421
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Influence of Lactose on the Physicochemical Properties and Stability of Infant Formula Powders: A Review

, ORCID Icon, , , &

References

  • FAO/WHO. Standard for Infant Formulas and Formulas for Special Medical Purposes Intended for Infants, CODEX STAN 72-1981; Food and Agricultural Organization of United Nations: Rome, 2007.
  • Koletzko, B.; Shamir, R.; Ashwell, M. Quality and Safety Aspects of Infant Nutrition. Ann. Nutr. Metab. 2012, 60(3), 179–184. DOI: 10.1159/000338803.
  • Martin, C. R.; Ling, P. R.; Blackburn, G. L. Review of Infant Feeding: Key Features of Breast Milk and Infant Formula. Nutrients. 2016, 8(5), 279. DOI: 10.3390/nu8050279.
  • Blanchard, E.; Zhu, P.; Schuck, P. Infant Formula Powders. In Handbook of Food Powders. Woodhead Publishing, 2013; pp 465–483. Cambridge: Woodhead Publishing.
  • O’Callaghan, D. M.; O’Mahony, J. A.; Ramanujam, K. S.; Burgher, A. M. Dehydrated Dairy Products| Infant Formulae. Encyclopedia of Dairy Sciences.2011, 135–145.
  • McCarthy, N. A.; Gee, V. L.; Hickey, D. K.; Kelly, A. L.; O’Mahony, J. A.; Fenelon, M. A. Effect of Protein Content on the Physical Stability and Microstructure of a Model Infant Formula. Int. Dairy J. 2013, 29(1), 53–59. DOI: 10.1016/j.idairyj.2012.10.004.
  • Tham, T. W. Y.; Yeoh, A. T. H.; Zhou, W. Characterisation of Aged Infant Formulas and Physicochemical Changes. Food Chem. 2017a, 219, 117–125. DOI: 10.1016/j.foodchem.2016.09.107.
  • Saxena, J.; Adhikari, B.; Brkljaca, R.; Huppertz, T.; Chandrapala, J.; Zisu, B. Inter-relationship between Lactose Crystallization and Surface Free Fat during Storage of Infant Formula. Food Chem. 2020a, 322, 126636. DOI: 10.1016/j.foodchem.2020.126636.
  • Saxena, J.; Adhikari, B.; Brkljaca, R.; Huppertz, T.; Chandrapala, J.; Zisu, B. Physicochemical Properties and Surface Composition of Infant Formula Powders. Food Chem. 2019, 297, 124967. DOI: 10.1016/j.foodchem.2019.124967.
  • Chávez-Servín, J. L.; Castellote, A. I.; López-Sabater, M. C. Evolution of Potential and Free Furfural Compounds in Milk-based Infant Formula during Storage. Food Res. Int. 2006, 39(5), 536–543. DOI: 10.1016/j.foodres.2005.10.012.
  • Rodríguez-Alcalá, L. M.; García-Martínez, M. C.; Cachón, F.; Marmesat, S.; Alonso, L.; Márquez-Ruiz, G.; Fontecha, J. Changes in the Lipid Composition of Powdered Infant Formulas during Long-term Storage. J. Agri. Food Chem. 2007, 55(16), 6533–6538. DOI: 10.1021/jf0708591.
  • Chávez-Servín, J. L.; De La Torre Carbot, K.; García-Gasca, T.; Castellote, A. I.; López-Sabater, M. C. Content and Evolution of Potential Furfural Compounds in Commercial Milk-based Infant Formula Powder after Opening the Packet. Food Chem. 2015, 166, 486–491. DOI: 10.1016/j.foodchem.2014.06.050.
  • Tham, T. W. Y.; Wang, C.; Yeoh, A. T. H.; Zhou, W. Moisture Sorption Isotherm and Caking Properties of Infant Formulas. J. Food Eng. 2016, 175, 117–126. DOI: 10.1016/j.jfoodeng.2015.12.014.
  • Tham, T. W. Y.; Xu, X.; Yeoh, A. T. H.; Zhou, W. Investigation of Caking by Fat Bridging in Aged Infant Formula. Food Chem. 2017b, 218, 30–39. DOI: 10.1016/j.foodchem.2016.09.043.
  • Contreras-Calderón, J.; Guerra-Hernández, E.; García-Villanova, B.; Gómez-Narváez, F.; Zapata-Betancur, A. Effect of Ingredients on Non-enzymatic Browning, Nutritional Value and Furanic Compounds in Spanish Infant Formulas. J. Food Nutr. Res. 2017, 5(4), 243–252.
  • Ferrer, E.; Alegrıa, A.; Farre, R.; Abellan, P.; Romero, F. High-performance Liquid Chromatographic Determination of Furfural Compounds in Infant Formulas: Changes during Heat Treatment and Storage. J. Chromatogr. A. 2002, 947(1), 85–95. DOI: 10.1016/S0021-9673(01)01593-X.
  • Ferrer, E.; Alegría, A.; Farré, R.; Abellán, P.; Romero, F. High-performance Liquid Chromatographic Determination of Furfural Compounds in Infant Formulas during Full Shelf-life. Food Chem. 2005, 89(4), 639–645. DOI: 10.1016/j.foodchem.2004.05.040.
  • Sabater, C.; Montilla, A.; Ovejero, A.; Prodanov, M.; Olano, A.; Corzo, C. N. Furosine and HMF Determination in Prebiotic-supplemented Infant Formula from Spanish Market. J. Food Compost. Anal. 2018, 66, 65–73. DOI: 10.1016/j.jfca.2017.12.004.
  • Masum, A. K. M.; Chandrapala, J.; Huppertz, T.; Adhikari, B.; Zisu, B. Effect of Storage Conditions on the Physicochemical Properties of Infant Milk Formula Powders Containing Different Lactose-to-maltodextrin Ratios. Food Chem. 2020a, 319, 126591. DOI: 10.1016/j.foodchem.2020.126591.
  • Lajoie, N.; Gauthier, S. F.; Pouliot, Y. Improved Storage Stability of Model Infant Formula by Whey Peptides Fractions. J. Agric. Food Chem. 2001, 49(4), 1999–2007. DOI: 10.1021/jf000881t.
  • Kelly, G. M.; O’Mahony, J. A.; Kelly, A. L.; O’Callaghan, D. J. Effect of Hydrolyzed Whey Protein on Surface Morphology, Water Sorption, and Glass Transition Temperature of a Model Infant Formula. J. Dairy Sci. 2016, 99(9), 6961–6972. DOI: 10.3168/jds.2015-10447.
  • Drapala, K. P.; Auty, M. A.; Mulvihill, D. M.; O’Mahony, J. A. Performance of Whey Protein Hydrolysate–maltodextrin Conjugates as Emulsifiers in Model Infant Formula Emulsions. Int. Dairy J. 2016, 62, 76–83. DOI: 10.1016/j.idairyj.2016.03.006.
  • Thomas, M. A. R. I. E. E. C.; Scher, J.; Desobry-Banon, S.; Desobry, S. Milk Powders Ageing: Effect on Physical and Functional Properties. Crit. Rev. Food Sci. Nutr. 2004, 44(5), 297–322. DOI: 10.1080/10408690490464041.
  • Dickinson, E. Stabilising Emulsion-Based Colloidal Structures with Mixed Food Ingredients. J. Sci. Food Agric. 2013, 93, 710–721. DOI: 10.1002/jsfa.6013.
  • Dalgleish, D. G.; Goff, H. D.; Brun, J. M.; Luan, B. Exchange Reactions between Whey Proteins and Caseins in Heated Soya Oil-in-water Emulsion systems — Overall Aspects of the Reaction. Food Hydrocolloids. 2002, 16(4), 303–311. DOI: 10.1016/S0268-005X(01)00103-5.
  • Singh, H.;. Interactions of Milk Proteins during the Manufacture of Milk Powders. Lait. 2007, 87, 413–423. DOI: 10.1051/lait:2007014.
  • Crowley, S. V.; Dowling, A. P.; Caldeo, V.; Kelly, A. L.; O’Mahony, J. A. Impact of α-lactalbumin:β-lactoglobulin Ratio on the Heat Stability of Model Infant Milk Formula Protein Systems. Food Chem. 2016, 194, 184–190. DOI: 10.1016/j.foodchem.2015.07.077.
  • Le, T. T.; Bhandari, B.; Holland, J. W.; Deeth, H. C. Maillard Reaction and Protein Cross-linking in Relation to the Solubility of Milk Powders. J. Agri. Food Chem. 2011, 59(23), 12473–12479. DOI: 10.1021/jf203460z.
  • Allison, S.; Chang, B.; Randolph, T.; Carpenter, J. Hydrogen Bonding between Sugar and Protein Is Responsible for Inhibition of Dehydration-induced Protein Unfolding. Arch. Biochem. Biophys. 1999, 1999(365), 289–298. DOI: 10.1006/abbi.1999.1175.
  • Arakawa, T.; Prestrelski, S.; Kenney, W.; Carpenter, J. Factors Affecting Short-term and Long-term Stabilities of Proteins. Adv. Drug Deliver. Rev. 2001, 46(1–3), 307–326. DOI: 10.1016/S0169-409X(00)00144-7.
  • Haque, M. K.; Roos, Y. H. Differences in the Physical State and Thermal Behavior of Spray-dried and Freeze-dried Lactose and Lactose/protein Mixtures. Innov. Food Sci. Emerg. 2006, 7(1–2), 62–73. DOI: 10.1016/j.ifset.2004.12.004.
  • Gänzle, M. G.; Haase, G.; Jelen, P. Lactose: Crystallization, Hydrolysis and Value-added Derivatives. Int. Dairy J. 2008, 18(7), 685–694. DOI: 10.1016/j.idairyj.2008.03.003.
  • Saxena, J.; Adhikari, B.; Brkljaca, R.; Huppertz, T.; Zisu, B.; Chandrapala, J. Effect of Lactose Pre-crystallisation on the Physicochemical Properties during Storage of Infant Formula Containing Hydrolysed Whey Protein. Int. Dairy J. 2020b, 110, 104800. DOI: 10.1016/j.idairyj.2020.104800.
  • Listiohadi, Y. D.; Hourigan, J. A.; Sleigh, R. W.; Steele, R. J. An Exploration of the Caking of Lactose in Whey and Skim Milk Powders. Aust. J. Dairy Technol. 2005, 60(3), 207.
  • Hogan, S. A.; O’Callaghan, D. J. Influence of Milk Proteins on the Development of Lactose-induced Stickiness in Dairy Powders. Int. Dairy J. 2010a, 20(3), 212–221. DOI: 10.1016/j.idairyj.2009.11.002.
  • Li, R.; Roos, Y. H.; Miao, S. Influence of Pre-crystallisation and Water Plasticization on Flow Properties of lactose/WPI Solids Systems. Powder Technol. 2016a, 294, 365–372. DOI: 10.1016/j.powtec.2016.02.047.
  • Hogan, S. A.; Famelart, M. H.; O’Callaghan, D. J.; Schuck, P. A Novel Technique for Determining Glass–rubber Transition in Dairy Powders. J. Food Eng. 2010b, 99(1), 76–82. DOI: 10.1016/j.jfoodeng.2010.01.040.
  • Huppertz, T.; Gazi, I. Lactose in Dairy Ingredients: Effect on Processing and Storage Stability. J. Dairy Sci. 2016, 99(8), 6842–6851. DOI: 10.3168/jds.2015-10033.
  • Roos, Y. H.;. Importance of Glass Transition and Water Activity to Spray Drying and Stability of Dairy Powders. Le Lait. 2002, 82(4), 475–484. DOI: 10.1051/lait:2002025.
  • Haque, M. K.; Roos, Y. H. Water Plasticization and Crystallization of Lactose in Spray-dried Lactose/protein Mixtures. J. Food Sci. 2004, 69(1), 24–29. DOI: 10.1111/j.1365-2621.2004.tb17863.x.
  • Silalai, N.; Roos, Y. H. Roles of Water and Solids Composition in the Control of Glass Transition and Stickiness of Dairy Powders. J. Food Sci. 2010a, 75(5), E285–E296. DOI: 10.1111/j.1750-3841.2010.01652.x.
  • Górska, A.; Szulc, K.; Ostrowska-Ligęza, E.; Wirkowska, M.; Bryś, J. The Influence of Trehalose–maltodextrin and Lactose–maltodextrin Matrices on Thermal and Sorption Properties of Spray-dried β-lactoglobulin–vitamin D3 Complexes. J Therm. Anal. Calorim. 2013, 112(1), 429–436. DOI: 10.1007/s10973-013-2980-z.
  • Ostrowska-Ligęza, E.; Jakubczyk, E.; Górska, A.; Wirkowska, M.; Bryś, J. The Use of Moisture Sorption Isotherms and Glass Transition Temperature to Assess the Stability of Powdered Baby Formulas. J. Therm. Anal. Calorim. 2014, 118(2), 911–918. DOI: 10.1007/s10973-014-3846-8.
  • Masum, A. K. M.; Chandrapala, J.; Adhikari, B.; Huppertz, T.; Zisu, B. Effect of Lactose-to-maltodextrin Ratio on Emulsion Stability and Physicochemical Properties of Spray-dried Infant Milk Formula Powders. J. Food Eng. 2019, 254, 34–41. DOI: 10.1016/j.jfoodeng.2019.02.023.
  • Drapala, K. P.; Auty, M. A.; Mulvihill, D. M.; O’Mahony, J. A. Influence of Emulsifier Type on the Spray-drying Properties of Model Infant Formula Emulsions. Food Hydrocoll. 2017, 69, 56–66. DOI: 10.1016/j.foodhyd.2016.12.024.
  • Chronakis, I. S.;. On the Molecular Characteristics, Compositional Properties, and Structural-functional Mechanisms of Maltodextrins: A Review. Crit. Rev. Food Sci. Nutr. 1998, 38(7), 599–637. DOI: 10.1080/10408699891274327.
  • Roos, Y.; Karel, M. Phase Transitions of Mixtures of Amorphous Polysaccharides and Sugars. Biotechnol. Progress. 1991, 7(1), 49–53. DOI: 10.1021/bp00007a008.
  • Castro, N.; Durrieu, V.; Raynaud, C.; Rouilly, A. Influence of DE-value on the Physicochemical Properties of Maltodextrin for Melt Extrusion Processes. Carbohydr. Polym. 2016, 144, 464–473. DOI: 10.1016/j.carbpol.2016.03.004.
  • Wang, Y. J.; Wang, L. Structures and Properties of Commercial Maltodextrins from Corn, Potato, and Rice Starches. Stärke. 2000, 52(8–9), 296–304. DOI: 10.1002/1521-379X(20009)52:8/9<296::AID-STAR296>3.0.CO;2-A.
  • Kalichevsky, M. T.; Blanshard, J. O. H. N. M. V.; Tokargzuk, P. F. Effect of Water content and Sugars on the Glass Transition of Casein and Sodium Caseinate. Int. J. Food Sci. 2007, 28(2), 139–151. DOI: 10.1111/j.1365-2621.1993.tb01259.x.
  • Noel, T. R.; Parker, R.; Ring, S. G. Effect of Molecular Structure and Water Content on the Dielectric Relaxation Behaviour of Amorphous Low Molecular Weight Carbohydrates above and below Their Glass Transition. Carbohydr.Res. 2000, 329, 839–845. DOI: 10.1016/S0008-6215(00)00227-5.
  • Liu, Y.; Bhandari, B.; Zhou, W. Glass Transition and Enthalpy Relaxation of Amorphous Food Saccharides:  A Review. J. Agr. Food Chem. 2006, 54(16), 5701–5717. DOI: 10.1021/jf060188r.
  • Silalai, N.; Roos, Y. H. Dielectric and Mechanical Properties around Glass Transition of Milk Powders. Drying Technol. 2010b, 28(9), 1044–1054. DOI: 10.1080/07373937.2010.505520.
  • Silalai, N.; Roos, Y. H. Coupling of Dielectric and Mechanical Relaxations with Glass Transition and Stickiness of Milk Solids. J. Food Eng. 2011, 104(3), 445–454. DOI: 10.1016/j.jfoodeng.2011.01.009.
  • Morgan, F.; Appolonia Nouzille, C.; Baechler, R.; Vuataz, G.; Raemy, A. Lactose Crystallisation and Early Maillard Reaction in Skim Milk Powder and Whey Protein Concentrates. Le Lait. 2005, 85(4–5), 315–323. DOI: 10.1051/lait:2005017.
  • Shrestha, A. K.; Howes, T.; Adhikari, B. P.; Wood, B. J.; Bhandari, B. R. Effect of Protein Concentration on the Surface Composition, Water Sorption and Glass Transition Temperature of Spray-dried Skim Milk Powders. Food Chem. 2007, 104(4), 1436–1444. DOI: 10.1016/j.foodchem.2007.02.015.
  • Zhou, P.; Liu, D.; Chen, X.; Chen, Y.; Labuza, T. P. Stability of Whey Protein Hydrolysate Powders: Effects of Relative Humidity and Temperature. Food Chem. 2014, 150, 457–462. DOI: 10.1016/j.foodchem.2013.11.027.
  • Mounsey, J. S.; Hogan, S. A.; Murray, B. A.; O’Callaghan, D. J. Effects of Hydrolysis on Solid-state Relaxation and Stickiness Behavior of Sodium Caseinate-lactose Powders. J. Dairy Sci. 2012, 95(5), 2270–2281. DOI: 10.3168/jds.2011-4674.
  • Bhandari, B. R.; Howes, T. Implication of Glass Transition for the Drying and Stability of Dried Foods. J. Food Eng. 1999, 40(1–2), 71–79. DOI: 10.1016/S0260-8774(99)00039-4.
  • Bronlund, J. The Modelling of Caking in Bulk Lactose. Doctoral dissertation, Massey University.
  • Murrieta-Pazos, I.; Gaiani, C.; Galet, L.; Cuq, B.; Desobry, S.; Scher, J. Comparative Study of Particle Structure Evolution during Water Sorption: Skim and Whole Milk Powders. Colloid. Surf. B. 2011, 87(1), 1–10. DOI: 10.1016/j.colsurfb.2011.05.001.
  • Fitzpatrick, J. J.; Barry, K.; Cerqueira, P. S. M.; Iqbal, T.; O’neill, J.; Roos, Y. H. Effect of Composition and Storage Conditions on the Flowability of Dairy Powders. Int. Dairy J. 2007, 17(4), 383–392. DOI: 10.1016/j.idairyj.2006.04.010.
  • Maidannyk, V.; McSweeney, D. J.; Hogan, S. A.; Miao, S.; Montgomery, S.; Auty, M. A. E.; McCarthy, N. A. Water Sorption and Hydration in Spray-dried Milk Protein Powders: Selected Physicochemical Properties. Food Chem. 2020, 304, 125418. DOI: 10.1016/j.foodchem.2019.125418.
  • Kelly, G. M.; O’Mahony, J. A.; Kelly, A. L.; Huppertz, T.; Kennedy, D.; O’Callaghan, D. J. Influence of Protein Concentration on Surface Composition and Physico-chemical Properties of Spray-dried Milk Protein Concentrate Powders. Int. Dairy J. 2015, 51, 34–40. DOI: 10.1016/j.idairyj.2015.07.001.
  • Hogan, S. A.; O’callaghan, D. J. Moisture Sorption and Stickiness Behaviour of Hydrolysed Whey Protein/lactose Powders. Dairi Sci. Technol. 2013, 93(4–5), 505–521. DOI: 10.1007/s13594-013-0129-2.
  • Li, K.; Woo, M. W.; Selomulya, C. Effects of Composition and Relative Humidity on the Functional and Storage Properties of Spray Dried Model Milk Emulsions. J. Food Eng. 2016b, 169, 196–204. DOI: 10.1016/j.jfoodeng.2015.09.002.
  • Zhou, Y.; Roos, Y. H. Characterization of Carbohydrate-Protein Matrices for Nutrient Delivery. J Food Sci. 2011, 76(4), E368–E376. DOI: 10.1111/j.1750-3841.2011.02126.x.
  • Schuck, P.; Dolivet, A. Lactose Crystallization: Determination of $\alpha $-lactose Monohydrate in Spray-dried Dairy Products. Le Lait. 2002, 82(4), 413–421. DOI: 10.1051/lait:2002020.
  • Omar, A. M. E.; Roos, Y. H. Water Sorption and Time-dependent Crystallization Behaviour of Freeze-dried Lactose–salt Mixtures. LWT-Food Sci. Technol. 2007, 40(3), 520–528. DOI: 10.1016/j.lwt.2005.12.006.
  • McCarthy, N. A.; Kelly, A. L.; O’Mahony, J. A.; Hickey, D. K.; Chaurin, V.; Fenelon, M. A. Effect of Protein Content on Emulsion Stability of a Model Infant Formula. Int. Dairy J. 2012, 25(2), 80–86. DOI: 10.1016/j.idairyj.2012.03.003.
  • Foster, K. The Prediction of Sticking in Dairy Powders: A Thesis Presented in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy in Bioprocess Engineering at Massey University. Doctoral dissertation, Massey University, 2002.
  • Masum, A. K. M.; Chandrapala, J.; Huppertz, T.; Adhikari, B.; Zisu, B. Influence of Drying Temperatures and Storage Parameters on the Physicochemical Properties of Spray-dried Infant Milk Formula Powders. Int. Dairy J. 2020b, 105, 104696. DOI: 10.1016/j.idairyj.2020.104696.
  • Phosanam, A.; Chandrapala, J.; Huppertz, T.; Adhikari, B.; Zisu, B. Changes in Physicochemical and Surface Characteristics in Model Infant Milk Formula Powder (IMF) during Storage. Drying Technol. 2020, 1–11. DOI: 10.1080/07373937.2020.1755978
  • Tonon, R. V.; Baroni, A. F.; Brabet, C.; Gibert, O.; Pallet, D.; Hubinger, M. D. Water Sorption and Glass Transition Temperature of Spray Dried Açai (Euterpe Oleracea Mart.) Juice . J Food Eng. 2009, 94(3–4), 215–221. DOI: 10.1016/j.jfoodeng.2009.03.009.
  • Modugno, C.; Paterson, A. H.; McLeod, J. Lactose Caking: Influence of the Particle Size Distribution and the Water Content, Procedia Engineering. 2015.
  • Benkovic, M.; Bauman, I. Flow Properties of Commercial Infant Formula Powders. World Acad. Sci. Eng.Technol. 2009, 54(6), 495–499.
  • Kim, E. H. J.; Dong Chen, X.; Pearce, D. On the Mechanisms of Surface Formation and the Surface Compositions of Industrial Milk Powders. Drying Technol. 2003, 21(2), 265–278. DOI: 10.1081/DRT-120017747.
  • Kim, E. H. J.; Chen, X. D.; Pearce, D. Surface Composition of Industrial Spray-dried Milk Powders. 2. Effects of Spray Drying Conditions on the Surface Composition. J. Food Eng. 2009, 94(2), 169–181.
  • Kelly, G. M.; O’Mahony, J. A.; Kelly, A. L.; O’Callaghan, D. J. Physical Characteristics of Spray-dried Dairy Powders Containing Different Vegetable Oils. J. Food Eng. 2014, 122, 122–129. DOI: 10.1016/j.jfoodeng.2013.08.028.
  • Gaiani, C.; Morand, M.; Sanchez, C.; Tehrany, E. A.; Jacquot, M.; Schuck, P.; Jeantet, R.; Scher, J. How Surface Composition of High Milk Proteins Powders Is Influenced by Spray-drying Temperature. Colloid. Surf. B. 2010, 75(1), 377–384. DOI: 10.1016/j.colsurfb.2009.09.016.
  • Masum, A. K. M.; Huppertz, T.; Chandrapala, J.; Adhikari, B.; Zisu, B. Physicochemical Properties of Spray-dried Model Infant Milk Formula Powders: Influence of Whey Protein-to-casein Ratio. Int. Dairy J. 2020c, 100, 104565. DOI: 10.1016/j.idairyj.2019.104565.
  • Kim, E. H. J.; Chen, X. D.; Pearce, D. Melting Characteristics of Fat Present on the Surface of Industrial Spray-dried Dairy Powders. Colloid. Surf. B. 2005, 42(1), 1–8. DOI: 10.1016/j.colsurfb.2005.01.004.
  • Nasirpour, A.; Scher, J.; Desobry, S. Baby Foods: Formulations and Interactions (A Review). Crit. Rev. Food Sci. Nutr. 2006, 46(8), 665–681. DOI: 10.1080/10408390500511896.
  • Drapala, K. P.; Mulvihill, D. M.; O’Mahony, J. A. Improving the Oxidative Stability of Model Whey Protein Hydrolysate‐based Infant Formula Emulsions with Lecithin. Int. J. Dairy Technol. 2018, 71(4), 966–974. DOI: 10.1111/1471-0307.12538.
  • Ferrer, E.; Alegría, A.; Farré, R.; Abellán, P.; Romero, F. Effects of Thermal Processing and Storage on Available Lysine and Furfural Compounds Contents of Infant Formulas. J. Agri. Food Chem. 2000, 48(5), 1817–1822. DOI: 10.1021/jf991197l.
  • Pires, R. P. S.; Cappato, L. P.; Guimarães, J. T.; Rocha, R. S.; Silva, R.; Balthazar, C. F.; Freitas, M. Q.; Silva, P. H. F.; Neto, R. P. C.; Tavares, M. I. B. Ohmic Heating for Infant Formula Processing: Evaluating the Effect of Different Voltage Gradient. Journal of Food Engineering. 2020, 280, 109989. DOI: 10.1016/j.jfoodeng.2020.109989.
  • Cardoso, H. B.; Wierenga, P. A.; Gruppen, H.; Schols, H. A. Maillard Induced Glycation Behaviour of Individual Milk Proteins. Food Chem. 2018, 252, 311–317. DOI: 10.1016/j.foodchem.2018.01.106.
  • Rada-Mendoza, M.; Sanz, M. L.; Olano, A.; Villamiel, M. Formation of Hydroxymethylfurfural and Furosine during the Storage of Jams and Fruit-based Infant Foods. Food Chem. 2004, 85(4), 605–609. DOI: 10.1016/j.foodchem.2003.07.002.
  • Gonzáles, A. S. P.;. Available Lysine, Protein Digestibility and Lactulose in Commercial Infant Formulas. Int. Dairy J. 2003, 13(2–3), 95–99. DOI: 10.1016/S0958-6946(02)00173-5.
  • Guerra-Hernandez, E.; Leon Gomez, C.; Garcia-Villanova, B.; Corzo Sanchez, N.; Romera Gomez, J. M. Effect of Storage on Non-enzymatic Browning of Liquid Infant Milk Formulae. J. Sci. Food Agri. 2002, 82(5), 587–592. DOI: 10.1002/jsfa.1078.
  • Ferrer, E.; Alegría, A.; Farré, R.; Abellán, P.; Romero, F.; Clemente, G. Evolution of Available Lysine and Furosine Contents in Milk-based Infant Formulas Throughout the Shelf-life Storage Period. J. Sci. Food Agri. 2003, 83(5), 465–472. DOI: 10.1002/jsfa.1402.
  • Fenaille, F.; Parisod, V.; Visani, P.; Populaire, S.; Tabet, J. C.; Guy, P. A. Modifications of Milk Constituents during Processing: A Preliminary Benchmarking Study. Int. Dairy J. 2006, 16(7), 728–739. DOI: 10.1016/j.idairyj.2005.08.003.
  • Mulcahy, E. M.; Park, C. W.; Drake, M.; Mulvihill, D. M.; O’Mahony, J. A. Improvement of the Functional Properties of Whey Protein Hydrolysate by Conjugation with Maltodextrin. Int. Dairy J. 2016, 60, 47–54. DOI: 10.1016/j.idairyj.2016.02.049.
  • Tavano, O. L.;. Protein Hydrolysis Using Proteases: An Important Tool for Food Biotechnology. Journal of Molecular Catalysis B: Enzymatic. 2013, 90, 1–11. DOI: 10.1016/j.molcatb.2013.01.011.
  • Luzzi, G.; Steffens, M.; Clawin‐Rädecker, I.; Hoffmann, W.; Franz, C. M.; Fritsche, J.; Lorenzen, P. C. Enhancing the Sweetening Power of Lactose by Enzymatic Modification in the Reformulation of Dairy Products. Int. J. Dairy Technol. 2020, 73(3), 502–512. DOI: 10.1111/1471-0307.12681.
  • Chevalier, F.; Chobert, J.-M.; Popineau, Y.; Nicolas, M. G.; Haertlé, T. Improvement of Functional Properties of β-lactoglobulin Glycated through the Maillard Reaction Is Related to the Nature of the Sugar. International Dairy Journal. 2001, 11(3), 145–152. DOI: 10.1016/S0958-6946(01)00040-1.
  • Rufián-Henares, J. Á.; García-Villanova, B.; Guerra-Hernández, E. Generation of Furosine and Color in Infant/enteral Formula-resembling Systems. J. Agri. Food Chem. 2004, 52(17), 5354–5358. DOI: 10.1021/jf040088q.
  • Carulli, S.; Calvano, C. D.; Palmisano, F.; Pischetsrieder, M. MALDI-TOF MS Characterization of Glycation Products of Whey Proteins in a Glucose/galactose Model System and Lactose-free Milk. J. Agri. Food Chem. 2011, 59(5), 1793–1803. DOI: 10.1021/jf104131a.
  • Naranjo, G. B.; Gonzales, A. S. P.; Leiva, G. E.; Malec, L. S. The Kinetics of Maillard Reaction in Lactose-hydrolysed Milk Powder and Related Systems Containing Carbohydrate Mixtures. Food Chemistry. 2013, 141(4), 3790–3795. DOI: 10.1016/j.foodchem.2013.06.093.
  • Oh, M. J.; Kim, Y.; Lee, S. H.; Lee, K. W.; Park, H. Y. Prediction of CML Contents in the Maillard Reaction Products for Casein-monosaccharides Model. Food Chem. 2018, 267, 271–276. DOI: 10.1016/j.foodchem.2017.07.141.
  • Birlouez-aragon, I.; Locquet, N.; De St Louvent, E.; Bouveresse, D. J. O. U. A. N.-R. I. M. B. A. U. D.; Stahl, P. Evaluation of the Maillard Reaction in Infant Formulas by Means of Front-Face Fluorescence. Ann. NY Acad. Sci. 2005, 1043(1), 308–318. DOI: 10.1196/annals.1333.038.
  • Haque, E.; Bhandari, B. R.; Gidley, M. J.; Deeth, H. C.; Møller, S. M.; Whittaker, A. K. Protein Conformational Modifications and Kinetics of Water− Protein Interactions in Milk Protein Concentrate Powder upon Aging: Effect on Solubility. J. Agri. Food Chem. 2010a, 58(13), 7748–7755. DOI: 10.1021/jf1007055.
  • Wang, W.-Q.; Bao, Y.-H.; Chen, Y. Characteristics and Antioxidant Activity of Water-soluble Maillard Reaction Products from Interactions in a Whey Protein Isolate and Sugars System. Food Chemistry. 2013, 139(1–4), 355–361. DOI: 10.1016/j.foodchem.2013.01.072.
  • Srivastava, A. K.; Iconomidou, V. A.; Chryssikos, G. D.; Gionis, V.; Kumar, K.; Hamodrakas, S. J. Secondary Structure of Chorion Proteins of the Lepidoptera Pericallia Ricini and Ariadne Merione by ATR FT-IR and micro-Raman Spectroscopy. Int. J. Biol. Macromol. 2011, 49(3), 317–322. DOI: 10.1016/j.ijbiomac.2011.05.006.
  • Sun, W. W.; Yu, S. J.; Zeng, X. A.; Yang, X. Q.; Jia, X. Properties of Whey Protein Isolate–dextran Conjugate Prepared Using Pulsed Electric Field. Food Res. Int. 2011, 44(4), 1052–1058. DOI: 10.1016/j.foodres.2011.03.020.
  • Lederer, M. O.; Klaiber, R. G. Cross-linking of Proteins by Maillard Processes: Characterization and Detection of Lysine–arginine Cross-links Derived from Glyoxal and Methylglyoxal. Bioorganic & Medicinal Chemistry. 1999, 7(11), 2499–2507. DOI: 10.1016/S0968-0896(99)00212-6.
  • Jongberg, S.; Rasmussen, M.; Skibsted, L. H.; Olsen, K. Detection of Advanced Glycation End-products (Ages) during Dry-state Storage of β-lactoglobulin/lactose. Aust. J. Chem. 2013, 65(12), 1620–1624.
  • Stapelfeldt, H.; Nielsen, B. R.; Skibsted, L. H. Effect of Heat Treatment, Water Activity and Storage Temperature on the Oxidative Stability of Whole Milk Powder. Int. Dairy J. 1997, 7(5), 331–339. DOI: 10.1016/S0958-6946(97)00016-2.
  • Agostoni, C.; Marangoni, F.; Bernardo, L.; Lammardo, A. M.; Galli, C.; Riva, E. Long‐chain Polyunsaturated Fatty Acids in Human Milk. Acta Paediatr. 1999, 88, 68–71. DOI: 10.1111/j.1651-2227.1999.tb01303.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.