1,814
Views
10
CrossRef citations to date
0
Altmetric
Review

Recent Advances in Probiotic Encapsulation to Improve Viability under Storage and Gastrointestinal Conditions and Their Impact on Functional Food Formulation

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Roy, P.; Kumar, V. Functional Food: Probiotic as Health Booster. J. Food, Nutr. Popul. Heal 2018, 2(2), 10–13. DOI: 10.21767/2577-0586.100042.
  • Hill, C.; Guarner, F.; Reid, G.; Gibson, G. R.; Merenstein, D. J.; Pot, B.; Morelli, L.; Canani, R. B.; Flint, H. J.; Salminen, S.; et al. Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11(8), 506–514. DOI: 10.1038/nrgastro.2014.66.
  • Schultz, M.; Burton, J. P. Escherichia Coli Nissle 1917. In The Microbiota in Gastrointestinal Pathophysiology: Implications for Human Health, Prebiotics, Probiotics, and Dysbiosis; Floch, M. H., Yehuda, R., Walker, W. A., Eds.; Academic Press: Cambridge, 2017; pp 59–69. doi:10.1016/B978-0-12-804024-9.00005-7.
  • Henker, J.; Laass, M.; Blokhin, B. M.; Bolbot, Y. K.; Maydannik, V. G.; Elze, M.; Wolff, C.; Schulze, J. The Probiotic Escherichia Coli Strain Nissle 1917 (Ecn) Stops Acute Diarrhoea in Infants and Toddlers. Eur. J. Pediatr 2007, 166(4), 311–318. DOI: 10.1007/s00431-007-0419-x.
  • McFarland, L. V.;. Common Organisms and Probiotics: Saccharomyces Boulardii. In The Microbiota in Gastrointestinal Pathophysiology: Implications for Human Health, Prebiotics, Probiotics, and Dysbiosis; Floch, M. H., Yehuda, R., Walker, W. A., Eds.; Academic Press: Cambridge, Massachusetts, 2017; pp 145–164. DOi: 10.1016/B978-0-12-804024-9.00018-5.
  • Cao, J.; Yu, Z.; Liu, W.; Zhao, J.; Zhang, H.; Zhai, Q.; Chen, W. Probiotic Characteristics of Bacillus Coagulans and Associated Implications for Human Health and Diseases. J. Funct. Foods. 2020, 64(July 2019), 103643. DOI: 10.1016/j.jff.2019.103643.
  • Maity, C.; Gupta, A, K.; Saroj, D. B.; Biyani, A.; Bagkar, P.; Kulkarni, J.; Dixit, Y. Impact of a Gastrointestinal Stable Probiotic Supplement Bacillus Coagulans LBSC on Human Gut Microbiome Modulation. J. Diet. Suppl. 2020, 1–20. doi:10.1080/19390211.2020.1814931.
  • Jiménez-Avalos, J. A.; Arrevillaga-Boni, G.; González-López, L.; García-Carvajal, Z. Y.; González-Avila, M. Classical Methods and Perspectives for Manipulating the Human Gut Microbial Ecosystem. Crit. Rev. Food Sci. Nutr. 2020, 1–25. DOI: 10.1080/10408398.2020.1724075.
  • FAO.Probiotics in Animal Nutrition -production, Impact and Regulation, Yadav S. Bajagai, Athol V. Klieve, Peter J. Dart and Wayne L. Bryden. Makkar, H.P.S. Ed.;  FAO Animal Production and Health Paper No. 179. Rome, 2016
  • Schultz, M.; Burton, J. P.; Chanyi, R. M. Use of Bacillus in Human Intestinal Probiotic Applications. In The Microbiota in Gastrointestinal Pathophysiology: Implications for Human Health, Prebiotics, Probiotics, and Dysbiosis; Floch, M. H., Yehuda, R., Walker, W. A., Eds.; Academic Press: Cambridge. 2017; pp 119–123. doi:10.1016/B978-0-12-804024-9.00011-2.
  • Vandenplas, Y.;. Probiotics and Prebiotics in Infectious Gastroenteritis. Best Pract. Res. Clin. Gastroenterol. 2016, 30(1), 49–53. DOI: 10.1016/j.bpg.2015.12.002.
  • Vandenplas, Y.; Huys, G.; Daube, G. Probiotics: An Update. J. Pediatr 2015, 91(1), 6–21. DOI: 10.1016/j.jped.2014.08.005.
  • Iannitti, T.; Palmieri, B. Therapeutical Use of Probiotic Formulations in Clinical Practice. Clin. Nutr. 2010, 29(6), 701–725. DOI: 10.1016/j.clnu.2010.05.004.
  • Guarner, F.; Sanders, M. E.; Eliakim, R.; Fedorak, R.; Gangl, A.; Garisch, J.; Kaufmann, P.; Karakan, T.; Khan, A.; Kim, N.;et al. Guías Mundiales De La Organización Mundial De Gastroenterología: Probióticos Y Prebióticos. World Gastroenterol. Organ. 2017, 35.
  • Grand View Research, Inc., Probiotic Ingredients Market Size, Share & Trends Analysis Report Analysis By Ingredients (Bacteria, Yeast), By Application, By End Use, By Form, By Region, And Segment Forecasts, 2019 - 2025; Grand View Research, Inc., San Francisco, California, 2019. [accessed May 17 2021] https://www.grandviewresearch.com/industry-analysis/probiotic-ingredients-market
  • Huang, S.; Vignolles, M. L.; Chen, X. D.; Le Loir, Y.; Jan, G.; Schuck, P.; Jeantet, R. Spray Drying of Probiotics and Other Food-Grade Bacteria: A Review. Trends Food Sci. Technol. 2017, pp 1–17. DOI: 10.1016/j.tifs.2017.02.007.
  • Whorwell, P. J.; Altringer, L.; Morel, J.; Bond, Y.; Charbonneau, D.; O’Mahony, L.; Kiely, B.; Shanahan, F.; Quigley, E. M. M. Efficacy of an Encapsulated Probiotic Bifidobacterium Infantis 35624 in Women with Irritable Bowel Syndrome. Am. J. Gastroenterol. 2006, 101(7), 1581–1590. DOI: 10.1111/j.1572-0241.2006.00734.x.
  • Fabian, E.; Majchrzak, D.; Dieminger, B.; Meyer, E.; Elmadfa, I. Influence of Probiotic and Conventional Yoghurt on the Status of Vitamins B1, B2 and B6 in Young Healthy Women. Ann. Nutr. Metab. 2008, 52(1), 29–36. DOI: 10.1159/000114408.
  • Silva, M. S.; Ramos, C. L.; González-Avila, M.; Gschaedler, A.; Arrizon, J.; Schwan, R. F.; Dias, D. R. Probiotic Properties of Weissella Cibaria and Leuconostoc Citreum Isolated from Tejuino – A Typical Mexican Beverage. LWT - Food Sci. Technol. 2017, 86, 227–232. DOI: 10.1016/j.lwt.2017.08.009.
  • Gorbach, S.; Doron, S.; Magro, F. 2017. Lactobacillus Rhamnosus GG. In The Microbiota in Gastrointestinal Pathophysiology, Floch, M.H., Ringel, Y., Walker, W.A., Eds., Academic Press: Cambridge, pp 79–88. Qeios: doi:10.32388/RWDW65.
  • Darby, T. M.; Jones, R. M. 2017. Beneficial Influences of Lactobacillus Plantarum on Human Health and Disease. In The Microbiota in Gastrointestinal Pathophysiology: Implications for Human Health, Prebiotics, Probiotics, and Dysbiosis; Floch, M. H., Yehuda, R., Walker, W. A., Eds.; Academic Press: Cambridge. doi:10.1016/B978-0-12-804024-9.00010-0.
  • FAO/WHO. Guidelines for the Evaluation of Probiotics in Food; 2002. 10.1111/j.1469-0691.2012.03873.
  • Lahtinen, S.; Ouwehand, A.; Collado, M.C.; Salminen, S.; Vesterlund, S.; Tang, M. and Satokari, R. Mechanisms of Probiotics. In Handbook of Probiotics and Prebiotics;  Lee Y.K. and Salminen S. Eds.; John Wiley & Sons, Inc: Hoboken. 2009; pp 377–440.
  • Yao, M.; Xie, J.; Du, H.; McClements, D. J.; Xiao, H.; Li, L. Progress in Microencapsulation of Probiotics: A Review. Compr. Rev. Food Sci. Food Saf. 2020, 19(2), 857–874. DOI: 10.1111/1541-4337.12532.
  • Caillard, R.; Lapointe, N. In Vitro Gastric Survival of Commercially Available Probiotic Strains and Oral Dosage Forms. Int. J. Pharm. 2017, 519(1–2), 125–127. DOI: 10.1016/j.ijpharm.2017.01.019.
  • Hamed, R.; Awadallah, A.; Sunoqrot, S.; Tarawneh, O.; Nazzal, S.; AlBaraghthi, T.; Al Sayyad, J.; Abbas, A. P. H. Dependent Solubility and Dissolution Behavior of Carvedilol—Case Example of a Weakly Basic BCS Class II Drug. AAPS PharmSciTech. 2016, 17(2), 418–426. DOI: 10.1208/s12249-015-0365-2.
  • Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A Standardised Static in Vitro Digestion Method Suitable for Food-an International Consensus. Food Funct. 2014, 5(6), 1113–1124. DOI: 10.1039/c3fo60702j.
  • Martín, M. J.; Lara-villoslada, F.; Ruiz, M. A.; Morales, M. E. Microencapsulation of Bacteria: A Review of Different Technologies and Their Impact on the Probiotic Effects. Innov. Food Sci. Emerg. Technol. 2015, 27, 15–25. DOI: 10.1016/j.ifset.2014.09.010.
  • Frakolaki, G.; Giannou, V.; Kekos, D.; Tzia, C. A. Review of the Microencapsulation Techniques for the Incorporation of Probiotic Bacteria in Functional Foods. Crit. Rev. Food Sci. Nutr. 2020, 8398(May). DOI: 10.1080/10408398.2020.1761773.
  • Timilsena, Y. P.; Wang, B.; Adhikari, R.; Adhikari, B. Advances in Microencapsulation of Polyunsaturated Fatty Acids (Pufas)-rich Plant Oils Using Complex Coacervation: A Review. Food Hydrocoll. 2017, 69, 369–381. DOI: 10.1016/j.foodhyd.2017.03.007.
  • Minekus M. The TNO Gastro-Intestinal Model (TIM). In The Impact of Food Bioactives on Health. Verhoeckx, K.; López-Expósito, I.; Cotter, P.; Kleiveland, C.; Lea, T.; Mackie, A.; Requena, T.; Swiatecka, D.; and Wichers, H. Eds. Springer Nature: Cham, Switzerland, 2015; pp 37-46.
  • Dupont, D.; Alric, M.; Blanquet-Diot, S.; Bornhorst, G.; Cueva, C.; Deglaire, A.; Denis, S.; Ferrua, M.; Havenaar, R.; Lelieveld, J.; et al. Can Dynamic in Vitro Digestion Systems Mimic the Physiological Reality? Crit. Rev. Food Sci. Nutr. 2019, 59(10), 1546–1562. DOI: 10.1080/10408398.2017.1421900.
  • Barroso, E.; Cueva, C.; Peláez, C.; Martínez-Cuesta, M. C.; Requena, T. Development of Human Colonic Microbiota in the Computer-Controlled Dynamic SIMulator of the GastroIntestinal Tract SIMGI. LWT - Food Sci. Technol. 2015, 61(2), 283–289. DOI: 10.1016/j.lwt.2014.12.014.
  • García-Gamboa, R.; Gradilla-Hernández, M. S.; Ortiz-Basurto, R. I.; García-Reyes, R. A.; González-Avila, M. Assessment of Intermediate and Long Chains Agave Fructan Fermentation on the Growth of Intestinal Bacteria Cultured in a Gastrointestinal Tract Simulator. Rev. Mex. Ing. Química 2020, 19(2), 827–838. DOI: 10.24275/rmiq/Bio842.
  • Haffner, F. B.; Pasc, A. Freeze-Dried Alginate-Silica Microparticles as Carriers of Probiotic Bacteria in Apple Juice and Beer. LWT - Food Sci. Technol. 2018, 91(November 2017), 175–179. DOI: 10.1016/j.lwt.2018.01.050.
  • Worametrachanon, S.; Apichartsrangkoon, A.; Chaikham, P.; Van Den Abbeele, P.; Van De Wiele, T.; Wirjantoro, T. I. Effect of Encapsulated Lactobacillus Casei 01 along with Pressurized-Purple-Rice Drinks on Colonizing the Colon in the Digestive Model. Appl. Microbiol. Biotechnol. 2014, 98(11), 5241–5250. DOI: 10.1007/s00253-014-5624-8.
  • Sáyago-Ayerdi, S. G.; Zamora-Gasga, V. M.; Venema, K. Changes in Gut Microbiota in Predigested Hibiscus Sabdariffa L Calyces and Agave (Agave Tequilana Weber) Fructans Assessed in a Dynamic in Vitro Model (TIM-2) of the Human Colon. Food Res. Int. 2020, 132(October 2019), 109036. DOI: 10.1016/j.foodres.2020.109036.
  • Gil-Sánchez, I.; Cueva, C.; Tamargo, A.; Quintela, J. C.; De La Fuente, E.; Walker, A. W.; Moreno-Arribas, M. V.; Bartolomé, B. Application of the Dynamic Gastrointestinal Simulator (Simgi®) to Assess the Impact of Probiotic Supplementation in the Metabolism of Grape Polyphenols. Food Res. Int. 2020, 129(November 2019), 108790. DOI: 10.1016/j.foodres.2019.108790.
  • Surono, I.; Verhoeven, J.; Verbruggen, S.; Venema, K. Microencapsulation Increases Survival of the Probiotic Lactobacillus Plantarum IS-10506, but Not Enterococcus Faecium IS-27526 in a Dynamic, Computer-Controlled in Vitro Model of the Upper Gastrointestinal. Tract. J. Appl. Microbiol 2018, 124(6), 1604–1609. DOI: 10.1111/jam.13740.
  • Luo, X.; Song, H.; Yang, J.; Han, B.; Feng, Y.; Leng, Y.; Chen, Z. Encapsulation of Escherichia Coli Strain Nissle 1917 in a Chitosan―alginate Matrix by Combining Layer-by-Layer Assembly with CaCl2 Cross-Linking for an Effective Treatment of Inflammatory Bowel Diseases. Colloids Surf. B Biointerfaces. 2020, 189(October 2019), 110818. DOI: 10.1016/j.colsurfb.2020.110818.
  • Zhao, M.; Wang, Y.; Huang, X.; Gaenzle, M.; Wu, Z.; Nishinari, K.; Yang, N.; Fang, Y. Ambient Storage of Microencapsulated: Lactobacillus Plantarum ST-III by Complex Coacervation of Type-A Gelatin and Gum Arabic. Food Funct. 2018, 9(2), 1000–1008. DOI: 10.1039/c7fo01802a.
  • Peredo, A. G.; Beristain, C. I.; Pascual, L. A.; Azuara, E.; Jimenez, M. The Effect of Prebiotics on the Viability of Encapsulated Probiotic Bacteria. LWT - Food Sci. Technol. 2016, 73, 191–196. DOI: 10.1016/j.lwt.2016.06.021.
  • McClements, D. J.; Nanoparticle- and Microparticle-Based Delivery Systems: Encapsulation, Protection and Release of Active Compounds; 2014. 10.1201/b17280.
  • Saeed, F.; Bader-Ul-Ain, H.; Afzaal, M.; Ahmad, N.; Abbas, M.; Suleria, H. A. R. Role of Encapsulation in Food Systems: A Review. In Nanotechnology and Nanomaterial Applications in Food, Health, and Biomedical Sciences; Verma, D. K., Goyal, M. R., Rasul Suleria, H. A., Eds.; CRC Press: Boca Raton, Florida, 2019; pp 233–247. doi:10.1201/9780429425660-6.
  • Rodrigues, F. J.; Cedran, M. F.; Bicas, J. L.; Sato, H. H. Encapsulated Probiotic Cells: Relevant Techniques, Natural Sources as Encapsulating Materials and Food Applications – A Narrative Review. Food Res. Int. 2020, 137(October), 109682. DOI: 10.1016/j.foodres.2020.109682.
  • Archacka, M.; Białas, W.; Dembczyński, R.; Olejnik, A.; Sip, A.; Szymanowska, D.; Celińska, E.; Jankowski, T.; Olejnik, A.; Rogodzińska, M. Method of Preservation and Type of Protective Agent Strongly Influence Probiotic Properties of Lactococcus Lactis: A Complete Process of Probiotic Preparation Manufacture and Use. Food Chem. 2019, 274(September 2018), 733–742. DOI: 10.1016/j.foodchem.2018.09.033.
  • Shu, G.; Wang, Z.; Chen, L.; Wan, H.; Chen, H. Characterization of Freeze-Dried Lactobacillus Acidophilus in Goat Milk Powder and Tablet: Optimization of the Composite Cryoprotectants and Evaluation of Storage Stability at Different Temperature. LWT - Food Sci. Technol. 2018, 90(September 2017), 70–76. DOI: 10.1016/j.lwt.2017.12.013.
  • Yao, M.; Li, B.; Ye, H.; Huang, W.; Luo, Q.; Xiao, H.; McClements, D. J.; Li, L. Enhanced Viability of Probiotics (Pediococcus Pentosaceus Li05) by Encapsulation in Microgels Doped with Inorganic Nanoparticles. Food Hydrocoll. 2018, 83(April), 246–252. DOI: 10.1016/j.foodhyd.2018.05.024.
  • Da Silva, M.; Jacob Lopes, T.; Codevilla, E.; Cichoski, C. F.; Flores, A. J.; De M, É. M.; Motta, M. H.; Da Silva, C. D. B.; Grosso, C. R. F.; De Menezes, C. R. Development and Characterization of Microcapsules Containing Bifidobacterium Bb-12 Produced by Complex Coacervation Followed by Freeze Drying. LWT - Food Sci. Technol. 2018, 90(August 2017), 412–417. DOI: 10.1016/j.lwt.2017.12.057.
  • Moayyedi, M.; Eskandari, M. H.; Rad, A. H. E.; Ziaee, E.; Khodaparast, M. H. H.; Golmakani, M. T. Effect of Drying Methods (Electrospraying, Freeze Drying and Spray Drying) on Survival and Viability of Microencapsulated Lactobacillus Rhamnosus ATCC 7469. J. Funct. Foods. 2018, 40(November 2017), 391–399. DOI: 10.1016/j.jff.2017.11.016.
  • Da Silva Guedes, J.; Pimentel, T. C.; Diniz-Silva, H. T.; Tayse Da Cruz Almeida, E.; Tavares, J. F.; Leite De Souza, E.; Garcia, E. F.; Magnani, M. Protective Effects of β-Glucan Extracted from Spent Brewer Yeast during Freeze-Drying, Storage and Exposure to Simulated Gastrointestinal Conditions of Probiotic Lactobacilli. LWT - Food Sci. Technol. 2019, 116, 108496. DOI: 10.1016/j.lwt.2019.108496.
  • Rajam, R.; Anandharamakrishnan, C. Microencapsulation of Lactobacillus Plantarum (MTCC 5422) with Fructooligosaccharide as Wall Material by Spray Drying. LWT - Food Sci. Technol. 2015, 60(2), 773–780. DOI: 10.1016/j.lwt.2014.09.062.
  • Šipailienė, A.; Petraitytė, S. Encapsulation of Probiotics: Proper Selection of the Probiotic Strain and the Influence of Encapsulation Technology and Materials on the Viability of Encapsulated Microorganisms. Probiotics Antimicrob. Proteins. 2018, 10(1), 1–10. DOI: 10.1007/s12602-017-9347-x.
  • Liao, L. K.; Wei, X. Y.; Gong, X.; Li, J. H.; Huang, T.; Xiong, T. Microencapsulation of Lactobacillus Casei LK-1 by Spray Drying Related to Its Stability and in Vitro Digestion. LWT - Food Sci. Technol. 2017, 82, 82–89. DOI: 10.1016/j.lwt.2017.03.065.
  • Tantratian, S.; Wattanaprasert, S.; Suknaisilp, S. Effect of Partial Substitution of Milk-Non-Fat with Xanthan Gum on Encapsulation of a Probiotic Lactobacillus. J. Food Process. Preserv. 2018, 42(7), 1–7. DOI: 10.1111/jfpp.13673.
  • González-Ferrero, C.; Irache, J. M.; González-Navarro, C. J. Soybean Protein-Based Microparticles for Oral Delivery of Probiotics with Improved Stability during Storage and Gut Resistance. Food Chem. 2018, 239, 879–888. DOI: 10.1016/j.foodchem.2017.07.022.
  • Loyeau, P. A.; Spotti, M. J.; Vanden Braber, N. L.; Rossi, Y. E.; Montenegro, M. A.; Vinderola, G.; Carrara, C. R. Microencapsulation of Bifidobacterium Animalis Subsp. Lactis INL1 Using Whey Proteins and Dextrans Conjugates as Wall Materials. Food Hydrocoll. 2018, 85(March), 129–135. DOI: 10.1016/j.foodhyd.2018.06.051.
  • Nunes, G. L.; Etchepare, M. D. A.; Cichoski, A. J.; Zepka, L. Q.; Jacob Lopes, E.; Barin, J. S.; Flores, É. M. D. M.; Da Silva, C. D. B.; De Menezes, C. R. Inulin, Hi-Maize, and Trehalose as Thermal Protectants for Increasing Viability of Lactobacillus Acidophilus Encapsulated by Spray Drying. LWT. 2018, 89(October 2017), 128–133. DOI: 10.1016/j.lwt.2017.10.032.
  • Arepally, D.; Goswami, T. K. Effect of Inlet Air Temperature and Gum Arabic Concentration on Encapsulation of Probiotics by Spray Drying. LWT - Food Sci. Technol. 2019, 99(May 2018), 583–593. DOI: 10.1016/j.lwt.2018.10.022.
  • Lipan, L.; Rusu, B.; Sendra, E.; Hernández, F.; Vázquez‐Araújo, L.; Vodnar, D. C.; Carbonell‐Barrachina, Á. A. Spray Drying and Storage of Probiotic‐enriched Almond Milk: Probiotic Survival and Physicochemical Properties. J. Sci. Food Agric. 2020, n/a(n/a), jsfa.10409. DOI: 10.1002/jsfa.10409.
  • Anandharamakrishnan, C.; Ishwarya, S. P. Selection of Wall Material for Encapsulation by Spray Drying. In Spray Drying Techniques for Food Ingredient Encapsulation; John Wiley & Sons, Ltd: Chichester, UK, 2015; pp 77–100. DOI:10.1002/9781118863985.ch4.
  • Lipan, L.; Rusu, B.; Sendra, E.; Hernández, F.; Vázquez-Araújo, L.; Vodnar, D. C.; Carbonell-Barrachina, Á. A. Spray Drying and Storage of Probiotic-Enriched Almond Milk: Probiotic Survival and Physicochemical Properties. J. Sci. Food Agric. 2020, n/a(n/a). DOI: 10.1002/jsfa.10409.
  • McClements, D. J.;. Designing Biopolymer Microgels to Encapsulate, Protect and Deliver Bioactive Components: Physicochemical Aspects. Adv. Colloid Interface Sci. 2017, 240, 31–59. DOI: 10.1016/j.cis.2016.12.005.
  • Li, R.; Zhang, Y.; Polk, D. B.; Tomasula, P. M.; Yan, F.; Liu, L. S. Preserving Viability of Lactobacillus Rhamnosus GG in Vitro and in Vivo by a New Encapsulation System. J. Control. Release. 2016, 230, 79–87. DOI: 10.1016/j.jconrel.2016.04.009.
  • Dafe, A.; Etemadi, H.; Dilmaghani, A.; Mahdavinia, G. R. Investigation of Pectin/Starch Hydrogel as a Carrier for Oral Delivery of Probiotic Bacteria. Int. J. Biol. Macromol. 2017, 97, 536–543. DOI: 10.1016/j.ijbiomac.2017.01.060.
  • Dafe, A.; Etemadi, H.; Zarredar, H.; Mahdavinia, G. R. Development of Novel Carboxymethyl Cellulose/k-Carrageenan Blends as an Enteric Delivery Vehicle for Probiotic Bacteria. Int. J. Biol. Macromol. 2017, 97, 299–307. DOI: 10.1016/j.ijbiomac.2017.01.016.
  • Rather, S. A.; Akhter, R.; Masoodi, F. A.; Gani, A.; Wani, S. M. Effect of Double Alginate Microencapsulation on in Vitro Digestibility and Thermal Tolerance of Lactobacillus Plantarum NCDC201 and L. Casei NCDC297. LWT - Food Sci. Technol. 2017, 83, 50–58. DOI: 10.1016/j.lwt.2017.04.036.
  • Vaziri, A. S.; Alemzadeh, I.; Vossoughi, M. Improving Survivability of Lactobacillus Plantarum in Alginate-Chitosan Beads Reinforced by Na-Tripolyphosphate Dual Cross-Linking. LWT - Food Sci. Technol. 2018, 97(July), 440–447. DOI: 10.1016/j.lwt.2018.07.037.
  • Vaziri, A. S.; Alemzadeh, I.; Vossoughi, M.; Khorasani, A. C. Co-Microencapsulation of Lactobacillus Plantarum and DHA Fatty Acid in Alginate-Pectin-Gelatin Biocomposites. Carbohydr. Polym. 2018, 199(May), 266–275. DOI: 10.1016/j.carbpol.2018.07.002.
  • Liao, N.; Luo, B.; Gao, J.; Li, X.; Zhao, Z.; Zhang, Y.; Ni, Y.; Tian, F. Oligosaccharides as Co-Encapsulating Agents: Effect on Oral Lactobacillus Fermentum Survival in a Simulated Gastrointestinal Tract. Biotechnol. Lett. 2019, 41(2), 263–272. DOI: 10.1007/s10529-018-02634-6.
  • Mahmoud, M.; Abdallah, N. A.; El-Shafei, K.; Tawfik, N. F.; El-Sayed, H. S. Survivability of Alginate-Microencapsulated Lactobacillus Plantarum during Storage, Simulated Food Processing and Gastrointestinal Conditions. Heliyon. 2020, 6(3), 3. DOI: 10.1016/j.heliyon.2020.e03541.
  • Dehkordi, S. S.; Alemzadeh, I.; Vaziri, A. S.; Vossoughi, A. Optimization of Alginate-Whey Protein Isolate Microcapsules for Survivability and Release Behavior of Probiotic Bacteria. Appl. Biochem. Biotechnol. 2020, 190(1), 182–196. DOI: 10.1007/s12010-019-03071-5.
  • Paula, D. D. A.; Martins, E. M. F.; Costa, N. D. A.; De Oliveira, P. M.; De Oliveira, E. B.; Ramos, A. M. Use of Gelatin and Gum Arabic for Microencapsulation of Probiotic Cells from Lactobacillus Plantarum by a Dual Process Combining Double Emulsification Followed by Complex Coacervation. Int. J. Biol. Macromol. 2019, 133, 722–731. DOI: 10.1016/j.ijbiomac.2019.04.110.
  • Timilsena, Y. P.; Akanbi, T. O.; Khalid, N.; Adhikari, B.; Barrow, C. J. Complex Coacervation: Principles, Mechanisms and Applications in Microencapsulation. Int. J. Biol. Macromol. 2019, 121, 1276–1286. DOI: 10.1016/j.ijbiomac.2018.10.144.
  • Hernández-Rodríguez, L.; Lobato-Calleros, C.; Pimentel-González, D. J.; Vernon-Carter, E. J. Lactobacillus Plantarum Protection by Entrapment in Whey Protein Isolate: κ-Carrageenan Complex Coacervates. Food Hydrocoll. 2014, 36, 181–188. DOI: 10.1016/j.foodhyd.2013.09.018.
  • Eratte, D.; McKnight, S.; Gengenbach, T. R.; Dowling, K.; Barrow, C. J.; Adhikari, B. P. Co-Encapsulation and Characterisation of Omega-3 Fatty Acids and Probiotic Bacteria in Whey Protein Isolate-Gum Arabic Complex Coacervates. J. Funct. Foods. 2015, 19, 882–892. DOI: 10.1016/j.jff.2015.01.037.
  • Bosnea, L. A.; Moschakis, T.; Nigam, P. S.; Biliaderis, C. G. Growth Adaptation of Probiotics in Biopolymer-Based Coacervate Structures to Enhance Cell Viability. LWT - Food Sci. Technol. 2017, 77, 282–289. DOI: 10.1016/j.lwt.2016.11.056.
  • Mao, L.; Pan, Q.; Yuan, F.; Gao, Y. Formation of Soy Protein Isolate-Carrageenan Complex Coacervates for Improved Viability of Bifidobacterium Longum during Pasteurization and in Vitro Digestion. Food Chem. 2019, 276(August 2018), 307–314. DOI: 10.1016/j.foodchem.2018.10.026.
  • Marques Da Silva, T.; De Deus, C.; De Souza, B.; Jacob Lopes, E.; Cichoski, A. J.; Almeida Esmerino, E.; De Bona Da Silva, C.; Irineu Muller, E.; Moraes Flores, E. M.; Flores, M.; et al. The Effect of Enzymatic Crosslinking on the Viability of Probiotic Bacteria (Lactobacillus Acidophilus) Encapsulated by Complex Coacervation. Food Res. Int. 2019, 125(July). DOI:10.1016/j.foodres.2019.108577.
  • Zhao, M.; Huang, X.; Zhang, H.; Zhang, Y.; Gänzle, M.; Yang, N.; Nishinari, K.; Fang, Y. Probiotic Encapsulation in Water-in-Water Emulsion via Heteroprotein Complex Coacervation of Type-A Gelatin/Sodium Caseinate. Food Hydrocoll. 2020, 105(February), 105790. DOI: 10.1016/j.foodhyd.2020.105790.
  • Eratte, D.; Dowling, K.; Barrow, C. J.; Adhikari, B. Recent Advances in the Microencapsulation of Omega-3 Oil and Probiotic Bacteria through Complex Coacervation: A Review. Trends Food Sci. Technol. 2018, 71(September 2016), 121–131. DOI: 10.1016/j.tifs.2017.10.014.
  • Rodríguez-Rodríguez, R.; Espinosa-Andrews, H.; Morales-Hernández, N.; Lobato-Calleros, C.; Vernon-Carter, E. J. Mesquite Gum/Chitosan Insoluble Complexes: Relationship between the Water State and Viscoelastic Properties. J. Dispers. Sci. Technol. 2018, 1–8. DOI: 10.1080/01932691.2018.1513848.
  • Ghorani, B.; Alehosseini, A.; Tucker, N. Electrospinning as a Novel Delivery Vehicle for Bioactive Compounds in Food Nanotechnology. Innov. Process. Technol. Foods with Bioact. Compd 2016, 51, 259–292. DOI: 10.1201/9781315371276.
  • Zaeim, D.; Sarabi-Jamab, M.; Ghorani, B.; Kadkhodaee, R.; Tromp, R. H. Electrospray-Assisted Drying of Live Probiotics in Acacia Gum Microparticles Matrix. Carbohydr. Polym. 2018, 183(December 2017), 183–191. DOI: 10.1016/j.carbpol.2017.12.001.
  • Lancuški, A.; Abu Ammar, A.; Avrahami, R.; Vilensky, R.; Vasilyev, G.; Zussman, E. Design of Starch-Formate Compound Fibers as Encapsulation Platform for Biotherapeutics. Carbohydr. Polym. 2017, 158, 68–76. DOI: 10.1016/j.carbpol.2016.12.003.
  • Anandharamakrishnan, C.; Parthasarathi, S. Food Nanotechnology. Principles and Applications, Anandharamakrishnan, C., Parthasarathi, S.Eds; CRC Press: Boca Raton, 2019. Vol. 60 10.1201/9781315153872.
  • Wen, P.; Wen, Y.; Zong, M. H.; Linhardt, R. J.; Wu, H. Encapsulation of Bioactive Compound in Electrospun Fibers and Its Potential Application. J. Agric. Food Chem. 2017, 65(42), 9161–9179. DOI: 10.1021/acs.jafc.7b02956.
  • Ceylan, Z.; Meral, R.; Karakaş, C. Y.; Dertli, E.; Yilmaz, M. T.; Novel, A. Strategy for Probiotic Bacteria: Ensuring Microbial Stability of Fish Fillets Using Characterized Probiotic Bacteria-Loaded Nanofibers. Innov. Food Sci. Emerg. Technol. 2018, 48(February), 212–218. DOI: 10.1016/j.ifset.2018.07.002.
  • Feng, K.; Zhai, M. Y.; Zhang, Y.; Linhardt, R. J.; Zong, M. H.; Li, L.; Wu, H. Improved Viability and Thermal Stability of the Probiotics Encapsulated in a Novel Electrospun Fiber Mat. J. Agric. Food Chem. 2018, 66(41), 10890–10897. DOI: 10.1021/acs.jafc.8b02644.
  • Škrlec, K.; Zupančič, Š.; Prpar Mihevc, S.; Kocbek, P.; Kristl, J.; Berlec, A. Development of Electrospun Nanofibers that Enable High Loading and Long-Term Viability of Probiotics. Eur. J. Pharm. Biopharm. 2019, 136(November 2018), 108–119. DOI: 10.1016/j.ejpb.2019.01.013.
  • Feng, K.; Huang, R. M.; R. Qing, W.; Y. Shan, W.; M. Hua, Z.; Linhardt, R. J.; Wu, H. A Novel Route for Double-Layered Encapsulation of Probiotics with Improved Viability under Adverse Conditions. Food Chem. 2020, 310(July), 125977. DOI: 10.1016/j.foodchem.2019.125977.
  • Mojaveri, S. J.; Hosseini, S. F.; Gharsallaoui, A. Viability Improvement of Bifidobacterium Animalis Bb12 by Encapsulation in Chitosan/Poly(Vinyl Alcohol) Hybrid Electrospun Fiber Mats. Carbohydr. Polym. 2020, 241(March), 116278. DOI: 10.1016/j.carbpol.2020.116278.
  • Yilmaz, M. T.; Taylan, O.; Karakas, C. Y.; Dertli, E. An Alternative Way to Encapsulate Probiotics within Electrospun Alginate Nanofibers as Monitored under Simulated Gastrointestinal Conditions and in Kefir. Carbohydr. Polym. 2020, 244(May), 116447. DOI: 10.1016/j.carbpol.2020.116447.
  • Gomez-Mascaraque, L. G.; Morfin, R. C.; Pérez-Masiá, R.; Sanchez, G.; Lopez-Rubio, A. Optimization of Electrospraying Conditions for the Microencapsulation of Probiotics and Evaluation of Their Resistance during Storage and In-Vitro Digestion. LWT - Food Sci. Technol. 2016, 69, 438–446. DOI: 10.1016/j.lwt.2016.01.071.
  • Gómez-Mascaraque, L. G.; Ambrosio-Martín, J.; Perez-Masiá, R.; Lopez-Rubio, A. Impact of Acetic Acid on the Survival of L. Plantarum upon Microencapsulation by Coaxial Electrospraying. J. Healthc. Eng. 2017, 1–6. DOI: 10.1155/2017/4698079.
  • Librán, C. M.; Castro, S.; Lagaron, J. M. Encapsulation by Electrospray Coating Atomization of Probiotic Strains. Innov. Food Sci. Emerg. Technol. 2017, 39, 216–222. DOI: 10.1016/j.ifset.2016.12.013.
  • Alehosseini, A.; Sarabi-Jamab, M.; Ghorani, B.; Kadkhodaee, R. Electro-Encapsulation of Lactobacillus Casei in High-Resistant Capsules of Whey Protein Containing Transglutaminase Enzyme. LWT - Food Sci. Technol. 2019, 102(September 2018), 150–158. DOI: 10.1016/j.lwt.2018.12.022.
  • Ceylan, Z.; Meral, R.; Cavidoglu, I.; Yagmur Karakas, C.; Tahsin Yilmaz, M. A New Application on Fatty Acid Stability of Fish Fillets: Coating with Probiotic Bacteria-Loaded Polymer-Based Characterized Nanofibers. J. Food Saf. 2018, 38(6), e12547. DOI: 10.1111/jfs.12547.
  • Ghasemnezhad, R.; Razavilar, V.; Pourjafar, H.; Khosravi-Darani, K.; Ala, K. The Viability of Free and Encapsulated Lactobacillus Casei and Bifidobacterium Animalis in Chocolate Milk, and Evaluation of Its PH Changes and Sensory Properties during Storage. Annu. Res. Rev. Biol 2017, 21(3), 1–8. DOI: 10.9734/ARRB/2017/37885.
  • El Kadri, H.; Lalou, S.; Mantzouridou, F. T.; Gkatzionis, K. Utilisation of Water-in-Oil-Water (W1/O/W2) Double Emulsion in a Set-Type Yogurt Model for the Delivery of Probiotic Lactobacillus Paracasei. Food Res. Int. 2018, 107(November 2017), 325–336. DOI: 10.1016/j.foodres.2018.02.049.
  • Farias, T. G. S. D.; Ladislau, H. F. L.; Stamford, T. C. M.; Medeiros, J. A. C.; Soares, B. L. M.; Stamford Arnaud, T. M.; Stamford, T. L. M. Viabilities of Lactobacillus Rhamnosus ASCC 290 and Lactobacillus Casei ATCC 334 (In Free Form or Encapsulated with Calcium Alginate-Chitosan) in Yellow Mombin Ice Cream. LWT - Food Sci. Technol. 2019, 100(February 2018), 391–396. DOI: 10.1016/j.lwt.2018.10.084.
  • Champagne, C. P.; Raymond, Y.; Guertin, N.; Bélanger, G. Effects of Storage Conditions, Microencapsulation and Inclusion in Chocolate Particles on the Stability of Probiotic Bacteria in Ice Cream. Int. Dairy J. 2015, 47, 109–117. DOI: 10.1016/j.idairyj.2015.03.003.
  • Afzaal, M.; Khan, A. U.; Saeed, F.; Arshad, M. S.; Khan, M. A.; Saeed, M.; Maan, A. A.; Khan, M. K.; Ismail, Z.; Ahmed, A.; et al. Survival and Stability of Free and Encapsulated Probiotic Bacteria under Simulated Gastrointestinal Conditions and in Ice Cream. Food Sci. Nutr. 2020, 8(3), 1649–1656. DOI: 10.1002/fsn3.1451.
  • Afzaal, M.; Saeed, F.; Arshad, M. U.; Nadeem, M. T.; Saeed, M.; Tufail, T. The Effect of Encapsulation on the Stability of Probiotic Bacteria in Ice Cream and Simulated Gastrointestinal Conditions. Probiotics Antimicrob. Proteins. 2018. DOI: 10.1007/s12602-018-9485-9.
  • Borrás-Enriquez, A. J.; De La Cruz-martínez, A.; Delgado-Portales, R. E.; González-Chávez, M. M.; Abud-Archila, M.; Moscosa-Santillán, M. Microbiological-Physicochemical Assessment and Gastrointestinal Simulation of Functional (Probiotic and Symbiotic) Gouda-Type Cheeses during Ripening. Rev. Mex. Ing. Química 2018, 17(3), 791–803. DOI: 10.24275/uam/izt/dcbi/revmexingquim/2018v17n3/Borras.
  • Li, H.; Zhang, T.; Li, C.; Zheng, S.; Li, H.; Yu, J. Development of a Microencapsulated Synbiotic Product and Its Application in Yoghurt. LWT - Food Sci. Technol. 2020, 122(January), 109033. DOI: 10.1016/j.lwt.2020.109033.
  • Ningtyas, D. W.; Bhandari, B.; Bansal, N.; Prakash, S. The Viability of Probiotic Lactobacillus Rhamnosus (Non-encapsulated and Encapsulated) in Functional Reduced-Fat Cream Cheese and Its Textural Properties during Storage. Food Control. 2018 November, 2019(100), 8–16. doi:10.1016/j.foodcont.2018.12.048.
  • Miranda, R. F.; De Paula, M. M.; Da Costa, G. M.; Barão, C. E.; Da Silva, A. C. R.; Raices, R. S. L.; Gomes, R. G.; Pimentel, T. C. Orange Juice Added with L. Casei: Is There an Impact of the Probiotic Addition Methodology on the Quality Parameters? LWT - Food Sci. Technol. 2019, 106(February), 186–193. DOI: 10.1016/j.lwt.2019.02.047.
  • Gandomi, H.; Abbaszadeh, S.; Misaghi, A.; Bokaie, S.; Noori, N. Effect of Chitosan-Alginate Encapsulation with Inulin on Survival of Lactobacillus Rhamnosus GG during Apple Juice Storage and under Simulated Gastrointestinal Conditions. LWT - Food Sci. Technol. 2016, 69, 365–371. DOI: 10.1016/j.lwt.2016.01.064.
  • Nami, Y.; Lornezhad, G.; Kiani, A.; Abdullah, N.; Alginate-Persian Gum-Prebiotics, H. B. Microencapsulation Impacts on the Survival Rate of Lactococcus Lactis ABRIINW-N19 in Orange Juice. LWT - Food Sci. Technol. 2020, 124(October 2019). DOI: 10.1016/j.lwt.2020.109190.
  • Afzaal, M.; Saeed, F.; Saeed, M.; Ahmed, A.; Ateeq, H.; Nadeem, M. T.; Survival, T. T. Stability of Free and Encapsulated Probiotic Bacteria under Simulated Gastrointestinal Conditions and in Pasteurized Grape Juice. J. Food Process. Preserv. 2020, 44(3), 3. DOI: 10.1111/jfpp.14346.
  • Hernández-Barrueta, T.; Martínez-Bustos, F.; Castaño-Tostado, E.; Lee, Y.; Miller, M. J.; Amaya-Llano, S. L. Encapsulation of Probiotics in Whey Protein Isolate and Modified Huauzontle’s Starch: An Approach to Avoid Fermentation and Stabilize Polyphenol Compounds in a Ready-to-Drink Probiotic Green Tea. LWT - Food Sci. Technol. 2020, 124, 109131. DOI: 10.1016/j.lwt.2020.109131.
  • Bampi, G. B.; Backes, G. T.; Cansian, R. L.; De Matos, F. E.; Ansolin, I. M. A.; Poleto, B. C.; Corezzolla, L. R.; Favaro-Trindade, C. S. Spray Chilling Microencapsulation of Lactobacillus Acidophilus and Bifidobacterium Animalis Subsp. Lactis and Its Use in the Preparation of Savory Probiotic Cereal Bars. Food Bioprocess Technol. 2016, 9(8), 1422–1428. DOI: 10.1007/s11947-016-1724-z.
  • Mirković, M.; Seratlić, S.; Kilcawley, K.; Mannion, D.; Mirković, N.; Radulović, Z. The Sensory Quality and Volatile Profile of Dark Chocolate Enriched with Encapsulated Probiotic Lactobacillus Plantarum Bacteria. Sensors (Switzerland). 2018, 18(8), 8. DOI: 10.3390/s18082570.
  • Afzaal, M.; Saeed, F.; Hussain, S.; Mohamed, A. A.; Alamri, M. S.; Ahmad, A.; Ateeq, H.; Tufail, T.; Hussain, M. Survival and Storage Stability of Encapsulated Probiotic under Simulated Digestion Conditions and on Dried Apple Snacks. Food Sci. Nutr. 2020, 8(10), 5392–5401. DOI: 10.1002/fsn3.1815.
  • Song, M. Y.; Van-Ba, H.; Park, W. S.; Yoo, J. Y.; Kang, H. B.; Kim, J. H.; Kang, S. M.; Kim, B. M.; Oh, M. H.; Ham, J. S. Quality Characteristics of Functional Fermented Sausages Added with Encapsulated Probiotic Bifidobacterium Longum KACC 91563. Korean J. Food Sci. Anim. Resour. 2018, 38(5), 981–994. DOI: 10.5851/kosfa.2018.e30.
  • Longoria-García, S.; Cruz-Hernández, M. A.; Flores-Verástegui, M. I. M.; Contreras-Esquivel, J. C.; Montañez-Sáenz, J. C.; Belmares-Cerda, R. E. Potential Functional Bakery Products as Delivery Systems for Prebiotics and Probiotics Health Enhancers. J. Food Sci. Technol. 2018, 55(3), 833–845. DOI: 10.1007/s13197-017-2987-8.
  • Seyedain-Ardabili, M.; Sharifan, A.; Tarzi, B. G. The Production of Synbiotic Bread by Microencapsulation. Food Technol. Biotechnol. 2016, 54(1), 52–59. DOI: 10.17113/ftb.54.01.16.4234.
  • Arslan-Tontul, S.; Erbas, M.; Gorgulu, A. The Use of Probiotic-Loaded Single- and Double-Layered Microcapsules in Cake Production. Probiotics Antimicrob. Proteins. 2019, 11(3), 840–849. DOI: 10.1007/s12602-018-9467-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.