967
Views
6
CrossRef citations to date
0
Altmetric
Review

Isolation, Characterization, and Application of Nanocellulose from Agro-industrial By-products: A Review

& ORCID Icon

References

  • Fisher, Z.; Jackson, A.; Kovalevsky, A.; Oksanen, E.; Wacklin, H. Biological Structures. In Felix Fernandez-Alonso, David L. Price. Eds. Experimental Methods in the Physical Sciences; Academic Press, INC.: USA, 2017; 1–75. DOI:10.1016/B978-0-12-805324-9.00001-7.
  • Marchessault, R.; Sundararajan, P. Cellulose. In Gerald O. Aspinall. Eds. The Polysaccharides; Academic Press, INC.: USA, 1983; pp 11–95.
  • Ummartyotin, S.; Manuspiya, H. A Critical Review on Cellulose: From Fundamental to an Approach on Sensor Technology. Renew. Sust. Energ. Rev. 2015, 41, 402–412. DOI: 10.1016/j.rser.2014.08.050.
  • Zinge, C.; Kandasubramanian, B. Nanocellulose Based Biodegradable Polymers. Eur. Polym. J. 2020, 133, 109758. DOI: 10.1016/j.eurpolymj.2020.109758.
  • Immonen, K.; Lahtinen, P.; Pere, J.; Carrasco, G. C. Effects of Surfactants on the Preparation of Nanocellulose-PLA Composites. Bioengineering. 2017, 4(4), 91. DOI: 10.3390/bioengineering4040091.
  • Wang, J.; Liu, X.; Jin, T.; He, H.; Liu, L. Preparation of Nanocellulose and Its Potential in Reinforced Composites: A Review. J. Biomat. Sci. Polym. Ed. 2019, 30(11), 919–946. DOI: 10.1080/09205063.2019.1612726
  • Fujisawa, S.; Togawa, E.; Kuroda, K. Nanocellulose-stabilized Pickering Emulsions and Their Applications. Sci. Technol. Adv. MaT. 2017, 18(1), 959–971. DOI: 10.1080/14686996.2017.1401423.
  • Prado, K. S.; Gonzales, D.; Spinacé, M. A. S. Recycling of Viscose Yarn Waste through One-step Extraction of Nanocellulose. Int. J. Biol. Macromol. 2019, 136, 729–737. DOI: 10.1016/j.ijbiomac.2019.06.124.
  • Oksman, K.; Aitomäki, Y.; Mathew, A. P.; Siqueira, G.; Zhou, Q.; Butylina, S.; Tanpichai, S.; Zhou, X.; Hooshmand, S. Review of the Recent Developments in Cellulose Nanocomposite Processing. Compos. Part A Appl. Sci. Manuf. 2016, 83, 2–18. DOI: 10.1016/j.compositesa.2015.10.041.
  • Kumar, V.; Bollström, R.; Yang, A.; Chen, Q.; Chen, G.; Salminen, P.; Bousfield, D.; Toivakka, M. Comparison of Nano- and Microfibrillated Cellulose Films. Cellulose. 2014, 21(5), 3443–3456. DOI: 10.1007/s10570-014-0357-5.
  • Xie, H.; Du, H.; Yang, X.; Si, C. Recent Strategies in Preparation of Cellulose Nanocrystals and Cellulose Nanofibrils Derived from Raw Cellulose Materials. Int. J. Polym. Sci. 2018, 2018, 7923068. DOI: 10.1155/2018/7923068.
  • Yang, B.; Zhang, S.; Hu, H.; Duan, C.; He, Z.; Ni, Y. Separation of Hemicellulose and Cellulose from Wood Pulp Using a γ-valerolactone (Gvl)/water Mixture. Sep. Purif. Technol. 2020, 248, 117071. DOI: 10.1016/j.seppur.2020.117071.
  • Mudgil, D.; Barak, S. Classification, Technological Properties, and Sustainable Source. In Charis M. Galanakis. Dietary Fiber: Properties, Recovery, and Applications; Elsevier Inc: India, 2019; pp 27–51.
  • Phanthong, P.; Reubroycharoen, P.; Hao, X.; Xu, G.; Abudula, A.; Nanocellulose:, G. G.; Extraction and Application. Carbon Resour. Convers. 2018, 11, 32–43. DOI:10.1016/j.crcon.2018.05.004.
  • Tayeb, A. H.; Amini, E.; Ghasemi, S.; Tajvidi, M. Cellulose Nanomaterials — Binding Properties and Applications : A Review. Molecules. 2018, 23(10), 2684. DOI: 10.3390/molecules23102684.
  • Kannam, S. K.; Oehme, D. P.; Doblin, M. S.; Gidley, M. J.; Bacic, A.; Downton, M. T. Hydrogen Bonds and Twist in Cellulose Microfibrils. Carbohydr. Polym. 2017, 175, 433–439. DOI: 10.1016/j.carbpol.2017.07.083.
  • Kadimi, A.; Benhamou, K.; Habibi, Y.; Ounaies, Z.; Kaddami, H. Nanocellulose Alignment and Electrical Properties Improvement. In Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements; Elsevier Inc: Chennai, India, 2016; 343–376. DOI:10.1016/B978-0-323-44248-0.00011-0.
  • Fortunato, E.; Gaspar, D.; Duarte, P.; Pereira, L.; Águas, H.; Vicente, A.; Dourado, F.; Gama, M.; Martins, R. Optoelectronic Devices from Bacterial NanoCellulose. In Miguel Gama, Fernando Dourado, Stanislaw Bielecki. Eds. Bacterial Nanocellulose: From Biotechnology to Bio-Economy; Elsevier Inc: US, 2016; 179–197. DOI:10.1016/B978-0-444-63458-0.00011-1.
  • Sheikhi, A.; Van De Ven, T. G. M. Colloidal Aspects of Janus-like Hairy Cellulose Nanocrystalloids. Curr. Opin. Colloid Interface Sci. 2017, 29, 21–31. DOI: 10.1016/j.cocis.2017.02.001.
  • Sharma, A.; Thakur, M.; Bhattacharya, M.; Mandal, T.; Goswami, S. Commercial Application of Cellulose Nano-composites – A Review. Biotechnol. Rep. 2019, 21, 1–15.
  • Melikoğlu, A. Y.; Bilek, S. E.; Cesur, S. Optimum Alkaline Treatment Parameters for the Extraction of Cellulose and Production of Cellulose Nanocrystals from Apple Pomace. Carbohydr. Polym. 2019, 215, 330–337. DOI: 10.1016/j.carbpol.2019.03.103.
  • Bhat, A. H.; Khan, I.; Usmani, M. A.; Umapathi, R.; Al-Kindy, S. M. Z. Cellulose an Ageless Renewable Green Nanomaterial for Medical Applications: An Overview of Ionic Liquids in Extraction, Separation and Dissolution of Cellulose. Int. J. Biol. Macromol. 2019, 129, 750–777. DOI: 10.1016/j.ijbiomac.2018.12.190.
  • Szymanska-Chargot, M.; Chylinska, M.; Gdula, K.; Koziol, A.; Zdunek, A. Isolation and Characterization of Cellulose from Different Fruit and Vegetable Pomaces. Polymers. 2017, 9(10), 495. DOI: 10.3390/polym9100495.
  • Sila, D. N.; Van Buggenhout, S.; Duvetter, T.; Fraeye, I.; De Roeck, A.; Van Loey, A.; Hendrickx, M. Pectins in Processed Fruits and Vegetables: Part II-Structure-Function Relationships. Compr. Rev. Food Sci. Food Saf. 2009, 8(2), 86–104. DOI: 10.1111/j.1541-4337.2009.00071.x.
  • Sanchez, O.; Sierra, R. J. C. Delignification Process of Agro-Industrial Wastes an Alternative to Obtain Fermentable Carbohydrates for Producing Fuel. 2011, Altern. Fuel. DOI: 10.5772/22381.
  • Yingkamhaeng, N.; Sukyai, P. The Potential of Mango Peel Utilization for Cellulose Extraction by Hydrothermal Pretreatment. The 26 th Annual Meeting of the Thai Society for Biotechnology and International Conference, Mae Fah Luang University Chiang Rai, Thailand, 2014.
  • Gierer, J.;. Chemistry of Delignification - Part 1: General Concept and Reactions during Pulping. Wood Sci. Technol. 1985, 19(4), 289–312. DOI: 10.1007/BF00350807.
  • Gray, N. F.; Chlorine Dioxide. Microbiology of Waterborne Diseases: Microbiological Aspects and Risks: Second Edition. Elsevier Ltd.: Great Britain, 2013; pp 591–598. DOI: 10.1016/B978-0-12-415846-7.00032-9
  • Ventura-Cruz, S.; Tecante, A. Extraction and Characterization of Cellulose Nanofibers from Rose Stems (Rosa Spp.). Carbohydr. Polym. 2019, 220, 53–59. DOI: 10.1016/j.carbpol.2019.05.053.
  • Austin, D. L.;. Enzymes: Extending Shelf Life and Eating Quality of Tortillas. In L. W. Rooney, S. O. Serna-Saldivar. Eds. Tortillas: Wheat Flour and Corn Products; Elsevier Inc.: USA, 2015; 201–214. DOI:10.1016/B978-1-891127-88-5.50010-4.
  • Michelin, M.; Gomes, D. G.; Romaní, A.; Polizeli, M.; Teixeira, J. A. Nanocellulose Production: Exploring the Enzymatic Route and Residues of Pulp and Paper Industry. Molecules. 2020, 25(15), 3411. DOI: 10.3390/molecules25153411.
  • Ribeiro, R. S. A.; Pohlmann, B. C.; Calado, V.; Bojorge, N.; Pereira, N. Production of Nanocellulose by Enzymatic Hydrolysis: Trends and Challenges. Eng. Life Sci. 2019, 19(4), 279–291. DOI: 10.1002/elsc.201800158.
  • Holland, C.; Perzon, A.; Cassland, P. R. C.; Jensen, J. P.; Langebeck, B.; Sørensen, O. B.; Whale, E.; Hepworth, D.; Plaice-Inglis, R.; Moestrup, Ø.; et al. Produced from Agro-Industrial Plant Waste Using Entirely Enzymatic Pretreatments. Biomacromolecules. 2019, 20(1), 443–453. DOI: 10.1021/acs.biomac.8b01435.
  • Bauli, C. R.; Rocha, D. B.; De Oliveira, S. A.; Rosa, D. S. Cellulose Nanostructures from Wood Waste with Low Input Consumption. J. Clean. Prod. 2019, 211, 408–416. DOI: 10.1016/j.jclepro.2018.11.099.
  • Perzon, A.; Jørgensen, B.; Ulvskov, P. Sustainable Production of Cellulose Nanofiber Gels and Paper from Sugar Beet Waste Using Enzymatic Pre-treatment. Carbohydr. Polym. 2020, 230, 115581. DOI: 10.1016/j.carbpol.2019.115581.
  • Dos Santos, A. C.; Ximenes, E.; Kim, Y.; Ladisch, M. R. dos Santos, A.C.; Ximenes, E.; Kim, Y.; Ladisch, M.R. Lignin–Enzyme Interactions in the Hydrolysis of Biomass, L. Trends Biotechnol. 2019, 37(5), 518–531. DOI: 10.1016/j.tibtech.2018.10.010. Lignin–Enzyme Interactions in the Hydrolysis of Lignocellulosic Biomass
  • Li, S.; Yang, X.; Yang, S.; Zhu, M.; Wang, X. Technology Prospecting on Enzymes: Application, Marketing and Engineering. Comput. Struct. Biotechnol. J. 2012, 2(3), e201209017. DOI: 10.5936/csbj.201209017.
  • Song, Q.; Winter, W.; Bujanovic, B.; Nanofibrillated Cellulose, A. T. (NFC): A High-Value Co-Product that Improves the Economics of Cellulosic Ethanol Production. Energies. 2014, 7(2), 607–618. DOI: 10.3390/en7020607.
  • Horn, S. J.; Vaaje-Kolstad, G.; Westereng, B.; Eijsink, V. G. H. Novel Enzymes for the Degradation of Cellulose. Biotechnol. Biofuels. 2012, 5(1), 45. DOI: 10.1186/1754-6834-5-45.
  • Li, Y.; Liu, Y.; Chen, W.; Wang, Q.; Liu, Y.; Li, J.; Yu, H. Facile Extraction of Cellulose Nanocrystals from Wood Using Ethanol and Peroxide Solvothermal Pretreatment Followed by Ultrasonic Nanofibrillation. Green Chem. 2016, 18(4), 1010–1018. DOI: 10.1039/c5gc02576a.
  • Orłowski, A.; Róg, T.; Paavilainen, S.; Manna, M.; Heiskanen, I.; Backfolk, K.; Timonen, J.; Vattulainen, I. How Endoglucanase Enzymes Act on Cellulose Nanofibrils: Role of Amorphous Regions Revealed by Atomistic Simulations. Cellulose. 2015, 22(5), 2911–2925. DOI: 10.1007/s10570-015-0705-0.
  • Chen, X. Q.; Deng, X. Y.; Shen, W. H.; Jia, M. Y. Preparation and Characterization of the Spherical Nanosized Cellulose by the Enzymatic Hydrolysis of Pulp Fibers. Carbohydr. Polym. 2018, 181, 879–884. DOI: 10.1016/j.carbpol.2017.11.064.
  • Cherian, B. M.; Leão, A. L.; De Souza, S. F.; Thomas, S.; Pothan, L. A.; Kottaisamy, M. Isolation of Nanocellulose from Pineapple Leaf Fibres by Steam Explosion. Carbohydr. Polym. 2010, 81(3), 720–725. DOI: 10.1016/j.carbpol.2010.03.046.
  • Pirich, C. L.; Picheth, G. F.; Fontes, A. M.; Delgado-Aguilar, M.; Ramos, L. P. Disruptive Enzyme-based Strategies to Isolate Nanocelluloses: A Review. Cellulose. 2020, 27(10), 5457–5475. DOI: 10.1007/s10570-020-03185-8.
  • Patrignani, F.; Lanciotti, R. Applications of High and Ultra High Pressure Homogenization for Food Safety. Front. Microbiol. 2016, 7, 1132. DOI: 10.3389/fmicb.2016.01132.
  • Martelli-Tosi, M.; Torricillas, M. D. S.; Martins, M. A.; Assis, O. B. G.; De, Tapia-Blácido, D. R. Using Commercial Enzymes to Produce Cellulose Nanofibers from Soybean Straw. J. Nanomat. 2016, 2016, 1–10. DOI: 10.1155/2016/8106814.
  • Ilyas, R. A.; Sapuan, S. M.; Ibrahim, R.; Abral, H.; Ishak, M. R.; Zainudin, E. S.; Atikah, M. S. N.; Mohd Nurazzi, N.; Atiqah, A.; Ansari, M. N. M.; et al.; Effect of Sugar Palm Nanofibrillated Celluloseconcentrations on Morphological, Mechanical Andphysical Properties of Biodegradable Films Basedon Agro-waste Sugar Palm (Arenga pinnata(Wurmb.) Merr) Starch. J. Mat. Res. Technol. 2019, 85, 4819–4830. DOI:10.1016/j.jmrt.2019.08.028.
  • Li, J.; Wei, X.; Wang, Q.; Chen, J.; Chang, G.; Kong, L.; Su, J.; Liu, Y. Homogeneous Isolation of Nanocellulose from Sugarcane Bagasse by High Pressure Homogenization. Carbohydr. Polym. 2012, 90(4), 1609–1613. DOI: 10.1016/j.carbpol.2012.07.038
  • Li, P.; Wang, Y.; Hou, Q.; Liu, H.; Lei, H.; Jian, B.; Li, X. Preparation of Cellulose Nanofibrils from Okara by High Pressure Homogenization Method Using Deep Eutectic Solvents. Cellulose. 2020, 27(5), 2511–2520. DOI: 10.1007/s10570-019-02929-5.
  • Sirviö, J. A.; Visanko, M.; Liimatainen, H. Acidic Deep Eutectic Solvents as Hydrolytic Media for Cellulose Nanocrystal Production. Biomacromolecules. 2016, 17(9), 3025–3032. DOI: 10.1021/acs.biomac.6b00910.
  • Li, P.; Sirviö, J. A.; Asante, B.; Liimatainen, H. Recyclable Deep Eutectic Solvent for the Production of Cationic Nanocelluloses. Carbohydr. Polym. 2018, 199, 219–227. DOI: 10.1016/j.carbpol.2018.07.024.
  • Chen, Y.; Mu, T.; Application of Deep Eutectic Solvents in Biomass Pretreatment and Conversion. Green Energy Environ. 2019, 42, 95–115. DOI:10.1016/j.gee.2019.01.012.
  • Liu, Y.; Guo, B.; Xia, Q.; Meng, J.; Chen, W.; Liu, S.; Wang, Q.; Liu, Y.; Li, J.; Yu, H. Efficient Cleavage of Strong Hydrogen Bonds in Cotton by Deep Eutectic Solvents and Facile Fabrication of Cellulose Nanocrystals in High Yields. ACS Sust. Chem. Eng. 2017, 5(9), 7623–7631. DOI: 10.1021/acssuschemeng.7b00954.
  • Jongaroontaprangsee, S.; Chiewchan, N.; Devahastin, S.; Production of Nanocellulose from Lime Residues Using Chemical-free Technology. Mat. Today: Proc. 2018, 55, 11095–11100. DOI:10.1016/j.matpr.2018.01.027.
  • Cho, S. C.; Choi, W. Y.; Oh, S. H.; Lee, C. G.; Seo, Y. C.; Kim, J. S.; Song, C. H.; Kim, G. V.; Lee, S. Y.; Kang, D. H.; et al. Enhancement of Lipid Extraction from Marine Microalga, Scenedesmus Associated with High-pressure Homogenization Process. J. Biomed. Biotechnol. 2012, 2012, 1–6. DOI: 10.1155/2012/359432.
  • Kumar, V.; Pathak, P.; Bhardwaj, N. K. Waste Paper: An Underutilized but Promising Source for Nanocellulose Mining. Waste Manag. 2020, 102, 281–303. DOI: 10.1016/j.wasman.2019.10.041.
  • Arrieta, M. P.; Fortunati, E.; Burgos, N.; Peltzer, M. A.; López, J.; Peponi, L. Nanocellulose-Based Polymeric Blends for Food Packaging Applications. In Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements; Elsevier Inc.: India, 2016; 205–252. DOI:10.1016/B978-0-323-44248-0.00007-9.
  • Rutkowska, M.; Namieśnik, J.; Konieczka, P. Ultrasound-Assisted Extraction. In Francisco Pena-Pereira, Marek Tobiszewski. Eds. The Application of Green Solvents in Separation Processes; Elsevier Inc.: India, 2017; 301–324. DOI:10.1016/B978-0-12-805297-6.00010-3.
  • Alzate-Arbeláez, A. F.; Dorta, E.; López-Alarcón, C.; Cortés, F. B.; Rojano, B. A. Immobilization of Andean Berry (Vaccinium Meridionale) Polyphenols on Nanocellulose Isolated from Banana Residues: A Natural Food Additive with Antioxidant Properties. Food Chem. 2019, 294, 503–517. DOI: 10.1016/j.foodchem.2019.05.085.
  • Keskin, T.; Nalakath Abubackar, H.; Arslan, K.; Azbar, N. Biohydrogen Production From Solid Wastes. In Ashok Pandey, S. Venkata Mohan, Jo-Shu Chang, Patrick C. Hallenbeck, Christian Larroche. Eds. Biohydrogen; Elsevier: US, 2019; 321–346. DOI:10.1016/b978-0-444-64203-5.00012-5.
  • Cherian, B. M.; Pothan, L. A.; Nguyen-Chung, T.; Mennig, G.; Kottaisamy, M.; Thomas, S. A Novel Method for the Synthesis of Cellulose Nanofibril Whiskers from Banana Fibers and Characterization. J. Agric. Food Chem. 2008, 56(14), 5617–5627. DOI: 10.1021/jf8003674.
  • Kargarzadeh, H.; Ioelovich, M.; Ahmad, I.; Thomas, S.; Dufresne, A. Methods for Extraction of Nanocellulose from Various Sources. In Handbook of Nanocellulose and Cellulose Nanocomposites; Wiley: India, 2017; 1–49. DOI:10.1002/9783527689972.ch1.
  • Espino, E.; Cakir, M.; Domenek, S.; Román-Gutiérrez, A. D.; Belgacem, N.; Bras, J. Isolation and Characterization of Cellulose Nanocrystals from Industrial By-products of Agave Tequilana and Barley. Ind. Crops Prod. 2014, 62, 552–559. DOI: 10.1016/j.indcrop.2014.09.017.
  • Albarelli, J.; Paidosh, A.; Santos, D.; Marechal, F.; Meireles, M. Environmental, Energetic and Economic Evaluation of Implementing a Supercritical Fluid-based Nanocelulose Production Process in a Sugarcane Biorefinery. Chem. Eng. Trans. 2016, 47, 49–54. DOI: 10.3303/CET1647009.
  • Nanta, P.; Kasemwong, K.; Skolpap, W.; Shimoyama, Y. Influence of Supercritical Carbon Dioxide Treatment on the Physicochemical Properties of Cellulose Extracted from Cassava Pulp Waste. J. Supercrit. Fluids. 2019, 154, 104605. DOI: 10.1016/j.supflu.2019.104605.
  • Atiqah, M. S.; Gopakumar, D. A.; Owolabi, F. A. T.; Pottathara, Y. B.; Rizal, S.; Aprilia, N. A.; Hermawan, D.; Paridah, M.; Thomas, S.; Abdul Khalil, H. P. S. Extraction of Cellulose Nanofibers via Eco-friendly Supercritical Carbon Dioxide Treatment Followed by Mild Acid Hydrolysis and the Fabrication of Cellulose Nanopapers. Polymers. 2019, 11(11), 1813. DOI: 10.3390/polym11111813.
  • Sparrman, T.; Svenningsson, L.; Sahlin-Sjövold, K.; Nordstierna, L.; Westman, G.; Bernin, D. A Revised Solid-state NMR Method to Assess the Crystallinity of Cellulose. Cellulose. 2019, 26(17), 8993–9003. DOI: 10.1007/s10570-019-02718-0.
  • Thakur, M.; Sharma, A.; Ahlawat, V.; Bhattacharya, M.; Goswami, S. Process Optimization for the Production of Cellulose Nanocrystals from Rice Straw Derived α-cellulose. Mat. Sci. Energy Technol. 2020, 3, 328–334. DOI: 10.1016/j.mset.2019.12.005.
  • Plermjai, K.; Boonyarattanakalin, K.; Mekprasart, W.; Pavasupree, S.; Phoohinkong, W.; Pecharapa, W. Extraction and Characterization of Nanocellulose from Sugarcane Bagasse by Ball-milling-assisted Acid Hydrolysis. AIP Conference Proceedings: International conference on science and technology of emerging materials: Proceedings of the Second International Conference on Science and Technology of Emerging Materials 2018Chonburi, Thailand, 2018; Vol. 2010. DOI: 10.1063/1.5053181(2018).
  • Adel, A.; El-Shafei, A.; Ibrahim, A.; Al-Shemy, M. Extraction of Oxidized Nanocellulose from Date Palm (Phoenix Dactylifera L.) Sheath Fibers: Influence of CI and CII Polymorphs on the Properties of Chitosan/bionanocomposite Films. Ind. Crop Prod. 2018, 124, 155–165. DOI: 10.1016/j.indcrop.2018.07.073.
  • Ravindran, L.; Sreekala, M. S.; Thomas, S. Novel Processing Parameters for the Extraction of Cellulose Nanofibres (CNF) from Environmentally Benign Pineapple Leaf Fibres (PALF): Structure-property Relationships. Int. J. Biol. Macromol. 2019, 131, 858–870. DOI: 10.1016/j.ijbiomac.2019.03.134.
  • Ahvenainen, P.; Kontro, I.; Svedström, K. Comparison of Sample Crystallinity Determination Methods by X-ray Diffraction for Challenging Cellulose I Materials. Cellulose. 2016, 23(2), 1073–1086. DOI: 10.1007/s10570-016-0881-6.
  • Atiqah, M. S. N.; Gopakumar, D. A.; Owolabi, F. A. T.; Pottathara, Y. B.; Rizal, S.; Aprilia, N. A. S.; Hermawan, D.; Paridah, M. T.; Thomas, S.; Khalil, A. Extraction of Cellulose Nanofibers via Eco-friendly Supercritical Carbon Dioxide Treatment Followed by Mild Acid Hydrolysis and the Fabrication of Cellulose Nanopapers. Polymers. 1813, 2019, 11. 10.3390/polym11111813
  • El-Sayed, S.; Mahmoud, K. H.; Fatah, A. A.; Dsc, H. A. TGA and Dielectric Properties of Carboxymethyl Cellulose/polyvinyl Alcohol Blends. Physica B. 2011, 406(21), 4068–4076. DOI: 10.1016/j.physb.2011.07.050.
  • Huang, F. Y.;. Thermal Properties and Thermal Degradation of Cellulose Tri-stearate (Cts). Polymers. 2012, 4(2), 1012–1024. DOI: 10.3390/polym4021012.
  • Barbash, V. A.; Yashchenko, O. V.; Vasylieva, O. A. Preparation and Properties of Nanocellulose from Miscanthus X Giganteus. J. Nanomat. 2019, 2019, 1–9. DOI: 10.1155/2019/3241968.
  • Trilokesh, C.; Uppuluri, K. B. Isolation and Characterization of Cellulose Nanocrystals from Jackfruit Peel. Springer Nat. 2019, 9, 16709. DOI: 10.1038/s41598-019-53412-x.
  • Sumesh, K. R.; Kanthavel, K.; Kavimani, V. Peanut Oil Cake-derived Cellulose Fiber: Extraction, Application of Mechanical and Thermal Properties in Pineapple/flax Natural Fiber Composites. Int. J. Biol. Macromol. 2020, 150, 775–785. DOI: 10.1016/j.ijbiomac.2020.02.118.
  • Inkson, B. J.;. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) for Materials Characterization. In Materials Characterization Using Nondestructive Evaluation (NDE) Methods; Elsevier Inc.: US, 2016; 17–43. DOI:10.1016/B978-0-08-100040-3.00002-X.
  • Kassab, Z.; El Achaby, M.; Tamraoui, Y.; Sehaqui, H.; Bouhfid, R.; Qaiss, A. E. K. Sunflower Oil Cake-derived Cellulose Nanocrystals: Extraction, Physico-chemical Characteristics and Potential Application. Int. J. Biol. Macromol. 2019, 136, 241–252. DOI: 10.1016/j.ijbiomac.2019.06.049.
  • Meng, F.; Wang, G.; Du, X.; Wang, Z.; Xu, S.; Zhang, Y. Extraction and Characterization of Cellulose Nanofibers and Nanocrystals from Liquefied Banana Pseudo-stem Residue. Compos. B. Eng. 2019, 160, 341–347. DOI: 10.1016/j.compositesb.2018.08.048.
  • Marcuello, C.; Foulon, L.; Chabbert, B.; Aguié-Béghin, V.; Molinari, M. Atomic Force Microscopy Reveals How Relative Humidity Impacts the Young’s Modulus of Lignocellulosic Polymers and Their Adhesion with Cellulose Nanocrystals at the Nanoscale. Int. J. Biol. Macromol. 2020, 147, 1064–1075. DOI: 10.1016/j.ijbiomac.2019.10.074.
  • Di Giorgio, L.; Martín, L.; Salgado, P. R.; Mauri, A. N. Synthesis and Conservation of Cellulose Nanocrystals. Carbohydr. Polym. 2020, 238, 116187. DOI: 10.1016/j.carbpol.2020.116187.
  • Shojaeiarani, J.; Bajwa, D. S.; Stark, N. M.; Bajwa, S. G. Rheological Properties of Cellulose Nanocrystals Engineered Polylactic Acid Nanocomposites. Compos. B. Eng. 2019, 161, 483–489. DOI: 10.1016/j.compositesb.2018.12.128.
  • Qiao, C.; Chen, G.; Zhang, J.; Yao, J. Structure and Rheological Properties of Cellulose Nanocrystals Suspension. Food Hydrocoll. 2016, 55, 19–25. DOI: 10.1016/j.foodhyd.2015.11.005.
  • El Achaby, M.; El Miri, N.; Hannache, H.; Gmouh, S.; Trabadelo, V.; Aboulkas, A.; Ben Youcef, H. Cellulose Nanocrystals from Miscanthus Fibers: Insights into Rheological, Physico-chemical Properties and Polymer Reinforcing Ability. Cellulose. 2018, 25(11), 6603–6619. DOI: 10.1007/s10570-018-2047-1.
  • Alves, L.; Ferraz, E.; Lourenço, A. F.; Ferreira, P. J.; Rasteiro, M. G.; Gamelas, J. A. F. Tuning Rheology and Aggregation Behaviour of TEMPO-oxidised Cellulose Nanofibrils Aqueous Suspensions by Addition of Different Acids. Carbohydr. Polym. 2020, 237, 116109. DOI: 10.1016/j.carbpol.2020.116109.
  • Halib, N.; Perrone, F.; Cemazar, M.; Dapas, B.; Farra, R.; Abrami, M.; Chiarappa, G.; Forte, G.; Zanconati, F.; Pozzato, G.; et al. Potential Applications of Nanocellulose-containing Materials in the Biomedical Field. Materials. 2017, 10(8), 1–31. DOI: 10.3390/ma10080977.
  • Ludwicka, K.; Jedrzejczak-Krzepkowska, M.; Kubiak, K.; Kolodziejczyk, M.; Pankiewicz, T.; Bielecki, S. Medical and Cosmetic Applications of Bacterial NanoCellulose. In Miguel Gama, Fernando Dourado, Stanislaw Bielecki. Eds. Bacterial Nanocellulose: From Biotechnology to Bio-Economy; Elsevier Inc.: US, 2016; 145–165. DOI:10.1016/B978-0-444-63458-0.00009-3.
  • Panchal, P.; Ogunsona, E.; Mekonnen, T. Trends in Advanced Functional Material Applications of Nanocellulose. Processes. 2019, 7(1), 10. DOI: 10.3390/pr7010010.
  • Noorbakhsh-Soltani, S. M.; Zerafat, M. M.; Sabbaghi, S. A. Comparative Study of Gelatin and Starch-based Nano-composite Films Modified by Nano-cellulose and Chitosan for Food Packaging Applications. Carbohydr. Polym. 2018, 189, 48–55. DOI: 10.1016/j.carbpol.2018.02.012.
  • Li, H.; Shi, H.; He, Y.; Fei, X.; Peng, L. Preparation and Characterization of Carboxymethyl Cellulose-based Composite Films Reinforced by Cellulose Nanocrystals Derived from Pea Hull Waste for Food Packaging Applications. Int. J. Biol. Macromol. 2020, 164, 4104–4112. DOI: 10.1016/j.ijbiomac.2020.09.010.
  • Gómez, C. H.; Serpa, A.; Velásquez-Cock, J.; Gañán, P.; Castro, C.; Vélez, L.; Zuluaga, R. Vegetable Nanocellulose in Food Science: A Review. Food Hydrocoll. 2016, 57, 178–186. DOI: 10.1016/j.foodhyd.2016.01.023.
  • Mu, R.; Hong, X.; Ni, Y.; Li, Y.; Pang, J.; Wang, Q.; Xiao, J.; Zheng, Y. Recent Trends and Applications of Cellulose Nanocrystals in Food Industry. Trends Food Sci.Tech. 2019, 93, 136–144. DOI: 10.1016/j.tifs.2019.09.013.
  • Kolakovic, R.; Laaksonen, T.; Peltonen, L.; Laukkanen, A.; Hirvonen, J. Spray-dried Nanofibrillar Cellulose Microparticles for Sustained Drug Release. Int. J. Pharm. 2012, 430(1–2), 47–55. DOI: 10.1016/j.ijpharm.2012.03.031.
  • Mugwagwa, L. R.; Chimphango, A. F. A. Enhancing the Functional Properties of Acetylated Hemicellulose Films for Active Food Packaging Using Acetylated Nanocellulose Reinforcement and Polycaprolactone Coating. Food Packag. Shelf Life. 2020, 24, 100481. DOI: 10.1016/j.fpsl.2020.100481.
  • Bongao, H. C.; Gabatino, R. R. A.; Arias, C. F. H.; Magdaluyo, E. R. Micro/nanocellulose from Waste Pili (Canarium Ovatum) Pulp as a Potential Anti-ageing Ingredient for Cosmetic Formulations. Materials Today: Proc. 2020, 22, 275–280. DOI: 10.1016/j.matpr.2019.08.117.
  • Mondal, S.;. Review on Nanocellulose Polymer Nanocomposites. Polym. Plast. Technol. Eng. 2018, 57(13), 1377–1391. DOI: 10.1080/03602559.2017.1381253.
  • Li, Y.; Yu, S.; Chen, P.; Rojas, R.; Hajian, A.; Berglund, L. Cellulose Nanofibers Enable Paraffin Encapsulation and the Formation of Stable Thermal Regulation Nanocomposites. Nano Energy. 2017, 34, 541–548. DOI: 10.1016/j.nanoen.2017.03.010.
  • Peng, Y.; Gardner, D.; Han, Y. Drying Cellulose Nanofibrils: In Search of a Suitable Method. Cellulose. 2011, 19(1), 91–102. DOI: 10.1007/s10570-011-9630-z.
  • Dahlem, M. A.; Borsoi, C.; Hansen, B.; Catto, A. L. Evaluation of Different Methods for Extraction of Nanocellulose from Yerba Mate Residues. Carbohydr. Polym. 2019, 218, 78–86. DOI: 10.1016/j.carbpol.2019.04.064.
  • Kapoor, M.; Panwar, D.; Kaira, G. S. Bioprocesses for Enzyme Production Using Agro-Industrial Wastes: Technical Challenges and Commercialization Potential. In Gurpreet Singh Dhillon, Surinder Kaur. Eds. Agro-Industrial Wastes as Feedstock for Enzyme Production: Apply and Exploit the Emerging and Valuable Use Options of Waste Biomass; Elsevier: US, 2016; 61–93. DOI:10.1016/B978-0-12-802392-1.00003-4.
  • Smyth, M.; García, A.; Rader, C.; Foster, E. J.; Bras, J. Extraction and Process Analysis of High Aspect Ratio Cellulose Nanocrystals from Corn (Zea Mays) Agricultural Residue. Ind. Crops Prod. 2017, 108, 257–266. DOI: 10.1016/j.indcrop.2017.06.006.
  • Julie Chandra, C. S.; George, N.; Narayanankutty, S. K. Isolation and Characterization of Cellulose Nanofibrils from Arecanut Husk Fibre. Carbohydr. Polym. 2016, 142, 158–166. DOI: 10.1016/j.carbpol.2016.01.015.
  • Bharath, K. N.; Swamy, R. P.; Mohan, K. G. C. Experimental Studies on Biodegradable and Swelling Characteristics of Natural Fibers Composites. Int. J. Agric. Sci. 2010, 2(1), 1–4. DOI: 10.9735/0975-3710.2.1.1-4.
  • Li, B.; Qiao, M.; Composition, L. F. Nutrition, and Utilization of Okara (Soybean Residue). Food Rev. Int. 2012, 28(3), 231–252. DOI: 10.1080/87559129.2011.595023.
  • Ilyas, R. A.; Sapuan, S. M.; Ibrahim, R.; Abral, H.; Ishak, M. R.; Zainudin, E. S.; Asrofi, M.; Atikah, M. S. N.; Huzaifah, M. R. M.; Radzi, A. M.; et al.; Sugar Palm (Arenga Pinnata (Wurmb.) Merr) Cellulosic Fibre Hierarchy: A Comprehensive Approach from Macro to Nano Scale. J. Mat. Res. Technol. 2019, 83, 2753–2766. DOI:10.1016/j.jmrt.2019.04.011.
  • Valdebenito, F.; Pereira, M.; Ciudad, G.; Azocar, L.; Briones, R.; Chinga-Carrasco, G. On the Nanofibrillation of Corn Husks and Oat Hulls Fibres. Ind. Crops Prod. 2017, 95, 528–534. DOI: 10.1016/j.indcrop.2016.11.006.
  • Wang, W.; Klopfenstein, C. Effect of Twin-screw Extrusion on the Nutritional Quality of Wheat, Barley and Oats. Cereal Chem. 1993, 70(6), 712–715.
  • Bouaziz, M. A.; Rassaoui, R.; Besbes, S. Chemical Composition, Functional Properties, and Effect of Inulin from Tunisian Agave Americana L. Leaves on Textural Qualities of Pectin Gel. J. Chem. 2014, 1–11. DOI: 10.1155/2014/758697.
  • Abraham, E.; Deepa, B.; Pothen, L. A.; Cintil, J.; Thomas, S.; John, M. J.; Anandjiwala, R.; Narine, S. S. Environmental Friendly Method for the Extraction of Coir Fibre and Isolation of Nanofibre. Carbohydr. Polym. 2013, 92(2), 1477–1483. DOI: 10.1016/j.carbpol.2012.10.056.
  • Anuar, M. F.; Fen, Y. W.; Zaid, M. H. M.; Matori, K. A.; Khaidir, R. E. M. Synthesis and Structural Properties of Coconut Husk as Potential Silica Source. Results. Phys. 2018, 11, 1–4. DOI: 10.1016/j.rinp.2018.08.018.
  • Zheng, D.; Zhang, Y.; Guo, Y.; Yue, J. Isolation and Characterization of Nanocellulose with a Novel Shape from Walnut (Juglans Regia L.) Shell Agricultural Waste. Polymers. 2019, 11(7), 1130. DOI: 10.3390/polym11071130.
  • Guandalini, B. B. V.; Rodrigues, N. P.; Marczak, L. D. F. Sequential Extraction of Phenolics and Pectin from Mango Peel Assisted by Ultrasound. Food Res. Int. 2019, 119, 455–461. DOI: 10.1016/J.FOODRES.2018.12.011.
  • Coelho, C. C. S.; Michelin, M.; Cerqueira, M. A.; Gonçalves, C.; Tonon, R. V.; Pastrana, L. M.; Freitas-Silva, O.; Vicente, A. A.; Cabral, L. M. C.; Teixeira, J. A. Cellulose Nanocrystals from Grape Pomace: Production, Properties and Cytotoxicity Assessment. Carbohydr. Polym. 2018, 192, 327–336. DOI: 10.1016/J.CARBPOL.2018.03.023.
  • Minjares-Fuentes, R.; Femenia, A.; Garau, M. C.; Meza-Velázquez, J. A.; Simal, S.; Rosselló, C. Ultrasound-assisted Extraction of Pectins from Grape Pomace Using Citric Acid: A Response Surface Methodology Approach. Carbohydr. Polym. 2014, 106, 179–189. DOI: 10.1016/J.CARBPOL.2014.02.013.
  • Gan, C.-Y.; Latiff, A. A. Extraction of Antioxidant Pectic-polysaccharide from Mangosteen (Garcinia Mangostana) Rind: Optimization Using Response Surface Methodology. Carbohydr. Polym. 2011, 83(2), 600–607. DOI: 10.1016/J.CARBPOL.2010.08.025.
  • Winuprasith, T.; Suphantharika, M. Microfibrillated Cellulose from Mangosteen (Garcinia Mangostana L.) Rind: Preparation, Characterization, and Evaluation as an Emulsion Stabilizer. Food Hydrocoll. 2013, 32(2), 383–394. DOI: 10.1016/j.foodhyd.2013.01.023.
  • Ang, S.; Haritos, V.; Batchelor, W. Cellulose Nanofibers from Recycled and Virgin Wood Pulp: A Comparative Study of Fiber Development. Carbohydr. Polym. 2020, 234, 115900. DOI: 10.1016/j.carbpol.2020.115900.
  • Li, -Y.-Y.; Wang, B.; Ma, M.-G.; Wang, B. Review of Recent Development on Preparation, Properties, and Applications of Cellulose-Based Functional Materials. Int. J. Polym. Sci. 2018, 2018, 1–18. DOI: 10.1155/2018/8973643.
  • Da Gama, F. M. P.; Dourado, F. Bacterial NanoCellulose: What Future? BioImpacts. 2018, 8(1), 1–3. DOI: 10.15171/bi.2018.01.
  • Choudhury, A. K. R.;. Sustainable Chemical Technologies for Textile Production. In Sustainable Fibres and Textiles; Elsevier Inc.: US, 2017; 267–322. DOI:10.1016/B978-0-08-102041-8.00010-X.
  • Marett, J.; Aning, A.; Foster, E. J. The Isolation of Cellulose Nanocrystals from Pistachio Shells via Acid Hydrolysis. Ind. Crops Prod. 2017, 109, 869–874. DOI: 10.1016/j.indcrop.2017.09.039.
  • Chen, W.; Yu, H.; Liu, Y.; Chen, P.; Zhang, M.; Hai, Y. Individualization of Cellulose Nanofibers from Wood Using High-intensity Ultrasonication Combined with Chemical Pretreatments. Carbohydr. Polym. 2011, 83(4), 1804–1811. DOI: 10.1016/j.carbpol.2010.10.040.
  • Evans, S. K.; Wesley, O. N.; Nathan, O.; Moloto, M. J. Chemically Purified Cellulose and Its Nanocrystals from Sugarcane Baggase: Isolation and Characterization. Heliyon. 2019, 5(10), e02635. DOI: 10.1016/j.heliyon.2019.e02635.
  • Ovalle-Serrano, S. A.; Gómez, F. N.; Blanco-Tirado, C.; Combariza, M. Y. Isolation and Characterization of Cellulose Nanofibrils from Colombian Fique Decortication By-products. Carbohydr. Polym. 2018, 189, 169–177. DOI: 10.1016/j.carbpol.2018.02.031.
  • Athinarayanan, J.; Alshatwi, A. A.; Subbarayan Periasamy, V. Biocompatibility Analysis of Borassus Flabellifer Biomass-derived Nanofibrillated Cellulose. Carbohydr. Polym. 2020, 235, 115961. DOI: 10.1016/j.carbpol.2020.115961.
  • Haafiz, M. K. M.; Hassan, A.; Zakaria, Z.; Inuwa, I. M. Isolation and Characterization of Cellulose Nanowhiskers from Oil Palm Biomass Microcrystalline Cellulose. Carbohydr. Polym. 2014, 103(1), 119–125. DOI: 10.1016/j.carbpol.2013.11.055.
  • Kallel, F.; Bettaieb, F.; Khiari, R.; García, A.; Bras, J.; Chaabouni, S. E. Isolation and Structural Characterization of Cellulose Nanocrystals Extracted from Garlic Straw Residues. Ind. Crops Prod. 2016, 87, 287–296. DOI: 10.1016/j.indcrop.2016.04.060.
  • Sheltami, R. M.; Abdullah, I.; Ahmad, I.; Dufresne, A.; Kargarzadeh, H. Extraction of Cellulose Nanocrystals from Mengkuang Leaves (Pandanus Tectorius). Carbohydr. Polym. 2012, 88(2), 772–779. DOI: 10.1016/j.carbpol.2012.01.062.
  • Pielhop, T.; Amgarten, J.; Von Rohr, P. R.; Studer, M. H. Steam Explosion Pretreatment of Softwood: The Effect of the Explosive Decompression on Enzymatic Digestibility. Biotechnol. Biofuels. 2016, 9(1), 152. DOI: 10.1186/s13068-016-0567-1.
  • Kaushik, A.; Singh, M.; Verma, G. Green Nanocomposites Based on Thermoplastic Starch and Steam Exploded Cellulose Nanofibrils from Wheat Straw. Carbohydr. Polym. 2010, 82(2), 337–345. DOI: 10.1016/j.carbpol.2010.04.063.
  • Lee, C.; Dazen, K.; Kafle, K.; Moore, A.; Johnson, D. K.; Park, S.; Kim, S. H. Correlations of Apparent Cellulose Crystallinity Determined by XRD, NMR, IR, Raman, and SFG Methods. Adv. Polym. Sci. 2015, 271, 115–131. DOI: 10.1007/12_2015_320.
  • Raval, N.; Maheshwari, R.; Kalyane, D.; Youngren-Ortiz, S. R.; Chougule, M. B.; Tekade, R. K. Importance of Physicochemical Characterization of Nanoparticles in Pharmaceutical Product Development. in Basic Fundamentals of Drug Delivery; Elsevier: Chennai, India, 2018; 369–400. DOI:10.1016/B978-0-12-817909-3.00010-8(2018).
  • Kim, S. H.; Lee, C. M.; Kafle, K. Characterization of Crystalline Cellulose in Biomass: Basic Principles, Applications, and Limitations of XRD, NMR, IR, Raman, and SFG. Korean J. Chem. Eng. 2013, 30(12), 2127–2141. DOI: 10.1007/s11814-013-0162-0.
  • Dominic, M.; Joseph, R.; Sabura Begum, P. M.; Kanoth, B. P.; Chandra, J.; Thomas, S. Green Tire Technology: Effect of Rice Husk Derived Nanocellulose (RHNC) in Replacing Carbon Black (CB) in Natural Rubber (NR) Compounding. Carbohydr. Polym. 2020, 230, 115620. DOI: 10.1016/j.carbpol.2019.115620.
  • Dai, H.; Wu, J.; Zhang, H.; Chen, Y.; Ma, L.; Huang, H.; Huang, Y.; Zhang, Y. Recent Advances on Cellulose Nanocrystals for Pickering Emulsions: Development and Challenge. Trends Food Sci. Technol. 2020, 102, 16–29. DOI: 10.1016/j.tifs.2020.05.016.
  • Md Abu, T.; Zahan, K. A.; Rajaie, M. A.; Leong, C. R.; Ab Rashid, S.; Mohd Nor Hamin, N. S.; Tan, W. N.; Tong, W. Y. Nanocellulose as Drug Delivery System for Honey as Antimicrobial Wound Dressing. Materials Today: Proc. 2020. In press . . DOI: 10.1016/j.matpr.2020.01.076.
  • Chinga-Carrasco, G.; Ehman, N. V.; Filgueira, D.; Johansson, J.; Vallejos, M. E.; Felissia, F. E.; Håkansson, J.; Area, M. C. Bagasse—A Major Agro-industrial Residue as Potential Resource for Nanocellulose Inks for 3D Printing of Wound Dressing Devices. Addit. Manuf. 2019, 28, 267–274. DOI: 10.1016/j.addma.2019.05.014.
  • Syafri, E.; Mashadi, S.; Deswita, Y. E.; Asrofi, M.; Ilyas, R. A.; Fudholi, A.; Ilyas, R. A.; Fudholi, A.; Ilyas, R. A.; Fudholi, A.; Effect of Sonication Time on the Thermal Stability, Moisture Absorption, and Biodegradation of Water Hyacinth (Eichhornia Crassipes) Nanocellulose-filled Bengkuang (Pachyrhizus Erosus) Starch Biocomposites. J. Mat. Res. Technol. 2019, 86, 6223–6231. DOI:10.1016/j.jmrt.2019.10.016.
  • Dittanet, P.; Somphol, W.; Lampang, N.; Prapainainar, P.; Loykulnan, S. (2019). Natural Rubber Reinforced by Nanocellulose Extracted from Dried Rubber Leaves. AIP Conference Proceedings: 7th International Conference on Nano and Materials Science (ICNMS 2019), California, USA; Vol. 2083. DOI: 10.1063/1.5094318

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.