition and Quality Attributes of Soymilk and Its Powder. Food Eng. Rev. 2012, 4(3), 149–164. DOI: 10.1007/s12393-012-9053-0.
  • Shi, H.; Zhang, M.; Wang, W.; Devahastin, S. Solid-State Fermentation with Probiotics and Mixed Yeast on Properties of Okara. Food Biosci. 2020, 36(April), 100610. DOI: 10.1016/j.fbio.2020.100610.
  • Hu, Y.; Piao, C.; Chen, Y.; Zhou, Y.; Wang, D.; Yu, H.; Xu, B. Soybean Residue (Okara) Fermentation with the Yeast Kluyveromyces Marxianus. Food Biosci. 2019, 31(September 2018), 100439. DOI: 10.1016/j.fbio.2019.100439.
  • Santos, D. C.; Oliveira Filho, J. G.; Silva, J. S.; Sousa, M. F.; Vilela, M.  S.; Silva, M. A. P.; Lemes, A. C.; Egea, M. B. Okara Flour: Its Physicochemical, Microscopical and Functional Properties. Nutr. Food Sci. 2019, 49(6), 1252–1264. DOI: 10.1108/NFS-11-2018-0317.
  • Voss, G. B.; Rodríguez-Alcalá, L. M.; Valente, L. M. P.; Pintado, M. M. Impact of Different Thermal Treatments and Storage Conditions on the Stability of Soybean Byproduct (Okara). J. Food Meas. Charact. 2018, 12(3), 1981–1996. DOI: 10.1007/s11694-018-9813-5.
  • Li, B.; Yang, W.; Nie, Y.; Kang, F.; Goff, H. D.; Cui, S. W. Effect of Steam Explosion on Dietary Fiber, Polysaccharide, Protein and Physicochemical Properties of Okara. Food Hydrocoll. 2019, 94, 48–56. DOI: 10.1016/j.foodhyd.2019.02.042.
  • Fayaz, G.; Plazzotta, S.; Calligaris, S.; Manzocco, L.; Nicoli, M. C. Impact of High Pressure Homogenization on Physical Properties, Extraction Yield and Biopolymer Structure of Soybean Okara. LWT- Food Sci. Technol. 2019, 113, 108324. DOI: 10.1016/j.lwt.2019.108324.
  • Ambawat, S.; Khetarpaul, N. Comparative Assessment of Antioxidant, Nutritional and Functional Properties of Soybean and Its by-Product Okara. Ann. Phytomed. An Int. J. 2018, 7(1), 112–118. DOI:10.21276/ap.2018.7.1.14.
  • Jiang, Y.; Zhao, Y.; Wang, D.; Deng, Y. Influence of the Addition of Potato, Okara, and Konjac Flours on Antioxidant Activity, Digestibility, and Quality of Dumpling Wrappers. J. Food Qual. 2018, 2018, 1–11. DOI: 10.1155/2018/4931202.
  • Quintana, G.; Gerbino, E.; Gómez-Zavaglia, A. Okara: A Nutritionally Valuable By-product Able to Stabilize Lactobacillus Plantarum during Freeze-drying, Spray-drying, and Storage. Front. Microbiol. 2017, 8(641), 1–9. DOI: 10.3389/fmicb.2017.00641.
  • Mateos-Aparicio, I.; Redondo-Cuenca, A.; Villanueva-Suárez, M. -J.; Zapata-Revilla, M. -A.; Tenorio-Sanz, M. -D. Pea Pod, Broad Bean Pod and Okara, Potential Sources of Functional Compounds. LWT - Food Sci. Technol. 2010, 43(9), 1467–1470. DOI: 10.1016/j.lwt.2010.05.008.
  • Jankowiak, L.; Sevillano, D. M.; Boom, R. M.; Ottens, M.; Zondervan, E.; Van Der Goot, A. J. A Process Synthesis Approach for Isolation of Isoflavones from Okara. Ind. Eng. Chem. Res. 2015, 54(2), 691–699. DOI: 10.1021/ie5038962.
  • Li, H.; Long, D.; Peng, J.; Ming, J.; Zhao, G. A Novel In-Situ Enhanced Blasting Extrusion Technique - Extrudate Analysis and Optimization of Processing Conditions with Okara. Innov. Food Sci. Emerg. Technol. 2012, 16, 80–88. DOI: 10.1016/j.ifset.2012.04.009.
  • Espinosa-Martos, I.; Rupérez, P. Indigestible Fraction of Okara from Soybean: Composition, Physicochemical Properties and in Vitro Fermentability by Pure Cultures of Lactobacillus Acidophilus and Bifidobacterium Bifidum. Eur. Food Res. Technol. 2009, 228(5), 685–693. DOI: 10.1007/s00217-008-0979-7.
  • Redondo-Cuenca, A.; Villanueva-Suárez, M. J.; Mateos-Aparicio, I. Soybean Seeds and Its By-Product Okara as Sources of Dietary Fibre. Measurement by AOAC and Englyst Methods. Food Chem. 2008, 108(3), 1099–1105. DOI: 10.1016/j.foodchem.2007.11.061.
  • Mateos-Aparicio, I.; Mateos-Peinado, C.; Jiménez-Escrig, A.; Rupérez, P. Multifunctional Antioxidant Activity of Polysaccharide Fractions from the Soybean Byproduct Okara. Carbohydr. Polym. 2010, 82(2), 245–250. DOI: 10.1016/j.carbpol.2010.04.020.
  • Porfiri, M. C.; Vaccaro, J.; Stortz, C. A.; Navarro, D. A.; Wagner, J. R.; Cabezas, D. M. Insoluble Soybean Polysaccharides: Obtaining and Evaluation of Their O/W Emulsifying Properties. Food Hydrocoll. 2017, 73, 262–273. DOI: 10.1016/j.foodhyd.2017.06.034.
  • Singh, A.; Meena, M.; Kumar, D.; Dubey, A. K.; Hassan, M. I. Structural and Functional Analysis of Various Globulin Proteins from Soy Seed. Crit. Rev. Food Sci. Nutr. 2015, 55(11), 1491–1502. DOI: 10.1080/10408398.2012.700340.
  • Figueiredo, V. R. G.; Yamashita, F.; Vanzela, A. L. L.; Ida, E. I.; Kurozawa, L. E. Action of Multi-Enzyme Complex on Protein Extraction to Obtain a Protein Concentrate from Okara. J. Food Sci. Technol. 2018, 55(4), 1508–1517. DOI: 10.1007/s13197-018-3067-4.
  • Stanojevic, S. P.; Barac, M. B.; Pesic, M. B.; Vucelic-Radovic, B. V. Composition of Proteins in Okara as a Byproduct in Hydrothermal Processing of Soy Milk. J. Agric. Food Chem. 2012, 60(36), 9221–9228. DOI: 10.1021/jf3004459.
  • Muliterno, M. M.; Rodrigues, D.; Lima, F. S.; Ida, E. I.; Kurozawa, L. E. Conversion/Degradation of Isoflavones and Color Alterations during the Drying of Okara. LWT - Food Sci. Technol. 2017, 75, 512–519. DOI: 10.1016/j.lwt.2016.09.031.
  • Rostagno, M. A.; Villares, A.; Guillamón, E.; García-Lafuente, A.; Martínez, J. A. Sample Preparation for the Analysis of Isoflavones from Soybeans and Soy Foods. J. Chromatogr. A. 2009, 1216(1), 2–29. DOI: 10.1016/j.chroma.2008.11.035.
  • Genovese, M. I.; Davila, J.; Lajolo, F. M. Isoflavones in Processed Soybean Products from Ecuador. Brazilian Arch. Biol. Technol. 2006, 49(5), 853–859. DOI: 10.1590/S1516-89132006000600020.
  • Brzezinski, A.; Adlercreutz, H.; Shaoul, R.; Roesler, A.; Shmueli, A.; Tanos, V.; Schenker, J. G. Short-Term Effects of Phytoestrogen Rich Diet on Postmenopausal Women. Menopause. 1997, 4(2), 89–94. DOI: 10.1097/00042192-199704020-00005.
  • Taku, K.; Melby, M. K.; Kronenberg, F.; Kurzer, M. S.; Messina, M. Extracted or Synthesized Soybean Isoflavones Reduce Menopausal Hot Flash Frequency and Severity. Menopause J. North Am. Menopause Soc. 2012, 19(7), 776–790. DOI:10.1097/gme.0b013e3182410159.
  • Birt, D. F.; Hendrich, S.; Wang, W. Dietary Agents in Cancer Prevention: Flavonoids and Isoflavonoids. Pharmacol. Ther. 2001, 90(2–3), 157–177. DOI: 10.1016/S0163-7258(01)00137-1.
  • Guo, J.; Wang, Q.; Zhang, Y.; Sun, W.; Zhang, S.; Li, Y.; Wang, J.; Bao, Y. Functional Daidzein Enhances the Anticancer Effect of Topotecan and Reverses BCRP-Mediated Drug Resistance in Breast Cancer. Pharmacol. Res. 2019, 147(2), 104387. DOI: 10.1016/j.phrs.2019.104387.
  • Hu, C.; Wong, W.; Wu, R.; Lai, W. Biochemistry and Use of Soybean Isoflavones in Functional Food Development. Crit. Rev. Food Sci. Nutr. 2019, 1–15. DOI: 10.1080/10408398.2019.1630598.
  • Anderson, J. J. B.; Anthony, M.; Messina, M.; Garne, S. C. Effects of Phyto-Oestrogens on Tissues. Nutr. Res. Rev. 1999, 12(1), 75–116. DOI: 10.1079/095442299108728875.
  • Ho, S. C.; Woo, J.; Lam, S.; Chen, Y.; Sham, A.; Lau, J. Soy Protein Consumption and Bone Mass in Early Postmenopausal Chinese Women. Osteoporos. Int. 2003, 14(10), 835–842. DOI:10.1007/s00198-003-1453-9.
  • Scheiber, M. D.; Liu, J. H.; Subbiah, M. T. R.; Rebar, R. W.; Setchell, K. D. R. Dietary Inclusion of Whole Soy Foods Results in Significant Reductions in Clinical Risk Factors for Osteoporosis and Cardiovascular Disease in Normal Postmenopausal Women. Menopause. 2001, 8(5), 384–392. DOI: 10.1097/00042192-200109000-00015.
  • Essawy, A. E.; Abdou, H. M.; Ibrahim, H. M.; Bouthahab, N. M. Soybean Isoflavone Ameliorates Cognitive Impairment, Neuroinflammation, and Amyloid β Accumulation in a Rat Model of Alzheimer’s Disease. Environ. Sci. Pollut. Res. 2019, 26(25), 26060–26070. DOI: 10.1007/s11356-019-05862-z.
  • Huang, -C. -C.; Hsu, B. -Y.; Wu, N. -L.; Tsui, W. -H.; Lin, T. -J.; Su, -C. -C.; Hung, C. -F. Anti-Photoaging Effects of Soy Isoflavone Extract (Aglycone and Acetylglucoside Form) from Soybean Cake. Int. J. Mol. Sci. 2010, 11(12), 4782–4795. DOI: 10.3390/ijms11124782.
  • Naim, M.; Gestetner, B.; Bondi, A.; Birk, Y. Antioxidative and Antihemolytic Activities of Soybean Isoflavones. J. Agric. Food Chem. 1976, 24(6), 1174–1177. DOI: 10.1021/jf60208a029.
  • Wang, H.; Murphy, P. A. Isoflavone Content in Commercial Soybean Foods. J. Agric. Food Chem. 1994, 42(8), 1666–1673. DOI: 10.1021/jf00044a016.
  • Křížová, L.; Dadáková, K.; Kašparovská, J.; Kašparovský, T. Isoflavones. Molecules. 2019, 24(6), 1076. DOI: 10.3390/molecules24061076.
  • Jackson, C. -J.; Dini, J.; Lavandier, C.; Rupasinghe, H. P.; Faulkner, H.; Poysa, V.; Buzzell, D.; DeGrandis, S. Effects of Processing on the Content and Composition of Isoflavones during Manufacturing of Soy Beverage and Tofu. Process Biochem. 2002, 37(10), 1117–1123. DOI: 10.1016/S0032-9592(01)00323-5.
  • Surel, O.; Couplet, B. Influence of the Dehydration Process on Active Compounds of Okara during Its Fractionation. J. Sci. Food Agric. 2005, 85(8), 1343–1349. DOI: 10.1002/jsfa.2097.
  • Vong, W. C.; Lim, X. Y.; Liu, S. Q. Biotransformation with Cellulase, Hemicellulase and Yarrowia Lipolytica Boosts Health Benefits of Okara. Appl. Microbiol. Biotechnol. 2017, 101(19), 7129–7140. DOI: 10.1007/s00253-017-8431-1.
  • Vong, W. C.; Liu, S. -Q. The Effects of Carbohydrase, Probiotic Lactobacillus Paracasei and Yeast Lindnera Saturnus on the Composition of a Novel Okara (Soybean Residue) Functional Beverage. LWT- Food Sci. Technol. 2019, 100(October 2018), 196–204. DOI: 10.1016/j.lwt.2018.10.059.
  • Gao, J.; Si, C.; He, Y. Application of Soybean Residue (Okara) as a Low-Cost Adsorbent for Reactive Dye Removal from Aqueous Solution. Desalin. Water Treat. 2015, 53(8), 2266–2277. DOI: 10.1080/19443994.2013.865568.
  • Songsrirote, K.; Naiviriya, T.; Rungwipoosana, T.; Gutrasaeng, C. The Study of Properties and Nutrient Determination of Hydrogel Made of Soybean Meal (Okara) Using Microwave-Assisted Heating. Mater. Today Proc. 2017, 4(5), 6519–6527. DOI: 10.1016/j.matpr.2017.06.162.
  • Sinha, S.; Sinha, A.; Mahto, D.; Ranjan, R. Study on the Growth Performance of the Broiler after Feeding of Okara Meal Containing with or without Non-Starch Polysaccharides Degrading Enzyme. Vet. World. 2013, 6(6), 325. DOI: 10.5455/vetworld.2013.325-328.
  • Ullah, I.; Hu, Y.; You, J.; Yin, T.; Xiong, S.; Din, Z.; Huang, Q.; Liu, R. Influence of Okara Dietary Fiber with Varying Particle Sizes on Gelling Properties, Water State and Microstructure of Tofu Gel. Food Hydrocoll. 2019, 89, 512–522. DOI: 10.1016/j.foodhyd.2018.11.006.
  • Oliveira, R. B. S.; Lucia, F. D.; Ferreira, E. B.; Oliveira, R. M. E.; Pimenta, C. J.; Pimenta, M. E.  S. G. Quality of Beef Burger with Addition of Wet Okara along the Storage. Ciênc. Agrotec. 2016, 40(6), 706–717. DOI: 10.1590/1413-70542016406005816.
  • Su, S. I. T.; Yoshida, C. M. P.; Contreras-Castillo, C. J.; Quiñones, E. M.; Venturini, A. C. Okara, a Soymilk Industry by-Product, as a Non-Meat Protein Source in Reduced Fat Beef Burgers. Ciência E Tecnol. Aliment. 2013, 33, 52–56. DOI: 10.1590/S0101-20612013000500009.
  • Turhan, S.; Temiz, H.; Sagir, I. Utilization of Wet Okara in Low-Fat Beef Patties. J. Muscle Foods. 2007, 18(2), 226–235. DOI: 10.1111/j.1745-4573.2007.00081.x.
  • Toda, K.; Chiba, K.; Ono, T. Effect of Components Extracted from Okara on the Physicochemical Properties of Soymilk and Tofu Texture. J. Food Sci. 2007, 72(2), 108–113. DOI: 10.1111/j.1750-3841.2006.00248.x.
  • Tavares, B. O.; Silva, E. P.; Silva, V. S. N.; Soares Júnior, M. S.; Ida, E. I.; Damiani, C. Stability of Gluten Free Sweet Biscuit Elaborated with Rice Bran, Broken Rice and Okara. Food Sci. Technol. 2016, 36(2), 296–303. DOI: 10.1590/1678-457x.0083.
  • Turhan, S.; Temiz, H.; Sagir, I. Characteristics of Beef Patties Using Okara Powder. J. Muscle Foods. 2009, 20(1), 89–100. DOI: 10.1111/j.1745-4573.2008.00138.x.
  • Bedani, R.; Campos, M. M.; Castro, I. A.; Rossi, E. A.; Saad, S. M. Incorporation of Soybean By-Product Okara and Inulin in a Probiotic Soy Yoghurt: Texture Profile and Sensory Acceptance. J. Sci. Food Agric. 2014, 94(1), 119–125. DOI: 10.1002/jsfa.6212.
  • Kamble, D. B.; Singh, R.; Rani, S.; Pratap, D. Physicochemical Properties, in Vitro Digestibility and Structural Attributes of Okara-Enriched Functional Pasta. J. Food Process. Preserv. 2019, 43(12), 1–9. DOI: 10.1111/jfpp.14232.
  • Pan, W. -C.; Liu, Y. -M.; Shiau, S. -Y. Effect of Okara and Vital Gluten on Physico-Chemical Properties of Noodle. Czech J. Food Sci. 2018, 36(4), 301–306. DOI: 10.17221/329/2017-CJFS.
  • Katayama, M.; Wilson, L. A. Utilization of Okara, a Byproduct from Soymilk Production, through the Development of Soy-Based Snack Food. J. Food Sci. 2008, 73(3), S152–S157. DOI: 10.1111/j.1750-3841.2008.00662.x.
  • Noriham, A.; Ariffaizuddin, R. M.; Noorlaila, A.; Zakry, A. N. F. Potential Use of Okara as Meat Replacer in Beef Sausage. J. Teknol. Sci. Eng. 2016, 78(6–6), 13–18.
  • Xu, X.; Liu, H.; Zhou, Y. Study on the Meitauza Production from Okara by Actinomucor Elegans and Zymomonas Mobilis. In Information Technology and Agricultural Engineering. Advances in Intelligent and Soft Computing; Zhu, E., Sambath, S., Eds.; Springer: Berlin, Heidelberg, 2012; Vol. 134 A. 329–336. DOI:10.1007/978-3-642-27537-1_41.
  • Moraes Filho, M. L.; Busanello, M.; Garcia, S. Optimization of the Fermentation Parameters for the Growth of Lactobacillus in Soymilk with Okara Flour. LWT- Food Sci. Technol. 2016, 74, 456–464. DOI: 10.1016/j.lwt.2016.08.009.
  • Đurović, S.; Nikolić, B.; Luković, N.; Jovanović, J.; Stefanović, A.; Šekuljica, N.; Mijin, D.; Knežević-Jugović, Z. The Impact of High-Power Ultrasound and Microwave on the Phenolic Acid Profile and Antioxidant Activity of the Extract from Yellow Soybean Seeds. Ind. Crops Prod. 2018, 122, 223–231. DOI: 10.1016/j.indcrop.2018.05.078.
  • Clemens, R. A.; Jones, J. M.; Kern, M.; Lee, S. -Y.; Mayhew, E. J.; Slavin, J. L.; Zivanovic, S. Functionality of Sugars in Foods and Health. Compr. Rev. Food Sci. Food Saf. 2016, 15(3), 433–470. DOI: 10.1111/1541-4337.12194.
  • AACC. The Definition of Dietary Fiber. Cereal Foods World. 2001, 46(3), 112–129. https://www.cerealsgrains.org/initiatives/definitions/Documents/DietaryFiber/DFDef.pdf (accessed Sept 17, 2019).
  • Yoshii, H.; Furuta, T.; Maeda, H.; Mori, H. Hydrolysis Kinetics of Okara and Characterization of Its Water-Soluble Polysaccharides. Biosci. Biotechnol. Biochem. 1996, 60(9), 1406–1409. DOI: 10.1271/bbb.60.1406.
  • Nakamura, A.; Furuta, H.; Maeda, H.; Nagamatsu, Y.; Yoshimoto, A. Analysis of Structural Components and Molecular Construction of Soybean Soluble Polysaccharides by Stepwise Enzymatic Degradation. Biosci. Biotechnol. Biochem. 2001, 65(10), 2249–2258. DOI: 10.1271/bbb.65.2249.
  • Pérez-López, E.; Mateos-Aparicio, I.; Rupérez, P. Low Molecular Weight Carbohydrates Released from Okara by Enzymatic Treatment under High Hydrostatic Pressure. Innov. Food Sci. Emerg. Technol. 2016, 38, 76–82. DOI: 10.1016/j.ifset.2016.09.014.
  • Pérez-López, E.; Mateos-Aparicio, I.; Rupérez, P. High Hydrostatic Pressure Aided by Food-Grade Enzymes as a Novel Approach for Okara Valorization. Innov. Food Sci. Emerg. Technol. 2017, 42, 197–203. DOI: 10.1016/j.ifset.2016.09.014.
  • Wolf, W. J.; Cowan, J. C.; Wolff, H. Soybeans as a Food Source. Crit. Rev. Food Technol. 1971, 2(1), 81–158. DOI:10.1080/10408397109527117.
  • Luthria, D. L.; Maria John, K. M.; Marupaka, R.; Natarajan, S. Recent Update on Methodologies for Extraction and Analysis of Soybean Seed Proteins. J. Sci. Food Agric. 2018, 98(15), 5572–5580. DOI: 10.1002/jsfa.9235.
  • Fierens, E.; Brijs, K.; Delcour, J. A. Emulsifying and Foaming Properties of Okara Protein Hydrolysates. Cereal Chem. 2016, 93(1), 71–76. DOI: 10.1094/CCHEM-02-15-0031-R.
  • Jiménez-Escrig, A.; Alaiz, M.; Vioque, J.; Rupérez, P. Health-Promoting Activities of Ultra-Filtered Okara Protein Hydrolysates Released by in Vitro Gastrointestinal Digestion: Identification of Active Peptide from Soybean Lipoxygenase. Eur. Food Res. Technol. 2010, 230(4), 655–663. DOI: 10.1007/s00217-009-1203-0.
  • Figueiredo, V. R. G.; Justus, A.; Pereira, D. G.; Georgetti, S. R.; Ida, E. I.; Kurozawa, L. E. Production of Hydrolysate of Okara Protein Concentrate with High Antioxidant Capacity and Aglycone Isoflavone Content. Brazilian Arch. Biol. Technol. 2019, 62. DOI: 10.1590/1678-4324-2019180478.
  • Pereira, D. G.; Justus, A.; Falcão, H. G.; Rocha, T. S.; Ida, E. I.; Kurozawa, L. E. Enzymatic Hydrolysis of Okara Protein Concentrate by Mixture of Endo and Exopeptidase. J. Food Process. Preserv. 2019, 43(10), 1–9. DOI: 10.1111/jfpp.14134.
  • Sbroggio, M. F.; Montilha, M. S.; Figueiredo, V. R. G.; Georgetti, S. R.; Kurozawa, L. E. Influence of the Degree of Hydrolysis and Type of Enzyme on Antioxidant Activity of Okara Protein Hydrolysates. Food Sci. Technol. 2016, 36(2), 375–381. DOI: 10.1590/1678-457X.000216.
  • Justus, A.; Pereira, D. G.; Ida, E. I.; Kurozawa, L. E. Combined Uses of an Endo- and Exopeptidase in Okara Improve the Hydrolysates via Formation of Aglycone Isoflavones and Antioxidant Capacity. LWT - Food Sci. Technol. 2019, 115(July), 108467. DOI: 10.1016/j.lwt.2019.108467.
  • Preece, K. E.; Hooshyar, N.; Krijgsman, A. J.; Fryer, P. J.; Zuidam, N. J. Intensification of Protein Extraction from Soybean Processing Materials Using Hydrodynamic Cavitation. Innov. Food Sci. Emerg. Technol. 2017, 41, 47–55. DOI: 10.1016/j.ifset.2017.01.002.
  • Preece, K. E.; Hooshyar, N.; Krijgsman, A.; Fryer, P. J.; Zuidam, N. J. Intensified Soy Protein Extraction by Ultrasound. Chem. Eng. Process. - Process Intensif. 2017, 113, 94–101. DOI: 10.1016/j.cep.2016.09.003.
  • Wiboonsirikul, J.; Mori, M.; Khuwijitjaru, P.; Adachi, S. Properties of Extract from Okara by Its Subcritical Water Treatment. Int. J. Food Prop. 2013, 16(5), 974–982. DOI: 10.1080/10942912.2011.573119.
  • Anderson, D.;. Bailey’s Industrial Oil and Fat Products. In Bailey’s Industrial Oil and Fat Products; Shahidi, F., Ed.; A. John Wiley & Sons, Inc.: Hoboken, New Jersey, 2005; pp 1–56.
  • Treybal, R. E. Mass Transfer Operations, Third.; McGGraw-Hill Book Company: Singapura, 1981.
  • DeCaprio, A. P.; Olajos, E. J.; Weber, P. Covalent Binding of a Neurotoxic N-Hexane Metabolite: Conversion of Primary Amines to Substituted Pyrrole Adducts by 2,5-Hexanedione. Toxicol. Appl. Pharmacol. 1982, 65(3), 440–450. DOI: 10.1016/0041-008X(82)90389-1.
  • EPA. Final Air Toxics Rule for Solvent Extraction in Vegetable Oil Production https://www.epa.gov/sites/production/files/2015-06/documents/vegetable_oil_fact_sheet.pdf (acessed Dec 18, 2019).
  • Rodrigues, C. E. C.; Aracava, K. K.; Abreu, F. N. Thermodynamic and Statistical Analysis of Soybean Oil Extraction Process Using Renewable Solvent. Int. J. Food Sci. Technol. 2010, 45(11), 2407–2414. DOI: 10.1111/j.1365-2621.2010.02417.x.
  • Toda, T. A.; Sawada, M. M.; Rodrigues, C. E. C. Kinetics of Soybean Oil Extraction Using Ethanol as Solvent: Experimental Data and Modeling. Food Bioprod. Process. 2016, 98, 1–10. DOI: 10.1016/j.fbp.2015.12.003.
  • Tuntiwiwattanapun, N.; Tongcumpou, C.; Wiesenborn, D. Optimization of Alcoholic Soybean Oil Extraction as a Step Towards Developing In-Situ Transesterification for Fatty Acid Isopropyl Esters. Ind. Crops Prod. 2016, 94, 189–196. DOI: 10.1016/j.indcrop.2016.08.029.
  • Dagostin, J. L. A.; Carpiné, D.; Corazza, M. L. Extraction of Soybean Oil Using Ethanol and Mixtures with Alkyl Esters (Biodiesel) as Co-Solvent: Kinetics and Thermodynamics. Ind. Crops Prod. 2015, 74, 69–75. DOI: 10.1016/j.indcrop.2015.04.054.
  • Cheng, M. H.; Sekhon, J. J. K.; Rosentrater, K. A.; Wang, T.; Jung, S.; Johnson, L. A. Environmental Impact Assessment of Soybean Oil Production: Extruding-Expelling Process, Hexane Extraction and Aqueous Extraction. Food Bioprod. Process. 2018, 108, 58–68. DOI: 10.1016/j.fbp.2018.01.001.
  • Qian, J.; Tong, J.; Chen, Y.; Yao, S.; Guo, H.; Yang, L. Study on Lipids Transfer in Aqueous Enzyme Hydrolysis Soybean Protein and Oil Extraction Process. Ind. Crops Prod. 2019, 137, 203–207. DOI: 10.1016/j.indcrop.2019.04.063.
  • Tu, J.; Wu, W. Establishment of an Aqueous Method for Extracting Soybean Oils Assisted by Adding Free Oil. Grasas Y Aceites. 2019, 70(3), 313. DOI: 10.3989/gya.0711182.
  • Wilkinson, N.; Hilton, R.; Hendry, D.; Venkitasamy, C.; Jacoby, W. Study of Process Variables in Supercritical Carbon Dioxide Extraction of Soybeans. Food Sci. Technol. Int. 2014, 20(1), 63–70. DOI: 10.1177/1082013212469620.
  • Rodrigues, G. M.; Cardozo-Filho, L.; d Silva, C. Pressurized Liquid Extraction of Oil from Soybean Seeds. Can. J. Chem. Eng. 2017, 95(12), 2383–2389. DOI: 10.1002/cjce.22922.
  • Coscueta, E. R.; Malpiedi, L. P.; Nerli, B. B. Micellar Systems of Aliphatic Alcohol Ethoxylates as a Sustainable Alternative to Extract Soybean Isoflavones. Food Chem. 2018, 264(May), 135–141. DOI: 10.1016/j.foodchem.2018.05.015.
  • Nkurunziza, D.; Pendleton, P.; Chun, B. S. Optimization and Kinetics Modeling of Okara Isoflavones Extraction Using Subcritical Water. Food Chem. 2019, 295(May), 613–621. DOI: 10.1016/j.foodchem.2019.05.129.
  • Handa, C. L.; Couto, U. R.; Vicensoti, A. H.; Georgetti, S. R.; Ida, E. I. Optimisation of Soy Flour Fermentation Parameters to Produce β-Glucosidase for Bioconversion into Aglycones. Food Chem. 2014, 152, 56–65. DOI: 10.1016/j.foodchem.2013.11.101.
  • Rostagno, M. A.; Palma, M.; Barroso, C. G. Ultrasound-Assisted Extraction of Soy Isoflavones. J. Chromatogr. A. 2003, 1012(2), 119–128. DOI: 10.1016/S0021-9673(03)01184-1.
  • Rostagno, M. A.; Palma, M.; Barroso, C. G. Pressurized Liquid Extraction of Isoflavones from Soybeans. Anal. Chim. Acta. 2004, 522(2), 169–177. DOI: 10.1016/j.aca.2004.05.078.
  • Cordisco, E.; Haidar, C. N.; Coscueta, E. R.; Nerli, B. B.; Malpiedi, L. P. Integrated Extraction and Purification of Soy Isoflavones by Using Aqueous Micellar Systems. Food Chem. 2016, 213, 514–520. DOI: 10.1016/j.foodchem.2016.07.001.
  • Rostagno, M. A.; Palma, M.; Barroso, C. G. Solid-Phase Extraction of Soy Isoflavones. J. Chromatogr. A. 2005, 1076(1–2), 110–117. DOI: 10.1016/j.chroma.2005.04.045.
  • Guimarães, R. M.; Ida, E. I.; Falcão, H. G.; Rezende, T. A. M.; Silva, J. S.; Alves, C. C. F.; Silva, M. A. P.; Egea, M. B. Evaluating Technological Quality of Okara Flours Obtained by Different Drying Processes. LWT- Food Sci. Technol. 2020, 123, 109062. DOI: 10.1016/j.lwt.2020.109062.
  • Yu, C. N.; Yang, C. Y. Effect of Ultrasound on the Extraction of Bioactive Aglycone Isoflavones for the Green Valorization of Black Soybean Residue (Okara). J. Food Process. Preserv. 2019, 43(7), 1–8. DOI: 10.1111/jfpp.13944.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.