1,508
Views
17
CrossRef citations to date
0
Altmetric
Review

Innovations in High-pressure Technologies for the Development of Clean Label Dairy Products: A Review

ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon

References

  • Cegiełka, A.;; “Clean Label” as One of the Leading Trends in the Meat Industry in the World and in Poland – A Review. Rocz. Państwowego Zakładu Hig. 2020, 711, 43–55. DOI:10.32394/rpzh.2020.0098.
  • Román, S.; Sánchez-Siles, L. M.; Siegrist, M. The Importance of Food Naturalness for Consumers: Results of a Systematic Review. Trends Food Sci. Technol. 2017, 67, 44–57. DOI: 10.1016/j.tifs.2017.06.010.
  • Aschemann-Witzel, J.; Varela, P.; Peschel, A. O. Consumers’ Categorization of Food Ingredients: Do Consumers Perceive Them as ‘Clean Label’ Producers Expect? an Exploration with Projective Mapping. Food Qual. Prefer. 2019, 71, 117–128. DOI: 10.1016/j.foodqual.2018.06.003.
  • Kumari, A.; Solanki, H.; Aparna Sudhakaran, V. Novel Milk and Milk Products: Consumer Perceptions. In Dairy Processing: Advanced Research to Applications. Singapore: Springer. 2020; pp 283–299. doi: 10.1007/978-981-15-2608-4_14.
  • Stratakos, A. C.; Inguglia, E. S.; Linton, M.; Tollerton, J.; Murphy, L.; Corcionivoschi, N.; Koidis, A.; Tiwari, B. K. Effect of High Pressure Processing on the Safety, Shelf Life and Quality of Raw Milk. Innov. Food Sci. Emerg. Technol. 2019, 52, 325–333. DOI: 10.1016/j.ifset.2019.01.009.
  • Aadil, R. M.; Roobab, U.; Maan, A. A.; Madni, G. M. Effect of Heat on Food Properties. In Encyclopedia of Food Chemistry; Melton, L., Shahidi, F., Varelis, P., Eds.; Academic Press: Cambridge, MA, 2019; pp 70–75.
  • Stoeckel, M.; Lidolt, M.; Achberger, V.; Glück, C.; Krewinkel, M.; Stressler, T.; Von Neubeck, M.; Wenning, M.; Scherer, S.; Fischer, L.;, et al. Growth of Pseudomonas Weihenstephanensis, Pseudomonas Proteolytica and Pseudomonas Sp. In Raw Milk: Impact of Residual Heat-Stable Enzyme Activity on Stability of UHT Milk during Shelf-Life. Int. Dairy J. 2016, 59, 20–28. DOI: 10.1016/j.idairyj.2016.02.045.
  • Patel, H. A.; Carroll, T.; Kelly, A. L. Potential Applications of Nonthermal Processing Technologies in the Dairy Industry. In Dairy Processing and Quality Assurance; Chandan, R. C., Kilara, A.,Shah N. P., Ed(s).; Chichester, UK: JohnWiley & Sons. 2015; pp 528–551. doi:10.1002/9781118810279.ch22
  • Goyal, A.; Sharma, V.; Upadhyay, N.; Sihag, M.; Kaushik, R. High Pressure Processing and Its Impact on Milk Proteins: A Review\n. Res. Rev. J. Dairy Sci. Technol. 2013, 2(1), 12–20.
  • Hettiarachchi, C. A.; Corzo-Martínez, M.; Mohan, M. S.; Harte, F. M. Enhanced Foaming and Emulsifying Properties of High-Pressure-Jet-Processed Skim Milk. Int. Dairy J. 2018, 87, 60–66. DOI: 10.1016/j.idairyj.2018.06.004.
  • Mercan, E.; Sert, D.; Akın, N. Effect of High-Pressure Homogenisation on Viscosity, Particle Size and Microbiological Characteristics of Skim and Whole Milk Concentrates. Int. Dairy J. 2018, 87, 93–99. DOI: 10.1016/j.idairyj.2018.07.017.
  • Hettiarachchi, C. A.; Voronin, G. L.; Harte, F. M. Spray Drying of High Pressure Jet-Processed Condensed Skim Milk. J. Food Eng. 2019, 261, 1–8. DOI: 10.1016/j.jfoodeng.2019.04.007.
  • Mercan, E.; Sert, D.; Akın, N. Determination of Powder Flow Properties of Skim Milk Powder Produced from High-Pressure Homogenization Treated Milk Concentrates during Storage. LWT. 2018, 97, 279–288. DOI: 10.1016/j.lwt.2018.07.002.
  • Lopes, R. P.; Mota, M. J.; Sousa, S.; Gomes, A. M.; Delgadillo, I.; Saraiva, J. A. Combined Effect of Pressure and Temperature for Yogurt Production. Food Res. Int. 2019, 122, 222–229. DOI: 10.1016/j.foodres.2019.04.010.
  • Massoud, R.; Belgheisi, S.; Massoud, A. Effect of High Pressure Homogenization on Improving the Quality of Milk and Sensory Properties of Yogurt: A Review. Int. J. Chem. Eng. Appl. 2016, 7(1), 66–70. DOI: 10.7763/ijcea.2016.v7.544.
  • Tribst, A. A. L.; Falcade, L. T. P.; Carvalho, N. S.; Junior, B. R.; De C, L.; De Oliveira, M. M. Using Stirring and Homogenization to Improve the Fermentation Profile and Physicochemical Characteristics of Set Yogurt from Fresh, Refrigerated and Frozen/Thawed Sheep Milk. LWT. 2020, 130, 109557. DOI: 10.1016/j.lwt.2020.109557.
  • Nuñez, M.; Calzada, J.; Olmo, A. D. High Pressure Processing of Cheese: Lights, Shadows and Prospects. Int. Dairy J. 2020, 100, 104558. DOI: 10.1016/j.idairyj.2019.104558.
  • Biasutti, M.; Venir, E.; Marino, M.; Maifreni, M.; Innocente, N. Effects of High Pressure Homogenisation of Ice Cream Mix on the Physical and Structural Properties of Ice Cream. Int. Dairy J. 2013, 32(1), 40–45. DOI: 10.1016/j.idairyj.2013.03.007.
  • Huppertz, T.; Smiddy, M. A.; Goff, H. D.; Kelly, A. L. Effects of High Pressure Treatment of Mix on Ice Cream Manufacture. Int. Dairy J. 2011, 21(9), 718–726. DOI: 10.1016/j.idairyj.2010.12.005.
  • Motyl, W.; Dziugan, P.; Motyl, I.; Jóźwiak, A.; Nowak, S. Functional Ice Cream with A” Clean Label”. Biotechnol. Food Sci. 2019, 83(2), 121–134.
  • Herr, B.;. Additives in Dairy Foods. In Types Funct. Addit. Dairy Prod. 1st ed. (Leatherhead Food Research, Leatherhead, 2011). 34–40.
  • Euston, S. R.; Goff, H. D. Emulsifiers in Dairy Products and Dairy Substitutes. In Food Emulsifiers and Their Applications; Hasenhuettl, G.L., Hartel, R.W., Eds.; Springer International Publishing: Cham, 2019; pp 217–254. DOI: 10.1007/978-3-030-29187-7_7.
  • Sulieman, A. M. E. H.;. 13 - Gum arabic as thickener and stabilizing agents in dairy products. In Gum arabic, Mariod A. A. (Ed.), Academic Press, 2018.pp 151–165. doi:10.1016/B978-0-12-812002-6.00013-0
  • Torres, O.; Yamada, A.; Rigby, N. M.; Hanawa, T.; Kawano, Y.; Gellan Gum:, S. A.; New, A. Member in the Dysphagia Thickener Family. Biotribology. 2019, 17, 8–18. DOI: 10.1016/j.biotri.2019.02.002.
  • Carocho, M.; Morales, P.; Ferreira, I. C. F. R. Antioxidants: Reviewing the Chemistry, Food Applications, Legislation and Role as Preservatives. Trends Food Sci. Technol. 2018, 71, 107–120. DOI: 10.1016/j.tifs.2017.11.008.
  • Lin, F.; Chen, Y.; He, S. Application of L-Ascorbyl Palmitate in Formula Milk. Mod. Food Sci. Technol. 2010, 26(10), 1114–1116.
  • McWilliams, A.;. Food Colors Market by Type (Natural, Synthetic, Nature-Identical), Application (Beverages, Processed Food, Bakery & Confectionery Products, Oils & Fats, Dairy Products, Meat, Poultry, Seafood), Form, Solubility, and Region-Global Forecast to 2023. 2018.
  • Rao, K. J.; Pagote, C. N.; Use of Artificial Sweeteners in Indian Traditional Dairy Products. Food Nutr. J. 2018, 73, 177. DOI:10.29011/2575-7091.100077.
  • Singh, P.; Gandhi, N. Milk Preservatives and Adulterants: Processing, Regulatory and Safety Issues. Food Rev. Int. 2015, 31(3), 236–261. DOI: 10.1080/87559129.2014.994818.
  • Yousefi, M.; Jafari, S. M. Recent Advances in Application of Different Hydrocolloids in Dairy Products to Improve Their Techno-Functional Properties. Trends Food Sci. Technol. 2019, 88, 468–483. DOI: 10.1016/j.tifs.2019.04.015.
  • Evelyn,; Silva, F. V. M. High Pressure Processing of Milk: Modeling the Inactivation of Psychrotrophic Bacillus Cereus Spores at 38-70 °c. J. Food Eng. 2015, 165, 141–148. DOI: 10.1016/j.jfoodeng.2015.06.017.
  • Bogahawaththa, D.; Buckow, R.; Chandrapala, J.; Vasiljevic, T. Comparison between Thermal Pasteurization and High Pressure Processing of Bovine Skim Milk in Relation to Denaturation and Immunogenicity of Native Milk Proteins. Innov. Food Sci. Emerg. Technol. 2018, 47, 301–308. DOI: 10.1016/j.ifset.2018.03.016.
  • Liepa, M.; Zagorska, J.; Galoburda, R.; Kostascuka, S. Effect of High-Pressure Processing on Microbial Quality of Skimmed Milk. 2nd International Conference ‘Nutrition and Health’, 05. – 07.10.2016., Rīga (LU; RSU; LLU), In Proceedings of the Latvian Academy of Sciences, Section B: Natural, Exact, and Applied Sciences; Sciendo; The Journal of Latvian Academy of Sciences; 2018; Vol. 72, pp 118–122. DOI: 10.2478/prolas-2018-0019.
  • Dhakal, S.; Liu, C.; Zhang, Y.; Roux, K. H.; Sathe, S. K.; Balasubramaniam, V. M. Effect of High Pressure Processing on the Immunoreactivity of Almond Milk. Food Res. Int. 2014, 62, 215–222. DOI: 10.1016/j.foodres.2014.02.021.
  • Swelam, S.;. Impact of High Hydrostatic Pressure on Composition and Quality of Yoghurt. J. Food Dairy Sci. 2018, 9(1), 31–35. DOI: 10.21608/jfds.2018.35164.
  • Il, A. S.; Chung, I. A.; Chung, W. S.; Jhoo, J. W.; Kim, G. Y.; Jeon, J. T. Changes in Lactic Acid Bacteria and Physicochemical Properties of Yogurt Made with High Pressure Processing Treated Milk. J. Korean Soc. Food Sci. Nutr. 2016, 45(6), 889–893. DOI: 10.3746/jkfn.2016.45.6.889.
  • Mei, J.; Feng, F.; Li, Y. Efectividad De Diferentes Métodos Homogéneos En Las Características Fisicoquímicas, Texturales Y Sensoriales Del Yogur De Soja (Glycine Max L.). CYTA - J. Food. 2017, 15(1), 21–26. DOI: 10.1080/19476337.2016.1197315.
  • Calzada, J.; Del Olmo, A.; Picon, A.; Nuñez, M. Effect of High Pressure Processing on the Lipolysis, Volatile Compounds, Odour and Colour of Cheese Made from Unpasteurized Milk. Food Bioprocess Technol. 2015, 8(5), 1076–1088. DOI: 10.1007/s11947-015-1473-4.
  • Composition, S. S.;. Quality of Soft Cheese Made from Milk Treated with High Hydrostatic Pressure. J. Food Dairy Sci. 2018, 9(1), 37–40. DOI: 10.21608/jfds.2018.35169.
  • Inácio, R. S.; Saraiva, J. A.; Gomes, A. M. P. D. O. E. High Pressure as a Pre-Treatment for Production of Raw Ewe Milk-Cheese. In XIV Encontro Química Dos Aliment. 2019.
  • Ávila, M.; Gómez-Torres, N.; Delgado, D.; Gaya, P.; Garde, S. Application of High Pressure Processing for Controlling Clostridium Tyrobutyricum and Late Blowing Defect on Semi-Hard Cheese. Food Microbiol. 2016, 60, 165–173. DOI: 10.1016/j.fm.2016.07.008.
  • Ávila, M.; Gómez-Torres, N.; Delgado, D.; Gaya, P.; Garde, S. Effect of High-Pressure Treatments on Proteolysis, Volatile Compounds, Texture, Colour, and Sensory Characteristics of Semi-Hard Raw Ewe Milk Cheese. Food Res. Int. 2017, 100, 595–602. DOI: 10.1016/j.foodres.2017.07.043.
  • Costabel, L. M.; Bergamini, C.; Vaudagna, S. R.; Cuatrin, A. L.; Audero, G.; Hynes, E. Effect of High-Pressure Treatment on Hard Cheese Proteolysis. J. Dairy Sci. 2016, 99(6), 4220–4232. DOI: 10.3168/jds.2015-9907.
  • Delgado-Martínez, F. J.; Carrapiso, A. I.; Contador, R.; Ramírez, M. R. Volatile Compounds and Sensory Changes after High Pressure Processing of Mature “Torta Del Casar” (Raw Ewe’s Milk Cheese) during Refrigerated Storage. Innov. Food Sci. Emerg. Technol. 2019, 52, 34–41. DOI: 10.1016/j.ifset.2018.11.004.
  • Evert-Arriagada, K.; Trujillo, A. J.; Amador-Espejo, G. G.; Hernández-Herrero, M. M. High Pressure Processing Effect on Different Listeria Spp. In a Commercial Starter-Free Fresh Cheese. Food Microbiol. 2018, 76, 481–486. DOI: 10.1016/j.fm.2018.07.012.
  • Giannoglou, M.; Karra, Z.; Platakou, E.; Katsaros, G.; Moatsou, G.; Taoukis, P. Effect of High Pressure Treatment Applied on Starter Culture or on Semi-Ripened Cheese in the Quality and Ripening of Cheese in Brine. Innov. Food Sci. Emerg. Technol. 2016, 38, 312–320. DOI: 10.1016/j.ifset.2016.07.024.
  • Munir, M.; Nadeem, M.; Mahmood Qureshi, T.; Gamlath, C. J.; Martin, G. J. O.; Hemar, Y.; Ashokkumar, M. Effect of Sonication, Microwaves and High-Pressure Processing on ACE-Inhibitory Activity and Antioxidant Potential of Cheddar Cheese during Ripening. Ultrason. Sonochem. 2020, 67, 105140. DOI: 10.1016/j.ultsonch.2020.105140.
  • Ribeiro, L. R.; Leite Júnior, B. R.; De, C.; Cristianini, M. Effect of High-Pressure Processing on the Characteristics of Cheese Made from Ultrafiltered Milk: Influence of the Kind of Rennet. Innov. Food Sci. Emerg. Technol. 2018, 50, 57–65. DOI: 10.1016/j.ifset.2018.10.012.
  • Batty, D.; Meunier-Goddik, L.; Waite-Cusic, J. G. Camembert-Type Cheese Quality and Safety Implications in Relation to the Timing of High-Pressure Processing during Aging. J. Dairy Sci. 2019, 102(10), 8721–8733. DOI: 10.3168/jds.2018-16236.
  • Yaman, H.; Sarica, E.; Coşkun, H. A Comparative Study on the Effect of High Hydrostatic Pressure on Ripening of Turkish White Cheese from Different Milk Species. Ital. J. Food Sci. 2020, 32(3), 583–595. DOI: 10.14674/IJFS-1712.
  • Alves, A.; De O., C.; Pérez, M. H.; Study of the Effect of High Hydrostatic Pressure in the Decrease of Listeria Monocytogenes in Pasteurized Mixed Cheese. Brazilian J. Dev. 2020, 65, 23242–23252. DOI:10.34117/bjdv6n5-032.
  • Ambroziak, K.; Kiełczewska, K.; Mickiewicz, D.; Dąbrowska, A. Advantages and Disadvantages of Partial High Pressure Homogenisation of Milk in Relation to Full-Stream Homogenisation. Polish J. Food Nutr. Sci. 2019, 69(3), 279–287. DOI: 10.31883/pjfns/109987.
  • Zaaboul, F.; Raza, H.; Cao, C.; Yuanfa, L. The Impact of Roasting, High Pressure Homogenization and Sterilization on Peanut Milk and Its Oil Bodies. Food Chem. 2019, 280, 270–277. DOI: 10.1016/j.foodchem.2018.12.047.
  • Gul, O.; Saricaoglu, F. T.; Mortas, M.; Atalar, I.; Yazici, F. Effect of High Pressure Homogenization (HPH) on Microstructure and Rheological Properties of Hazelnut Milk. Innov. Food Sci. Emerg. Technol. 2017, 41, 411–420. DOI: 10.1016/j.ifset.2017.05.002.
  • Sert, D.; Mercan, E. Microbiological, Physicochemical, Textural Characteristics and Oxidative Stability of Butter Produced from High-Pressure Homogenisation Treated Cream at Different Pressures. Int. Dairy J. 2020, 111, 104825. DOI: 10.1016/j.idairyj.2020.104825.
  • Serra, M.; Trujillo, A. J.; Quevedo, J. M.; Guamis, B.; Ferragut, V. Acid Coagulation Properties and Suitability for Yogurt Production of Cows’ Milk Treated by High-Pressure Homogenisation. Int. Dairy J. 2007, 17(7), 782–790. DOI: 10.1016/j.idairyj.2006.10.001.
  • Ningtyas, D. W.; Bhandari, B.; Bansal, N.; Prakash, S. Effect of Homogenisation of Cheese Milk and High-Shear Mixing of the Curd during Cream Cheese Manufacture. Int. J. Dairy Technol. 2018, 71(2), 417–431. DOI: 10.1111/1471-0307.12482.
  • Burns, P. G.; Patrignani, F.; Tabanelli, G.; Vinderola, G. C.; Siroli, L.; Reinheimer, J. A.; Gardini, F.; Lanciotti, R. Potential of High Pressure Homogenisation on Probiotic Caciotta Cheese Quality and Functionality. J. Funct. Foods. 2015, 13, 126–136. DOI: 10.1016/j.jff.2014.12.037.
  • Innocente, N.; Marino, M.; Calligaris, S. Recovery of Brines from Cheesemaking Using High-Pressure Homogenization Treatments. J. Food Eng. 2019, 247, 188–194. DOI: 10.1016/j.jfoodeng.2018.12.012.
  • Amador Espejo, G. G.; Hernández-Herrero, M. M.; Juan, B.; Trujillo, A. J. Inactivation of Bacillus Spores Inoculated in Milk by Ultra High Pressure Homogenization. Food Microbiol. 2014, 44, 204–210. DOI: 10.1016/j.fm.2014.06.010.
  • Zamora, A.; Ferragut, V.; Guamis, B.; Trujillo, A. J. Changes in the Surface Protein of the Fat Globules during Ultra-High Pressure Homogenisation and Conventional Treatments of Milk. Food Hydrocoll. 2012, 29(1), 135–143. DOI: 10.1016/j.foodhyd.2012.02.012.
  • Briviba, K.; Gräf, V.; Walz, E.; Guamis, B.; Butz, P. Ultra High Pressure Homogenization of Almond Milk: Physico-Chemical and Physiological Effects. Food Chem. 2016, 192, 82–89. DOI: 10.1016/j.foodchem.2015.06.063.
  • Sandra, S.; Dalgleish, D. G. Effects of Ultra-High-Pressure Homogenization and Heating on Structural Properties of Casein Micelles in Reconstituted Skim Milk Powder. Int. Dairy J. 2005, 15(11), 1095–1104. DOI: 10.1016/j.idairyj.2004.11.015.
  • Serra, M.; Trujillo, A. J.; Guamis, B.; Ferragut, V. Flavour Profiles and Survival of Starter Cultures of Yoghurt Produced from High-Pressure Homogenized Milk. Int. Dairy J. 2009, 19(2), 100–106. DOI: 10.1016/j.idairyj.2008.08.002.
  • Cruz, N. S.; Capellas, M.; Jaramillo, D. P.; Trujillo, A. J.; Guamis, B.; Ferragut, V. Soymilk Treated by Ultra High-Pressure Homogenization: Acid Coagulation Properties and Characteristics of a Soy-Yogurt Product. Food Hydrocoll. 2009, 23(2), 490–496. DOI: 10.1016/j.foodhyd.2008.03.010.
  • Juan, B.; Zamora, A.; Quevedo, J. M.; Trujillo, A. J. Proteolysis of Cheese Made from Goat Milk Treated by Ultra High Pressure Homogenisation. LWT. 2016, 69, 17–23. DOI: 10.1016/j.lwt.2015.12.013.
  • Mayta-Hancco, J.; Trujillo, A. J.; Juan, B. Homogenization at Ultra-High Pressure (UHPH). Effects on Milk and Applications in Cheese Manufacture. Rev. Investig. Vet. del Peru. 2020, 31, 2. 10.15381/rivep.v31i2.17934
  • Tran, M.; Roberts, R.; Felix, T. L.; Harte, F. M. Effect of High-Pressure-Jet Processing on the Viscosity and Foaming Properties of Pasteurized Whole Milk. J. Dairy Sci. 2018, 101(5), 3887–3899. DOI: 10.3168/jds.2017-14103.
  • Voronin, G. L.; Roberts, R.; Felix, T. L.; Coupland, J. N.; Harte, F. M. Effect of High-Pressure-Jet Processing on the Physiochemical Properties of Low-Fat Ice Cream Mix. J. Dairy Sci. 2020, 103(7), 6003–6014. DOI: 10.3168/jds.2019-17814.
  • Oliveira, T. L. C.; De,; Ramos, A. L. S.; Ramos, E. M.; Piccoli, R. H.; Cristianini, M. Natural Antimicrobials as Additional Hurdles to Preservation of Foods by High Pressure Processing. Trends Food Sci. Technol. 2015, 45(1), 60–85. DOI: 10.1016/j.tifs.2015.05.007.
  • Food and Agriculture Organization of the United Nations/World Health Organization (FAO/WHO) Joint FAO/WHO Food Standards Programme‐Codex Committeeon Milk and Milk Products, 2nd Edition, 2011; Rome, Retrieved from http://www.fao.org/3/i2085e/i2085e00.pdf
  • Betoret, E.; Betoret, N.; Rocculi, P.; Dalla Rosa, M. Strategies to Improve Food Functionality: Structure-Property Relationships on High Pressures Homogenization, Vacuum Impregnation and Drying Technologies. Trends Food Sci. Technol. 2015, 46(1), 1–12. DOI: 10.1016/j.tifs.2015.07.006.
  • Horn, B.; Pattis, I.; Rivas, L.; Soboleva, T.; Olsen, L. Review of High Pressure Processes (HPP) Applied as an Alternative to Thermal Pasteurisation; 2019. In New Zealand Food Safety Discussion Paper No: 2019/05. Retrieved from https://www.mpi.govt.nz/dmsdocument/34659/direct. Accessed on Feb 16, 2021.
  • Komora, N.; Maciel, C.; Pinto, C. A.; Ferreira, V.; Brandão, T. R. S.; Saraiva, J. M. A.; Castro, S. M.; Teixeira, P. Non-Thermal Approach to Listeria Monocytogenes Inactivation in Milk: the combined effect of high pressure, pediocin PA-1 and bacteriophage P100; Food Microbiol., 2020, 86: 103315. DOI:10.1016/j.fm.2019.103315.
  • Pérez-Baltar, A.; Serrano, A.; Montiel, R.; Medina, M. Listeria Monocytogenes Inactivation in Deboned Dry-Cured Hams by High Pressure Processing. Meat Sci. 2020, 160, 107960. DOI: 10.1016/j.meatsci.2019.107960.
  • D’Incecco, P.; Rosi, V.; Cabassi, G.; Hogenboom, J. A.; Pellegrino, L. Microfiltration and Ultra-High-Pressure Homogenization for Extending the Shelf-Storage Stability of UHT Milk. Food Res. Int. 2018, 107, 477–485. DOI: 10.1016/j.foodres.2018.02.068.
  • Diachkova, A.; Tikhonov, S.; Tikhonova, N. The Effect of High Pressure Processing on the Shelf Life of Chilled Meat and Fish. Int. J. Pharm. Res. Allied Sci. 2019, 8(3).
  • Yang, S.; Liu, G.; Munk, D. M. E.; Qin, Z.; Petersen, M. A.; Cardoso, D. R.; Otte, J.; Cycled High, A. L. Hydrostatic Pressure Processing of Whole and Skimmed Milk: Effects on Physicochemical Properties. Innov. Food Sci. Emerg. Technol. 2020, 63, 102378. DOI: 10.1016/j.ifset.2020.102378.
  • Tribst, A. A. L.; Falcade, L. T. P.; Carvalho, N. S.; Cristianini, M.; Leite Júnior, B. R.; De, C.; Oliveira, M. M. D. Using Physical Processes to Improve Physicochemical and Structural Characteristics of Fresh and Frozen/Thawed Sheep Milk. Innov. Food Sci. Emerg. Technol. 2020, 59, 102247. DOI: 10.1016/j.ifset.2019.102247.
  • Donsì, F.; Annunziata, M.; Ferrari, G. Microbial Inactivation by High Pressure Homogenization: Effect of the Disruption Valve Geometry. J. Food Eng. 2013, 115(3), 362–370. DOI: 10.1016/j.jfoodeng.2012.10.046.
  • Ruiz-Espinosa, H.; Amador-Espejo, G. G.; Barcenas-Pozos, M. E.; Angulo-Guerrero, J. O.; Garcia, H. S.; Welti-Chanes, J. Multiple-Pass High-Pressure Homogenization of Milk for the Development of Pasteurization-like Processing Conditions. Lett. Appl. Microbiol. 2013, 56(2), 142–148. DOI: 10.1111/lam.12027.
  • Hu, G.; Zheng, Y.; Liu, Z.; Deng, Y. Effects of UV-C and Single- and Multiple-Cycle High Hydrostatic Pressure Treatments on Flavor Evolution of Cow Milk: Gas Chromatography-Mass Spectrometry, Electronic Nose, and Electronic Tongue Analyses. Int. J. Food Prop. 2017, 20(7), 1677–1688. DOI: 10.1080/10942912.2016.1217876.
  • Chung, H.-J.; Yousef, A. E. Synergistic Effect of High Pressure Processing and Lactobacillus Casei Antimicrobial Activity against Pressure Resistant Listeria Monocytogenes. N. Biotechnol. 2010, 27(4), 403–408. DOI: 10.1016/j.nbt.2010.04.007.
  • Rodarte, D.; Zamora, A.; Trujillo, A. J.; Juan, B. Effect of Ultra-High Pressure Homogenization on Cream: Shelf Life and Physicochemical Characteristics. LWT. 2018, 92, 108–115. DOI: 10.1016/j.lwt.2018.02.020.
  • Codina-Torrella, I.; Guamis, B.; Zamora, A.; Quevedo, J. M.; Trujillo, A. J. Microbiological Stabilization of Tiger Nuts’ Milk Beverage Using Ultra-High Pressure Homogenization. A Preliminary Study on Microbial Shelf-Life Extension. Food Microbiol. 2018, 69, 143–150. DOI: 10.1016/j.fm.2017.08.002.
  • Sfakianakis, P.; Tzia, C. Conventional and Innovative Processing of Milk for Yogurt Manufacture; Development of Texture and Flavor: A Review. Foods. 2014, 3(1), 176–193. DOI: 10.3390/foods3010176.
  • Cilla, A.; Bosch, L.; Barberá, R.; Alegría, A. Effect of Processing on the Bioaccessibility of Bioactive Compounds – A Review Focusing on Carotenoids, Minerals, Ascorbic Acid, Tocopherols and Polyphenols. J. Food Compos. Anal. 2018, 68, 3–15. DOI: 10.1016/j.jfca.2017.01.009.
  • Sharabi, S.; Okun, Z.; Shpigelman, A. Changes in the Shelf Life Stability of Riboflavin, Vitamin C and Antioxidant Properties of Milk after (Ultra) High Pressure Homogenization: Direct and Indirect Effects. Innov. Food Sci. Emerg. Technol. 2018, 47, 161–169. DOI: 10.1016/j.ifset.2018.02.014.
  • Wang, W.; Zhou, W. Characterization of Spray-Dried Soy Sauce Powders Using Maltodextrins as Carrier. J. Food Eng. 2012, 109(3), 399–405. DOI: 10.1016/j.jfoodeng.2011.11.012.
  • Xiong, X.; Ho, M. T.; Bhandari, B.; Bansal, N. Foaming Properties of Milk Protein Dispersions at Different Protein Content and Casein to Whey Protein Ratios. Int. Dairy J. 2020, 109, 104758. DOI: 10.1016/j.idairyj.2020.104758.
  • Masson, F.-A.; Mikhaylin, S.; Bazinet, L. Production of Calcium-and Magnesium-Enriched Caseins and Caseinates by an Ecofriendly Technology. J. Dairy Sci. 2018, 101(8), 7002–7012. DOI: 10.3168/jds.2017-14005.
  • Mc Sweeney, P. L. H. O.; Mahony, J. A. Advanced Dairy Chemistry Volume 1B: Proteins: Applied Aspects: Fourth Edition. Adv. Dairy Chem. Vol. 1B Proteins Appl. Asp. Fourth Ed., 2016, 1–498. Springer. 10.1007/978-1-4939-2800-2.
  • Li, X.; Mao, L.; He, X.; Ma, P.; Gao, Y.; Yuan, F. Characterization of β-Lactoglobulin Gels Induced by High Pressure Processing. Innov. Food Sci. Emerg. Technol. 2018, 47, 335–345. DOI: 10.1016/j.ifset.2018.03.022.
  • Guo, M.; Wang, H.; Wang, Q.; Chen, M.; Li, L.; Li, X.; Intelligent Double-Layer, J. S. Fiber Mats with High Colorimetric Response Sensitivity for Food Freshness Monitoring and Preservation. Food Hydrocoll. 2020, 101(June 2019), 105468. DOI: 10.1016/j.foodhyd.2019.105468.
  • Roth-Walter, F.; Berin, M. C.; Arnaboldi, P.; Escalante, C. R.; Dahan, S.; Rauch, J.; Jensen-Jarolim, E.; Mayer, L.; Pasteurization of Milk Proteins Promotes Allergic Sensitization by Enhancing Uptake through Peyer’s Patches. Allergy Eur. J. Allergy Clin. Immunol. 2008, 637, 882–890. DOI:10.1111/j.1398-9995.2008.01673.x.
  • Bogahawaththa, D.; Chandrapala, J.; Vasiljevic, T. Thermal Denaturation of Bovine Immunoglobulin G and Its Association with Other Whey Proteins. Food Hydrocoll. 2017, 72, 350–357. DOI: 10.1016/j.foodhyd.2017.06.017.
  • Tomasula, P. M.; Renye, J. A.; Van Hekken, D. L.; Tunick, M. H.; Kwoczak, R.; Toht, M.; Leggett, L. N.; Luchansky, J. B.; Porto-Fett, A. C. S.; Phillips, J. G. Effect of High-Pressure Processing on Reduction of Listeria Monocytogenes in Packaged Queso Fresco. J. Dairy Sci. 2014, 97(3), 1281–1295. DOI: 10.3168/jds.2013-7538.
  • Voigt, D. D.; Patterson, M. F.; Linton, M.; Kelly, A. L. Effect of High-Pressure Treatment of Milk Prior to Manufacture on Ripening of Camembert Cheese. Innov. Food Sci. Emerg. Technol. 2011, 12(1), 1–5. DOI: 10.1016/j.ifset.2010.12.001.
  • Modugno, C.; Kmiha, S.; Simonin, H.; Aouadhi, C.; Diosdado Cañizares, E.; Lang, E.; André, S.; Mejri, S.; Maaroufi, A.; Perrier-Cornet, J. M. High Pressure Sensitization of Heat-Resistant and Pathogenic Foodborne Spores to Nisin. Food Microbiol. 2019, 84, 103244. DOI: 10.1016/j.fm.2019.103244.
  • Daryaei, H.; Coventry, M. J.; Versteeg, C.; Sherkat, F. Effect of High Pressure Treatment on Starter Bacteria and Spoilage Yeasts in Fresh Lactic Curd Cheese of Bovine Milk. Innov. Food Sci. Emerg. Technol. 2008, 9(2), 201–205. DOI: 10.1016/j.ifset.2007.06.011.
  • Zamora, A.; Juan, B.; Trujillo, A. J. Compositional and Biochemical Changes during Cold Storage of Starter-Free Fresh Cheeses Made from Ultra-High-Pressure Homogenised Milk. Food Chem. 2015, 176, 433–440. DOI: 10.1016/j.foodchem.2014.12.070.
  • Upadhyay, V. K.; Huppertz, T.; Kelly, A. L.; McSweeney, P. L. H. Use of High Pressure Treatment to Attenuate Starter Bacteria for Use as Adjuncts for Cheddar Cheese Manufacture. Innov. Food Sci. Emerg. Technol. 2007, 8(4), 485–492. DOI: 10.1016/j.ifset.2007.04.013.
  • Sahingil, D.; Gokce, Y.; Yuceer, M.; Hayaloglu, A. A. Optimization of Proteolysis and Angiotensin Converting Enzyme Inhibition Activity in a Model Cheese Using Response Surface Methodology. LWT. 2019, 99, 525–532. DOI: 10.1016/j.lwt.2018.09.076.
  • Seppo, L.; Jauhiainen, T.; Poussa, T.; Korpela, R.; Fermented Milk, A. High in Bioactive Peptides Has a Blood Pressure-Lowering Effect in Hypertensive Subjects. Am. J. Clin. Nutr. 2003, 77(2), 326–330. DOI: 10.1093/ajcn/77.2.326.
  • Evert-Arriagada, K.; Hernández-Herrero, M. M.; Juan, B.; Guamis, B.; Trujillo, A. J. Effect of High Pressure on Fresh Cheese Shelf-Life. J. Food Eng. 2012, 110(2), 248–253. DOI: 10.1016/j.jfoodeng.2011.05.011.
  • Inácio, R. S.; Fidalgo, L. G.; Santos, M. D.; Queirós, R. P.; Saraiva, J. A. Effect of High‐pressure Treatments on Microbial Loads and Physicochemical Characteristics during Refrigerated Storage of Raw Milk S Erra Da Estrela Cheese Samples. Int. J. Food Sci. Technol. 2014, 49(5), 1272–1278. DOI: 10.1111/ijfs.12423.
  • Grosso, G.;. Milk and Chronic-Degenerative Diseases: Main Components and Potential Mechanisms. In Dairy in Human Health and Disease across the Lifespan Ronald Ross Watson, Robert J. Collier and Victor R. Preedy; Elsevier: 2017; pp 385–393. Springer. doi:10.1016/B978-0-12-809868-4.00030-3
  • Karaman, A. D.; Akalin, A. S. Improving Quality Characteristics of Reduced and Low Fat Turkish White Cheeses Using Homogenized Cream. LWT. 2013, 50(2), 503–510. DOI: 10.1016/j.lwt.2012.08.017.
  • Leite Júnior, B. R.; De, C.; Tribst, A. A. L.; Yada, R. Y.; Cristianini, M. Milk-Clotting Activity of High Pressure Processed Coagulants: Evaluation at Different PH and Temperatures and PH Influence on the Stability. Innov. Food Sci. Emerg. Technol. 2018, 47, 384–389. DOI: 10.1016/j.ifset.2018.04.006.
  • Ozturk, M.; Govindasamy-Lucey, S.; Jaeggi, J. J.; Houck, K.; Johnson, M. E.; Lucey, J. A. Effect of Various High-Pressure Treatments on the Properties of Reduced-Fat Cheddar Cheese. J. Dairy Sci. 2013, 96(11), 6792–6806. DOI: 10.3168/jds.2012-6483.
  • Mayta-Hancco, J.; Trujillo, A. J.; Zamora, A.; Juan, B. Effect of Ultra-High Pressure Homogenisation of Cream on the Physicochemical and Sensorial Characteristics of Fat-Reduced Starter-Free Fresh Cheeses. LWT. 2019, 110, 292–298. DOI: 10.1016/j.lwt.2019.04.096.
  • Grant, K. V. (2011). The impact of sodium chloride reduction on the compositional, functional, and flavor properties of full-fat Cheddar cheese (Doctoral dissertation, University of Wisconsin--Madison).
  • Ozturk, M.; Govindasamy-Lucey, S.; Jaeggi, J. J.; Johnson, M. E.; Lucey, J. A. Investigating the Properties of High-Pressure-Treated, Reduced-Sodium, Low-Moisture, Part-Skim Mozzarella Cheese during Refrigerated Storage. J. Dairy Sci. 2018, 101(8), 6853–6865. DOI: 10.3168/jds.2018-14415.
  • Sganzerla, W. G.; Rosa, G. B.; Ferreira, A. L. A.; Da Rosa, C. G.; Beling, P. C.; Xavier, L. O.; Hansen, C. M.; Ferrareze, J. P.; Nunes, M. R.; Barreto, P. L. M.;, et al. Bioactive Food Packaging Based on Starch, Citric Pectin and Functionalized with Acca Sellowiana Waste by-Product: Characterization and Application in the Postharvest Conservation of Apple. Int. J. Biol. Macromol. 2020, 147, 295–303. DOI: 10.1016/j.ijbiomac.2020.01.074.
  • Matumoto-Pintro, P. T.; Rabiey, L.; Robitaille, G.; Britten, M. Use of Modified Whey Protein in Yoghurt Formulations. Int. Dairy J. 2011, 21(1), 21–26. DOI: 10.1016/j.idairyj.2010.07.003.
  • Saffon, M.; Richard, V.; Jiménez-Flores, R.; Gauthier, S.; Britten, M.; Pouliot, Y. Behavior of Heat-Denatured Whey: Buttermilk Protein Aggregates during the Yogurt-Making Process and Their Influence on Set-Type Yogurt Properties. Foods. 2013, 2(4), 444–459. DOI: 10.3390/foods2040444.
  • Mota, M. J.; Lopes, R. P.; Koubaa, M.; Roohinejad, S.; Barba, F. J.; Delgadillo, I.; Saraiva, J. A. Fermentation at Non-Conventional Conditions in Food- and Bio-Sciences by the Application of Advanced Processing Technologies. Crit. Rev. Biotechnol. 2018, 38(1), 122–140. DOI: 10.1080/07388551.2017.1312272.
  • Ciron, C. I. E.; Gee, V. L.; Kelly, A. L.; Auty, M. A. E. Modifying the Microstructure of Low-Fat Yoghurt by Microfluidisation of Milk at Different Pressures to Enhance Rheological and Sensory Properties. Food Chem. 2012, 130(3), 510–519. DOI: 10.1016/j.foodchem.2011.07.056.
  • Tribst, A. A. L.; Ribeiro, L. R.; Leite Junior, B. R.; De, C.; De Oliveira, M. M.; Cristianini, M. Fermentation Profile and Characteristics of Yoghurt Manufactured from Frozen Sheep Milk. Int. Dairy J. 2018, 78, 36–45. DOI: 10.1016/j.idairyj.2017.10.005.
  • Tribst, A. A. L.; Falcade, L. T. P.; Ribeiro, L. R.; Leite Júnior, B. R.; De, C.; Oliveira, M. M. D. Impact of Extended Refrigerated Storage and Freezing/Thawing Storage Combination on Physicochemical and Microstructural Characteristics of Raw Whole and Skimmed Sheep Milk. Int. Dairy J. 2019, 94, 29–37. DOI: 10.1016/j.idairyj.2019.02.013.
  • The Nielsen Company. Nielsen Clean Label Report; 2017. Nielsen clean label report. Retrieved from https://www.nielsen.com/wp-content/uploads/sites/3/2019/04/nielsen-clean-label-report-aug-2017.pdf, (Accessed Feb 16, 2021).
  • Le Bail, A.; Goff, H. D.; Freezing of Bakery and Dessert Products. Frozen Food Sci. Technol 2008, 184.
  • Góral, M.; Kozłowicz, K.; Pankiewicz, U.; Góral, D.; Kluza, F.; Wójtowicz, A. Impact of Stabilizers on the Freezing Process, and Physicochemical and Organoleptic Properties of Coconut Milk-Based Ice Cream. LWT. 2018, 92, 516–522. DOI: 10.1016/j.lwt.2018.03.010.
  • Amador, J.; Hartel, R.; Rankin, S. The Effects of Fat Structures and Ice Cream Mix Viscosity on Physical and Sensory Properties of Ice Cream. J. Food Sci. 2017, 82(8), 1851–1860. DOI: 10.1111/1750-3841.13780.
  • Regulation, E.C. (2004), No 852/2004 of the European Parliament and of the Council of 29 April 2004 on the Hygiene of Foodstuffs, European Union. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32004R0852
  • Cacace, F.; Bottani, E.; Rizzi, A.; Vignali, G. Evaluation of the Economic and Environmental Sustainability of High Pressure Processing of Foods. Innov. Food Sci. Emerg. Technol. 2020, 60. DOI: 10.1016/j.ifset.2019.102281.
  • Valsasina, L.; Pizzol, M.; Smetana, S.; Georget, E.; Mathys, A.; Heinz, V. Life Cycle Assessment of Emerging Technologies: The Case of Milk Ultra-High Pressure Homogenisation. J. Clean. Prod. 2017, 142, 2209–2217. DOI: 10.1016/j.jclepro.2016.11.059.
  • Jafari, S. M.; He, Y.; Bhandari, B. Production of Sub-Micron Emulsions by Ultrasound and Microfluidization Techniques. J. Food Eng. 2007, 82(4), 478–488. DOI: 10.1016/j.jfoodeng.2007.03.007.
  • Morata, A.; Guamis, B. Use of UHPH to Obtain Juices with Better Nutritional Quality and Healthier Wines with Low Levels of SO2. Front. Nutr. 7, 2020. DOI:10.3389/fnut.2020.598286
  • Huang, H. W.; Wu, S. J.; Lu, J. K.; Shyu, Y. T.; Wang, C. Y. Current Status and Future Trends of High-Pressure Processing in Food Industry. Food Cont. 2017, 72, 1–8. DOI: 10.1016/j.foodcont.2016.07.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.