1,655
Views
21
CrossRef citations to date
0
Altmetric
Review

A Review on Potential Use of Gelatin-based Film as Active and Smart Biodegradable Films for Food Packaging Application

, & ORCID Icon

References

  • Shankar, S.; Jaiswal, L.; Rhim, J. W. Chapter 27 – Gelatin-Based Nanocomposite Films: Potential Use in Antimicrobial Active Packaging. In Antimicrobial Food Packaging, Jorge Barros-Velaquez (Ed).; Amsterdam: Elsevier. 2016; pp 339–348.
  • Rungsinee, S.;. Chapter 8- Edible Films and Coatings for Packaging Applications. In Alavi, S., Thomas, S., Sandeep, K.P., Kalarikkal, N., Varghese, J. & Yaragalla, S. (Eds.).; Polymers for Packaging Application. Apple Academic Press: Waretown. 2015; Vol. 174
  • Kumar, S.; Thakur, K. S. Bioplastics - Classification, Production and Their Potential Food Applications. J. Hill Agric. 2017, 8(2), 118–129. DOI: 10.5958/2230-7338.2017.00024.6.
  • Machado, A. V.; Araújo, A.; Oliveira, M. Assessment of Polymer-Based Nanocomposites Biodegradability. In Biodegradable Polymers. Volume 1: Advancement in Biodegradation Study and Applications;  Chu, C. (Ed.) Nova Publishers: Hauppauge, New York, United State of America, 2015; pp 1–28.
  • Da Rocha, M.; De Souza, M. M.; Prentice, C. Biodegradable Films: An Alternative Food Packaging. Handbook of Food Bioengineering. InFood Packaging and Preservation, 1st ed.; Grumezescu, A.M.,  Holban, A.M. (Eds.). Academic Press: Cambridge, MA. USA, 2018; Volume 9, pp. 307–342.
  • Siracusa, V.; Rocculi, P.; Romani, S.; Dalla Rosa, M. Biodegradable Polymers for Food Packaging: A Review. Trends Food Sci. Technol. 2008, 19(12), 634–643. DOI: 10.1016/j.tifs.2008.07.003.
  • Hassan, B.; Chatha, S. A. S.; Hussain, A. I.; Zia, K. M.; Akhtar, N. Recent Advances on Polysaccharides, Lipids and Protein Based Edible Films and Coatings: A Review. Int. J. Biol. Macromol. 2018, 109, 1095–1107. DOI: 10.1016/j.ijbiomac.2017.11.097.
  • Sarbon, N. M.; Badii, F.; Howell, N. K. Preparation and Characterisation of Chicken Skin Gelatin as an Alternative to Mammalian Gelatin. Food Hydrocolloids. 2013, 30(1), 143–151. DOI: 10.1016/j.foodhyd.2012.05.009.
  • Vieira, M. G. A.; Silva, M. A. D.; Santos, L. O. D.; Beppu, M. M. Natural-Based Plasticizers and Biopolymer Films: A Review. Eur. Polym. J. 2011, 47(3), 254–263. DOI: 10.1016/j.eurpolymj.2010.12.011.
  • Ramos, M.; Valdés, A.; Beltrán, A.; Garrigós, M. C. Gelatin-Based Films and Coatings for Food Packaging Applications. Coatings. 2016, 6(4), 41. DOI: 10.3390/coatings6040041.
  • Said, N. S.; Sarbon, N. M. Response Surface Methodology (RSM) of Chicken Skin Gelatin Based Composite Films with Rice Starch and Curcumin Incorporation. Polym. Test. 2020, 81, 106161. DOI: 10.1016/j.polymertesting.2019.106161.
  • Gómez-Guillén, M. C.; Pérez-Mateos, M.; Gómez-Estaca, J.; López-Caballero, E.; Giménez, B.; Montero, P. Fish Gelatin: A Renewable Material for Developing Active Biodegradable Films. Trends Food Sci. Technol. 2009, 20(1), 3–16. DOI: 10.1016/j.tifs.2008.10.002.
  • Araghi, M.; Moslehi, Z.; Mohammadi Nafchi, A.; Mostahsan, A.; Salamat, N.; Daraei Garmakhany, A. Cold Water Fish Gelatin Modification by A Natural Phenolic Cross‐Linker (Ferulic Acid and Caffeic Acid). Food Sci. Nutr. 2015, 3(5), 370–375. DOI: 10.1002/fsn3.230.
  • Prasad, P.; Kochhar, A. Active Packaging in Food Industry: A Review. IOSR Journal of Environmental Science, Toxicology and Food Technology. 2014, 8(5), 1–7. DOI: 10.9790/2402-08530107.
  • Gómez-Guillén, M. C.; Giménez, B.; López-Caballero, M. E.; Montero, M. P. Functional and Bioactive Properties of Collagen and Gelatin from Alternative Sources: A Review. Food Hydrocolloids. 2011, 25, 1813–1827.
  • Transparency Market Research (2013). Gelatin Market by Raw Material (Pig Skin, Bovine Hide, Bones and Others) for Food & Beverage, Nutraceuticals, Pharmaceuticals, Photography, Cosmetics and Other Applications - Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2012 – 2018. Retrieved from https://www.prnewswire.com/news-releases/global-gelatin-market-is-expected-to-reach-usd-279-billion-in-2018-transparency-market-research-213992871.html
  • Nur Hanani, Z. A.; (2016). Gelatin. The Encyclopedia of Food and Health, 3, 191–195.
  • Gelatin Manufacturers Institute of America Gelatin Handbook. Gelatin Manufacturers Institute of America  Inc., 2012;  America, p. 1–25.
  • Nur Azira, T.; Amin, I.; Che Man, Y. B. Differentiation of Bovine and Porcine Gelatins in Processed Products via Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Principal Component Analysis (PCA) Techniques. Int. Food Res. J. 2012, 19(3), 1175–1180.
  • Hafidz, R. N.; Yaakob, C. M.; Amin, I.; Noorfaizan, A. Chemical and Functional Properties of Bovine and Porcine Skin Gelatin. Int. Food Res. J. 2011, 18, 813–817.
  • Rosli, N.; Sarbon, N. M. Physicochemical and Structural Properties of Asian Swamp Eel (Monopterus Albus) Skin Gelatin as Compared to Bovine Gelatin. Int. Food Res. J. 2015, 22(2), 699–706.
  • Mariod, A. A.; Fadul, H. Extraction and Characterization of Gelatin from Two Edible Sudanese Insects and Its Applications in Ice Cream Making. Food Sci. Technol. Int. 2014, 21(5), 380–391. DOI: 10.1177/1082013214541137.
  • European Food Safety Authority (EFSA). Quantitative Assessment of the Human BSE Risk Posed by Gelatine with respect to Residual BSE Risk. EFSA J. 2006, 312, 1–29.
  • FDA (2016) Transmissible Spongiform Encephalopathies Advisory Committee (CJDSAC). As retrieved from https://www.fda.gov/food/cfsan-constituent-updates/fda-announces-final-rule-bovine-spongiform-encephalopathy
  • Kakaei, S.; Shahbazi, Y. Effect of Chitosan-Gelatin Film Incorporated with Ethanolic Red Grape Seed Extract and Ziziphora Clinopodioides Essential Oil on Survival of Listeria Monocytogenes and Chemical, Microbial and Sensory Properties of Minced Trout Fillet. LWT - Food Science and Technology. 2016, 72, 432–438. DOI: 10.1016/j.lwt.2016.05.021.
  • Alparslan, Y.; Baygar, T.; Baygar, T.; Hasanhocaoglu, H.; Metin, C. Effects of Gelatin-based Edible Films Enriched with Laurel Essential Oil on the Quality of Rainbow Trout (Oncorhynchus Mykiss) Fillets during Refrigerated Storage. Food Technol. Biotechnol. 2014, 52(3), 325–333.
  • Ledward, D. A.;. Gelatin. In Handbook of Hydrocolloids; Philips, G.O., William, P.A. (Eds.). CRC Press: Boca Raton, 2000; pp 67–86.
  • Sompie, M.; Surtijono, S. E.; Pontoh, J. H. W.; Lontaan, N. N. The Effects of Acetic Acid Concentration and Extraction Temperature on Physical and Chemical Properties of Pigskin Gelatin. Procedia Food Sci. 2015, 3, 383–388. DOI: 10.1016/j.profoo.2015.01.042.
  • Dinçer, M. T.; Erdem, Ö. A.; Kalkan, H.; Üçok, M. Ç. Comparison of Recovered Carp Scales (Cyprinus Carpio) Gelatin and Commercial Calf and Pork Skin Gelatins. Ege J. Fish. Aquat. Sci. 2016, 33(4), 335–341. DOI: 10.12714/egejfas.2016.33.4.05.
  • Ninan, G.; Joseph, J.; Aliyamveettil, Z. A. A Comparative Study on the Physical, Chemical and Functional Properties of Carp Skin and Mammalian Gelatins. J. Food Sci. Technol. 2014, 51(9), 2085–2091. DOI: 10.1007/s13197-012-0681-4.
  • Mahmoodani, F.; Ardekani, V. S.; See, S. F.; Yusop, S. M.; Babji, A. S. Optimization and Physical Properties of Gelatin Extracted from Pangasius Catfish (Pangasius Sutchi) Bone. J. Food Sci. Technol. 2014, 51(11), 3104–3113. DOI: 10.1007/s13197-012-0816-7.
  • Karim, A. A.; Bhat, R. Fish Gelatin: Properties, Challenges, and Prospects as an Alternative to Mammalian Gelatins. Food Hydrocolloids. 2009, 23(3), 563–576. DOI: 10.1016/j.foodhyd.2008.07.002.
  • Jongjareonrak, A.; Benjakul, S.; Visessanguan, W.; Prodpran, T.; Tanaka, M. Characterization of Edible Films from Skin Gelatin of Brownstripe Red Snapper and Bigeye Snapper. Food Hydrocolloids. 2006, 20(4), 492–501. DOI: 10.1016/j.foodhyd.2005.04.007.
  • Uriarte-Montoya, M. H.; Santacruz-Ortega, H.; Cinco-Moroyoqui, F. J.; Rouzaud-Sández, O.; Plascencia-Jatomea, M.; Ezquerra-Brauer, J. M. Giant Squid Skin Gelatin: Chemical Composition and Biophysical Characterization. Food Res. Int. 2011, 44(10), 3243–3249. DOI: 10.1016/j.foodres.2011.08.018.
  • Sila, A.; Martinez-Alvarez, O.; Krichen, F.; Gómez-Guillén, M. C.; Bougatef, A. Gelatin Prepared from European Eel (Anguilla Anguilla) Skin: Physicochemical, Textural, Viscoelastic and Surface Properties. Colloids Surf. A. 2017, 529, 643–650. DOI: 10.1016/j.colsurfa.2017.06.032.
  • Nik Aisyah, N. M.; Nurul, H.; Azhar, M. E.; Fazilah, A. Poultry as an Alternative Source of Gelatin. Health Environ. J. 2014, 5(1), 37–49.
  • Abedinia, A.; Ariffin, F.; Huda, N.; Nafchi, A. M. Preparation and Characterization of a Novel Biocomposite Based on Duck Feet Gelatin as Alternative to Bovine Gelatin. Int. J. Biol. Macromol. 2018, 109, 855–862. DOI: 10.1016/j.ijbiomac.2017.11.051.
  • Norland, R. E.;. Fish Gelatin. In Advances in Fisheries Technology and Biotechnology for Increased Profitability, Voigt M.J. , Botta J.R. (Eds.) Technomic Publisher Co. Inc.: Lancaster, 1990; pp 325–333.
  • Cho, S. M.; Gu, Y. S.; Kim, S. B. Extracting Optimization and Physical Properties of Yellowfin Tuna (Thunnus Albacares) Skin gelatin Compared to Mammalian Gelatins. Food Hydrocolloids. 2005, 19(2), 221–229. DOI: 10.1016/j.foodhyd.2004.05.005.
  • Ratnasari, I.; Firlianty. Physico-Chemical Characterization and Skin Gelatin Rheology of Four Freshwater Fish as Alternative Gelatin Source. AACL Bioflux. 2016, 9(6), 1196–1207.
  • Muyonga, J. H.; Cole, C. G. B.; Duodu, K. G. Extraction and Physico-Chemical Characterisation of Nile Perch (Lates Niloticus) Skin and Bone Gelatin. Food Hydrocolloids. 2004, 18(4), 581–592. DOI: 10.1016/j.foodhyd.2003.08.009.
  • Alfaro, A. D. T.; Balbinot, E.; Weber, C. I.; Tonial, I. B.; Machado-Lunkes, A. Fish Gelatin: Characteristics, Functional Properties, Applications and Future Potentials. Food Eng. Rev. 2014, 7(1), 33–44. DOI: 10.1007/s12393-014-9096-5.
  • Nik Aisyah, N. M.; Huda, N.; Karim, A. A.; Nafchi, A. M. Effects of Acid Type Extraction on Characterization and Sensory Profile of Duck Feet Gelatin: Towards Finding Bovine Gelatin Alternative. J. Food Meas. Charact. 2018, 12(1), 480–486. DOI: 10.1007/s11694-017-9661-8.
  • Sarbon, N. M.; (2011). Nutritional and Physicochemical Properties of Chicken Proteins and Peptides, University of Surrey, Thesis.
  • Abedinia, A.; Nafchi, A. M.; Sharifi, M.; Ghalambor, P.; Oladzadabbasabadi, N.; Ariffin, F.; Huda, N. Poultry Gelatin: Characteristics, Developments, Challenges, and Future Outlooks as A Sustainable Alternative for Mammalian Gelatin. Trends Food Sci. Technol. 2020, 104, 14–26. DOI: 10.1016/j.tifs.2020.08.001.
  • Jorge, M. F. C.; Alexandre, E. M. C.; Flaker, C. H. C.; Bittante, A. M. Q. B.; Sobral, P. J. D. A. Biodegradable Films Based on Gelatin and Montmorillonite Produced by Spreading. Int. J. Polym. Sci. 2015, 9, 1–9. DOI: 10.1155/2015/806791.
  • Yang, Z.; Hemar, Y.; Hilliou, I.; Gilbert, E. P.; McGillivray, D. J.; Williams, M. A. K.; Chaieb, S. Non-Linear Behaviour of Gelatin Networks Reveals a Hierarchical Structure. Biomacromolecules. 2015, 17(2), 590–600. DOI: 10.1021/acs.biomac.5b01538.
  • Aguirre-Alvarez, G.; Pimentel-González, D. J.; Campos-Montiel, R. G.; Foster, T.; Hill, S. E. The effect of drying temperature on mechanical properties of pig skin gelatin films El efecto de la temperatura de secado sobre las propiedades mecánicas de películas de gelatina de cerdo. CyTA - J. Food. 2011, 9(3), 243–249. DOI: 10.1080/19476337.2010.523902.
  • Nor, M. H. M.; Nazmi, N. N. M.; Sarbon, N. M. Effects of Plasticizer Concentrations on Functional Properties of Chicken Skin Gelatin Films. Int. Food Res. J. 2017, 24(5), 1910–1918.
  • Soo, P. Y.; Sarbon, N. M. Preparation and Characterization of Edible Chicken Skin Gelatin Film Incorporated with Rice Flour. Food Pack. Shelf Life. 2018, 15, 1–8. DOI: 10.1016/j.fpsl.2017.12.009.
  • Nazmi, N. N.; Isa, M. I. N.; Sarbon, N. M. Preparation and Characterization of Chicken Skin Gelatin/CMC Composite Film as Compared to Bovine Gelatin Film. Food Biosci. 2017, 19, 149–155. DOI: 10.1016/j.fbio.2017.07.002.
  • Jomlapeeratikul, P.; Poomsa-Ad, N.; Wiset, L. (2013). The Effects of Drying Temperatures and Oil Contents on Properties of Biodegradable Film from Konjac Flour. The 14th TSAE National Conference and the 6th TSAE International Conference: TSAE 2013. Bangkok, Thailand.
  • Suhag, R.; Kumar, N.; Petkoska, A. T.; Upadhyay, A. Film Formation and Deposition Methods of Edible Coating on Food Products: A Review. Food Res. Int. 2020, 136, 109582.
  • Rosseto, M.; Krein, D. D.; Balbé, N. P.; Dettmer, A. Starch–Gelatin Film as an Alternative to the Use of Plastics in Agriculture: A Review. J. Sci. Food Agric. 2019, 99(15), 6671–6679. DOI: 10.1002/jsfa.9944.
  • Hyvärinen, M.; Jabeen, R.; Kärki, T. The Modelling of Extrusion Processes for Polymers—A Review. Polymers. 2020, 12(6), 1306. DOI: 10.3390/polym12061306.
  • Tongnuanchan, P.; Benjakul, S.; Prodpran, T.; Pisuchpen, S.; Osako, K. Mechanical, Thermal and Heat-Sealing Properties of Fish Skin Gelatin Film Containing Palm Oil and Basil Essential Oil with Different Surfactants. Food Hydrocolloids. 2016, 56, 93–107. DOI: 10.1016/j.foodhyd.2015.12.005.
  • Suh, J. H.; Ock, S. Y.; Park, G. D.; Lee, M. H.; Park, H. J. Effect of Moisture Content on the Heat-Sealing Property of Starch Films from Different Botanical Sources. Polym. Test. 2020, 89, 106612. DOI: 10.1016/j.polymertesting.2020.106612.
  • Prateepchanachai, S.; Thakhiew, W.; Devahastin, S.; Soponronnarit, S. (2017) Improvement of Mechanical and Heat-Sealing Properties of Chitosan Films via the Use of Glycerol and Gelatin Blends in Film-Forming Solution. The 18th TSAE National Conference and 10th TSAE International Conference. 2017; Impact Exhibition and Convention Centre: Bangkok, Thailand.
  • Jamróz, E.; Kulawik, P.; Krzyściak, P.; Talaga-Ćwiertnia, K.; Juszczak, L. Intelligent and Active Furcellaran-Gelatin Films Containing Green or Pu-Erh Tea Extracts: Characterization, Antioxidant and Antimicrobial Potential. Int. J. Biol. Macromol. 2019, 122, 745–757. DOI: 10.1016/j.ijbiomac.2018.11.008.
  • Abdorreza, M. N.; Cheng, L. H.; Karim, A. A. Effects of Plasticizers on Thermal Properties and Heat Sealability of Sago Starch Films. Food Hydrocolloids. 2011, 25(1), 56–60. DOI: 10.1016/j.foodhyd.2010.05.005.
  • Abdorreza, M. N.; Nassiri, R.; Sheibani, S.; Ariffin, F.; Karim, A. A. Preparation and Characterization of Bionanocomposite Films Filled with Nanorod-Rich Zinc Oxide. Carbohydr. Polym. 2013, 96(1), 233–239. DOI: 10.1016/j.carbpol.2013.03.055.
  • Primožič, M.; Knez, Ž.; Leitgeb, M. (Bio) Nanotechnology in Food Science—Food Packaging. Nanomaterials. 2021, 11(2), 292. DOI: 10.3390/nano11020292.
  • Müller, K.; Bugnicourt, E.; Latorre, M.; Jorda, M.; Echegoyen Sanz, Y.; Lagaron, J. M.; Miesbauer, O.; Bianchin, A.; Hankin, S.; Bölz, U.; et al. Review on the Processing and Properties of Polymer Nanocomposites and Nanocoatings and Their Applications in the Packaging, Automotive and Solar Energy Fields. Nanomaterials. 2017, 7(4), 74. DOI: 10.3390/nano7040074.
  • Fahmy, H. M.; Eldin, R. E. S.; Serea, E. S. A.; Gomaa, N. M.; AboElmagd, G. M.; Salem, S. A.; Elsayed, Z. A.; Edrees, A.; Shams-Eldin, E.; Shalan, A. E. Advances in Nanotechnology and Antibacterial Properties of Biodegradable Food Packaging Materials. RSC Adv. 2020, 10(35), 20467–20484. DOI: 10.1039/D0RA02922J.
  • Marvizadeh, M. M.; Oladzadabbasabadi, N.; Nafchi, A. M.; Jokar, M. Preparation and Characterization of Bionanocomposite Film Based on Tapioca Starch/Bovine Gelatin/Nanorod Zinc Oxide. Int. J. Biol. Macromol. 2017, 99, 1–7. DOI: 10.1016/j.ijbiomac.2017.02.067.
  • Tabatabaei, R. H.; Jafari, S. M.; Mirzaei, H.; Nafchi, A. M.; Dehnad, D. Preparation and Characterization of Nano-Sio2 Reinforced Gelatin-K-Carrageenan Biocomposites. Int. J. Biol. Macromol. 2018, 111, 1091–1099. DOI: 10.1016/j.ijbiomac.2018.01.116.
  • Elkhoury, K.; Koçak, P.; Kang, A.; Arab-Tehrany, E.; Ellis Ward, J.; Shin, S. R. Engineering Smart Targeting Nanovesicles and Their Combination with Hydrogels for Controlled Drug Delivery. Pharmaceutics. 2020, 12(9), 849. DOI: 10.3390/pharmaceutics12090849.
  • Prodpran, T.; Benjakul, S.; Vittayanont, M.; Nalinanon, S. (2013). Physico-Chemical Properties of Gelatin Films Incorporated with Different Hydrocolloids. 2nd International Conference on Nutrition and Food Sciences IPCBEE.  IACSIT Press: Singapore,  2013; 53 (16).
  • Huff, K.; (2008). Active and Intelligent Packaging: Innovations for the Future. Department of Food Science & Technology, Virginia Polytechnic Institute and State University, Blacksburg, 1–13.
  • Gontard, N.;. Les Emballages Actifs. Tech & Doc Editions; Gontard, N. Ed.; Lavoisier: Paris, France, 2000.
  • Gómez-Estaca, J.; López De Lacey, A.; López-Caballero, M. E.; Gómez-Guillén, M. C.; Montero, P. Biodegradable Gelatin–chitosan Films Incorporated with Essential Oils as Antimicrobial Agents for Fish Preservation. Food Microbiol. 2010, 27(7), 889–896. DOI: 10.1016/j.fm.2010.05.012.
  • Martucci, J. F.; Ruseckaite, R. A. Antibacterial Activity of Gelatin/Copper (Ii)-exchanged Montmorillonite Films. Food Hydrocolloids. 2017, 64, 70–77. DOI: 10.1016/j.foodhyd.2016.10.030.
  • Ogawa, Y.; Azuma, K.; Izawa, H.; Morimoto, M.; Ochi, K.; Osaki, T.; Ito, N.; Okamoto, Y.; Saimoto, H.; Ifuku, S. Preparation and Biocompatibility of a Chitin Nanofiber/Gelatin Composite Film. Int. J. Biol. Macromol. 2017, 104, 1882–1889. DOI: 10.1016/j.ijbiomac.2017.02.041.
  • López, D.; Márquez, A.; Gutiérrez-Cutiño, M.; Venegas-Yazigi, D.; Bustos, R.; Matiacevich, S. Edible Film with Antioxidant Capacity Based on Salmon Gelatin and Boldine. LWT - Food Sci. Technol. 2017, 77, 160–169. DOI: 10.1016/j.lwt.2016.11.039.
  • Li, J. H.; Miao, J.; Wu, J. L.; Chen, S. F.; Zhang, Q. Q. Preparation and Characterization of Active Gelatin-Based Films Incorporated with Natural Antioxidants. Food Hydrocolloids. 2014, 37, 166–173. DOI: 10.1016/j.foodhyd.2013.10.015.
  • Abdolshahi, A.; Tabatabaiee Yazdi, F.; Shabani, A. A.; Mortazavi, S. A.; Mohammadi Nafchi, A. Antifungal Properties of Gelatin-Based Coating Containing Mannoprotein from Saccharomyces Cerevisiae on Aspergillus Flavus Growth in Pistachio. J. Mazandaran Univ. Med. Sci. 2016, 26(139), 93–102.
  • Nogueira, G. F.; Oliveira, R. A. D.; Velasco, J. I.; Fakhouri, F. M. Methods of Incorporating Plant-Derived Bioactive Compounds into Films Made with Agro-Based Polymers for Application as Food Packaging: A Brief Review. Polymers. 2020, 12(11), 2518. DOI: 10.3390/polym12112518.
  • Quirós-Sauceda, A. E.; Ayala-Zavala, J. F.; Olivas, G. I.; González-Aguilar, G. A. Edible Coatings as Encapsulating Matrices for Bioactive Compounds: A Review. J. Food Sci. Technol. 2014, 51(9), 1674–1685. DOI: 10.1007/s13197-013-1246-x.
  • Rawat, S.;. Food Spoilage: Microorganisms and Their Prevention. Asian J. Plant Sci. Res. 2015, 5(4), 47–56.
  • Said, N. S.; Sarbon, N. M. Protein-based Active Film as Antimicrobial Food Packaging: A Review. In Active Antimicrobial Food Packaging;  Isil, V. (Ed). IntechOpen: London, 2019; pp. 1–18.
  • Coma, V.;. Bioactive Packaging Technologies for Extended Shelf Life of Meat-based Products. Meat Sci. 2008, 78(1–2), 90–103. DOI: 10.1016/j.meatsci.2007.07.035.
  • Malhotra, B.; Keshwani, A.; Kharkwal, H. Antimicrobial Food Packaging: Potential and Pitfalls. Front. Microbiol. 2015, 6, 611. DOI: 10.3389/fmicb.2015.00611.
  • Rasid, N. A. M.; Nazmi, N. N. M.; Isa, M. I. N.; Sarbon, N. M. Rheological, Functional and Antioxidant Properties of Films Forming Solution and Active Gelatin Films Incorporated with Centella Asiatica (L.) Urban Extract. Food Pack. Shelf Life. 2018, 18, 115–124. DOI: 10.1016/j.fpsl.2018.10.002.
  • Uranga, J.; Puertas, A. I.; Etxabide, A.; Duenas, M. T.; Guerrero, P.; Caba, K. D. L. Citric Acid-Incorporated Fish Gelatin/Chitosan Composite Films. Food Hydrocolloids. 2019, 86, 95–103. DOI: 10.1016/j.foodhyd.2018.02.018.
  • Ibarguren, C.; Céliz, G.; Díaz, A. S.; Bertuzzi, M. A.; Daz, M.; Audisio, M. C. Gelatine Based Films Added with Bacteriocins and A Flavonoid Ester Active against Food-Borne Pathogens. Innovative Food Sci. Emerg. Technol. 2015, 28, 66–72. DOI: 10.1016/j.ifset.2015.01.007.
  • Wael, K. D.; Belder, S. D.; Pilehvar, S.; Steenberge, G. V.; Herrebout, W.; Heering, H. A. Enzyme-Gelatin Electrochemical Biosensors: Scaling Down. Biosensors. 2012, 2(1), 101–113. DOI: 10.3390/bios2010101.
  • Hosseini, S. F.; Rezaei, M.; Zandi, M.; Farahmandghavi, F. Development of Bioactive Fish Gelatin/Chitosan Nanoparticles Composite Films with Antimicrobial Properties. Food Chem. 2016, 194, 1266–1274. DOI: 10.1016/j.foodchem.2015.09.004.
  • Yanwong, S.; Threepopnatkul, P. (2015). Effect of Peppermint and Citronella Essential Oils on Properties of Fish Skin Gelatin Edible Films. IOP Conference Series: Materials Science and Engineering,  Global Conference on Polymer and Composite Materials (PCM 2015): Beijing. 2015; 87, 012064.
  • Wu, J.; Sun, X.; Guo, X.; Ge, S.; Zhang, Q. Physicochemical Properties, Antimicrobial Activity and Oil Release of Fish Gelatin Films Incorporated with Cinnamon Essential Oil. Aquac. Fish. 2017, 2(4), 185–192. DOI: 10.1016/j.aaf.2017.06.004.
  • Ahmad, M.; Benjakul, S.; Prodpran, T.; Agustini, T. W. Physico-Mechanical and Antimicrobial Properties of Gelatin Film from the Skin of Unicorn Leatherjacket Incorporated with Essential Oils. Food Hydrocolloids. 2012, 28(1), 189–199.
  • Yeddes, W.; Nowacka, M.; Rybak, K.; Younes, I.; Hammami, M.; Saidani-Tounsi, M.; Witrowa-Rajchert, D. Evaluation of the Antioxidant and Antimicrobial Activity of Rosemary Essential Oils as Gelatin Edible Film Component. Food Sci. Technol. Res. 2019, 25(2), 321–329. DOI: 10.3136/fstr.25.321.
  • Handayasari, F.; Suyatma, N. E.; Nurjanah, S. Physiochemical and Antibacterial Analysis of Gelatin–Chitosan Edible Film with the Addition of Nitrite and Garlic Essential Oil by Response Surface Methodology. J. Food Process. Preserv. 2019, 43(12), e14265. DOI: 10.1111/jfpp.14265.
  • Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines. 2017, 4(3), 58.
  • Bonilla, J.; Atarés, L.; Vargas, M.; Chiralt, A. Effect of Essential Oils and Homogenization Conditions on Properties of Chitosan-Based Films. Food Hydrocolloids. 2012, 26(1), 9–16. DOI: 10.1016/j.foodhyd.2011.03.015.
  • Hanani, Z. N.; Husna, A. A. Effect of Different Types and Concentrations of Emulsifier on the Characteristics of Kappa-Carrageenan Films. Int. J. Biol. Macromol. 2018, 114, 710–716. DOI: 10.1016/j.ijbiomac.2018.03.163.
  • Burt, S.;. Essential Oils: Their Antibacterial Properties and Potential Applications in Foods—a Review. Int. J. Food Microbiol. 2004, 94(3), 223–253. DOI: 10.1016/j.ijfoodmicro.2004.03.022.
  • Xu, J. G.; Liu, T.; Hu, Q. P.; Cao, X. M. Chemical Composition, Antibacterial Properties and Mechanism of Action of Essential Oil from Clove Buds Against. Staphylococcus Aureus. Mol. 2016, 21, 1194.
  • Corrales, M.; Fernández, A.; Han, J. H. Antimicrobial Packaging Systems. In Innovations in Food Packaging; Jung, H.H. (Ed). Elsevier Academic Press: San Diego. 2014; 133-170.
  • Sung, S. Y.; Sin, L. T.; Tee, T. T.; Bee, S. T.; Rahmat, A. R.; Rahman, W. A. W. A.; Tan, A. C.; Vikhraman, M. Antimicrobial Agents for Food Packaging Applications. Trends Food Sci. Technol. 2013, 33(2), 110–123. DOI: 10.1016/j.tifs.2013.08.001.
  • Raei, P.; Pourlak, T.; Memar, M. Y.; Alizadeh, N.; Aghamali, M.; Zeinalzadeh, E.; Asgharzadeh, M.; Kafil, H. S. Thymol and Carvacrol Strongly Inhibit Biofilm Formation and Growth of Carbapenemase-producing Gram Negative Bacilli. Cell. Mol. Biol. 2017, 63(5), 108–112. DOI: 10.14715/cmb/2017.63.5.20.
  • Kanmani, P.; Rhim, J. W. Physical, Mechanical and Antimicrobial Properties of Gelatin Based Active Nanocomposite Films Containing AgNPs and Nanoclay. Food Hydrocolloids. 2014, 35, 644–652. DOI: 10.1016/j.foodhyd.2013.08.011.
  • Arfat, Y. A.; Ahmed, J.; Hiremath, N.; Auras, R.; Joseph, A. Thermo-Mechanical, Rheological, Structural and Antimicrobial Properties of Bionanocomposite Films Based on Fish Skin Gelatin and Silver-Copper Nanoparticles. Food Hydrocolloids. 2017, 62, 191–202. DOI: 10.1016/j.foodhyd.2016.08.009.
  • Brandelli, A.; Ritter, A. C.; Veras, F. F. Antimicrobial Activities of Metal Nanoparticles. In Metal Nanoparticles in Pharma; Rai, M., Shegokar, R. (Eds.). Springer International Publishing: Cham, 2017; pp.367–363.
  • Lee, S. W.; Said, N. S.; Sarbon, N. M. The Effects of Zinc Oxide Nanoparticles on the Physical, Mechanical and Antimicrobial Properties of Chicken Skin Gelatin/Tapioca Starch Composite Films in Food Packaging. J. Food Sci. Technol. 2020, 1–9. DOI: 10.1007/s13197-020-04904-6
  • Umamaheswari, G.; Sanuja, S.; John, V. A.; Kanth, S. V.; Umapathy, M. J. Preparation, Characterization and Anti-Bacterial Activity of Zinc Oxide-Gelatin Nanocomposite Film for Food Packaging Applications. Polym. Polym. Compos. 2015, 23(3), 199–204. DOI: 10.1177/096739111502300311.
  • He, Q.; Zhang, Y.; Cai, X.; Wang, S. Fabrication of Gelatin–TiO2 Nanocomposite Film and Its Structural, Antibacterial and Physical Properties. Int. J. Biol. Macromol. 2016, 84, 153–160. DOI: 10.1016/j.ijbiomac.2015.12.012.
  • Tongnuanchan, P.; Benjakul, S.; Prodpran, T. Properties and Antioxidant Activity of Fish Skin Gelatin Film Incorporated with Citrus Essential Oils. Food Chem. 2012, 134(3), 1571–1579. DOI: 10.1016/j.foodchem.2012.03.094.
  • Tongnuanchan, P.; Benjakul, S.; Prodpran, T. Physico-Chemical Properties, Morphology and Antioxidant Activity of Film from Fish Skin Gelatin Incorporated with Root Essential Oils. J. Food Eng. 2013, 117(3), 350–360. DOI: 10.1016/j.jfoodeng.2013.03.005.
  • Wu, J.; Chen, S.; Ge, S.; Miao, J.; Li, J.; Zhang, Q. Preparation, Properties and Antioxidant Activity of an Active Film from Silver Carp (Hypophthalmichthys Molitrix) Skin Gelatin Incorporated with Green Tea Extract. Food Hydrocolloids. 2013, 32(1), 42–51. DOI: 10.1016/j.foodhyd.2012.11.029.
  • Atarés, L.; Chiralt, A. Essential Oils as Additives in Biodegradable Films and Coatings for Active Food Packaging. Trends Food Sci. Technol. 2016, 48, 51–62. DOI: 10.1016/j.tifs.2015.12.001.
  • Naseri, H. R.; Beigmohammadi, F.; Mohammadi, R.; Sadeghi, E. Production and Characterization of Edible Film Based on Gelatin–Chitosan Containing Ferulago Angulate Essential Oil and Its Application in the Prolongation of the Shelf Life of Turkey Meat. J. Food Process. Preserv. 2020, 44(8), e14558. DOI: 10.1111/jfpp.14558.
  • Putsakum, G.; Lee, D. S.; Suthiluk, P.; Rawdkuen, S. The Properties of Gelatin Film‐Neem Extract and Its Effectiveness for Preserving Minced Beef. Packag. Technol. Sci. 2018, 31(9), 611–620. DOI: 10.1002/pts.2386.
  • Ahmad, M.; Benjakul, S.; Sumpavapol, P.; Nirmal, N. P. Quality Changes of Sea Bass Slices Wrapped with Gelatin Film Incorporated with Lemongrass Essential Oil. Int. J. Food Microbiol. 2012, 155(3), 171–178. DOI: 10.1016/j.ijfoodmicro.2012.01.027.
  • Khan, M. R.; Sadiq, M. B.; Mehmood, Z. Development of Edible Gelatin Composite Films Enriched with Polyphenol Loaded Nanoemulsions as Chicken Meat Packaging Material. CyTA - Journal of Food. 2020, 18(1), 137–146. DOI: 10.1080/19476337.2020.1720826.
  • Nilsuwan, K.; Benjakul, S.; Prodpran, T. Quality Changes of Shrimp Cracker Covered with Fish Gelatin Film without and with Palm Oil Incorporated during Storage. Int. Aquat. Res. 2016, 8(3), 227–238. DOI: 10.1007/s40071-016-0138-x.
  • Swain, P.; Nayak, S. K.; Sasmal, A.; Behera, T.; Barik, S. K.; Swain, S. K.; Mishra, S. S.; Sen, A. K.; Das, J. K.; Jayasankar, P. Antimicrobial Activity of Metal Based Nanoparticles against Microbes Associated with Diseases in Aquaculture. World J. Microbiol. Biotechnol. 2014, 30(9), 2491–2502. DOI: 10.1007/s11274-014-1674-4.
  • Dizaj, S. M.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M. H.; Adibkia, K. Antimicrobial Activity of the Metals and Metal Oxide Nanoparticles. Mater. Sci. Eng., C. 2014, 44, 278–284. DOI: 10.1016/j.msec.2014.08.031.
  • Shankar, S.; Teng, X.; Li, G.; Rhim, J. W. Preparation, Characterization, and Antimicrobial Activity of Gelatin/Zno Nanocomposite Films. Food Hydrocolloids. 2015, 45, 264–271. DOI: 10.1016/j.foodhyd.2014.12.001.
  • Huang, K. S.; Yang, C. H.; Huang, S. L.; Chen, C. Y.; Lu, Y. Y.; Lin, Y. S. Recent Advances in Antimicrobial Polymers: A Mini-Review. Int. J. Mol. Sci. 2016, 17(9), 1578. DOI: 10.3390/ijms17091578.
  • Sahraee, S.; Milani, J. M.; Ghanbarzadeh, B.; Hamishehkar, H. Physicochemical and Antifungal Properties of Bio-Nanocomposite Film Based on Gelatin-Chitin Nanoparticles. Int. J. Biol. Macromol. 2017, 97, 373–381. DOI: 10.1016/j.ijbiomac.2016.12.066.
  • Bonilla, J.; Sobral, P. J. A. Investigation of the Physicochemical, Antimicrobial and Antioxidant Properties of Gelatin-Chitosan Edible Film Mixed with Plant Ethanolic Extracts. Food Biosci. 2016, 16, 17–25. DOI: 10.1016/j.fbio.2016.07.003.
  • Pereda, M.; Ponce, A. G.; Marcovich, N. E.; Ruseckaite, R. A.; Martucci, J. F. Chitosan-Gelatin Composites and Bi-Layer Films with Potential Antimicrobial Activity. Food Hydrocolloids. 2011, 25(5), 1372–1381. DOI: 10.1016/j.foodhyd.2011.01.001.
  • Martucci, J. F.; Ruseckaite, R. A. Biodegradation of Three-Layer Laminate Films Based on Gelatin under Indoor Soil Conditions. Polym. Degrad. Stab. 2009, 94(8), 1307–1313. DOI: 10.1016/j.polymdegradstab.2009.03.018.
  • Martucci, J. F.; Ruseckaite, R. A. Three-Layer Sheets Based on Gelatin and Poly (Lactic Acid), Part 1: Preparation and Properties. J. Appl. Polym. Sci. 2010, 118(5), 3102–3110. DOI: 10.1002/app.32751.
  • Martucci, J. F.; Ruseckaite, R. A. Biodegradation Behavior of Three-Layer Sheets Based on Gelatin and Poly (Lactic Acid) Buried under Indoor Soil Conditions. Polym. Degrad. Stab. 2015, 116, 36–44. DOI: 10.1016/j.polymdegradstab.2015.03.005.
  • Vejdan, A.; Ojagh, S. M.; Adeli, A.; Abdollahi, M. Effect of TiO2 Nanoparticles on the Physico-Mechanical and Ultraviolet Light Barrier Properties of Fish Gelatin/Agar Bilayer Film. LWT - Food Science and Technology. 2016, 71, 88–95. DOI: 10.1016/j.lwt.2016.03.011.
  • Hanani, Z. N.; Husna, A. A.; Syahida, S. N.; Khaizura, M. N.; Jamilah, B. Effect of Different Fruit Peels on the Functional Properties of Gelatin/Polyethylene Bilayer Films for Active Packaging. Food Pack. Shelf Life. 2018, 18, 201–211. DOI: 10.1016/j.fpsl.2018.11.004.
  • Haghighi, H.; De Leo, R.; Bedin, E.; Pfeifer, F.; Siesler, H. W.; Pulvirenti, A. Comparative Analysis of Blend and Bilayer Films Based on Chitosan and Gelatin Enriched with LAE (Lauroyl Arginate Ethyl) with Antimicrobial Activity for Food Packaging Applications. Food Pack. Shelf Life. 2019, 19, 31–39. DOI: 10.1016/j.fpsl.2018.11.015.
  • Cardoso, G. P.; Andrade, M. P. D.; Rodrigues, L. M.; Massingue, A. A.; Fontes, P. R.; Ramos, A. D. L. S.; Ramos, E. M. Retail Display of Beef Steaks Coated with Monolayer and Bilayer Chitosan-Gelatin Composites. Meat Sci. 2019, 152, 20–30. DOI: 10.1016/j.meatsci.2019.02.009.
  • Khodaei, D.; Oltrogge, K.; Hamidi-Esfahani, Z. Preparation and Characterization of Blended Edible Films Manufactured Using Gelatin, Tragacanth Gum And, Persian Gum. LWT Food Sci. Technol. 2020, 117, 108617. DOI: 10.1016/j.lwt.2019.108617.
  • Hazirah, M. N.; Isa, M. I. N.; Sarbon, N. M. Effect of Xanthan Gum on the Physical and Mechanical Properties of Gelatin-Carboxymethyl Cellulose Film Blends. Food Pack. Shelf Life. 2016, 9, 55–63. DOI: 10.1016/j.fpsl.2016.05.008.
  • Łupina, K.; Kowalczyk, D.; Zięba, E.; Kazimierczak, W.; Mężyńska, M.; Basiura-Cembala, M.; Wiącek, A. E. Edible Films Made from Blends of Gelatin and Polysaccharide-Based Emulsifiers-A Comparative Study. Food Hydrocolloids. 2019, 96, 555–567. DOI: 10.1016/j.foodhyd.2019.05.053.
  • Oladzadabbasabadi, N.; Ebadi, S.; Nafchi, A. M.; Karim, A. A.; Kiahosseini, S. R. Functional Properties of Dually Modified Sago Starch/Κ-Carrageenan Films: An Alternative to Gelatin in Pharmaceutical Capsules. Carbohydr. Polym. 2017, 160, 43–51. DOI: 10.1016/j.carbpol.2016.12.042.
  • Saeed, S.; Howell, N. K. Effect of Lipid Oxidation and Frozen Storage on Muscle Proteins of Atlantic Mackerel (Scomber Scombrus). J. Sci. Food Agric. 2002, 82(5), 579–586. DOI: 10.1002/jsfa.1080.
  • Grzesik, M.; Naparło, K.; Bartosz, G.; Sadowska-Bartosz, I. Antioxidant Properties of Catechins: Comparison with Other Antioxidants. Food Chem. 2018, 241, 480–492. DOI: 10.1016/j.foodchem.2017.08.117.
  • Mošovská, S.; Nováková, D.; Kaliňák, M. Antioxidant Activity of Ginger Extract and Identification of Its Active Components. Acta Chim. Slovaca. 2015, 8(2), 115–119. DOI: 10.1515/acs-2015-0020.
  • Martucci, J. F.; Gende, L. B.; Neira, L. M.; Ruseckaite, R. A. Oregano and Lavender Essential Oils as Antioxidant and Antimicrobial Additives of Biogenic Gelatin Films. Ind. Crops Prod. 2015, 71, 205–213. DOI: 10.1016/j.indcrop.2015.03.079.
  • Suderman, N.; Sarbon, N. M. Preparation and Characterization of Gelatin-Based Films with the Incorporation of Centella Asiatica (L.) Urban Extract. Food Res. 2019, 3(5), 306–314. DOI: 10.26656/fr.2017.3(5).045.
  • Tongnuanchan, P.; Benjakul, S.; Prodpran, T.; Krisana, N. Emulsion Film Based on Fish Skin Gelatin and Palm Oil: Physical, Structural and Thermal Properties. Food Hydrocolloids. 2015, 48, 248–259. DOI: 10.1016/j.foodhyd.2015.02.025.
  • Xiao, J.; Wang, W.; Wang, K.; Liu, Y.; Liu, A.; Zhang, S.; Zhao, Y. Impact of Melting Point of Palm Oil on Mechanical and Water Barrier Properties of Gelatin-Palm Oil Emulsion Film. Food Hydrocolloids. 2016, 60, 243–251. DOI: 10.1016/j.foodhyd.2016.03.042.
  • Sahraee, S.; Milani, J. M.; Ghanbarzadeh, B.; Hamishehkar, H. Effect of Corn Oil on Physical, Thermal, and Antifungal Properties of Gelatin-Based Nanocomposite Films Containing Nano Chitin. LWT - Food Sci. Technol. 2017, 76, 33–39. DOI: 10.1016/j.lwt.2016.10.028.
  • Musso, Y. S.; Salgado, P. R.; Mauri, A. N. Smart Edible Films Based on Gelatin and Curcumin. Food Hydrocolloids. 2017, 66, 8–15. DOI: 10.1016/j.foodhyd.2016.11.007.
  • Choi, I.; Lee, J. Y.; Lacroix, M.; Han, J. Intelligent pH Indicator Film Composed of Agar/Potato Starch and Anthocyanin Extracts from Purple Sweet Potato. Food Chem. 2017, 218, 122–128. DOI: 10.1016/j.foodchem.2016.09.050.
  • Zhang, X.; Lu, S.; Chen, X. A Visual pH Sensing Film Using Natural Dyes from Bauhinia Blakeana Dunn. Sensors and Actuators B: Chemical. 2014, 198, 268–273. DOI: 10.1016/j.snb.2014.02.094.
  • Musso, Y. S.; Salgado, P. R.; Mauri, A. N. Gelatin Based Films Capable of Modifying Its Color against Environmental pH Changes. Food Hydrocolloids. 2016, 61, 523–530. DOI: 10.1016/j.foodhyd.2016.06.013.
  • Musso, Y. S.; Salgado, P. R.; Mauri, A. N. Smart Gelatin Films Prepared Using Red Cabbage (Brassica Oleracea L.) Extracts as Solvent. Food Hydrocolloids. 2019, 89, 674–681. DOI: 10.1016/j.foodhyd.2018.11.036.
  • Chawla, R.; Sivakumar, S.; Kaur, H. Antimicrobial Edible Films in Food Packaging: Current Scenario and Recent Nanotechnological Advancements-A Review. Carbohydr. Polym. Technol. Appl. 2021, 2, 100024. DOI: 10.1016/j.carpta.2020.100024.
  • Neelam, A.; Omm-e-hany, S. J.; Mahmaood, S. I. Properties-and-Thermal-Degradation-Studies-of-Gelatin-Based-Film-–Exploring-the-Biopolymer-for-Plastic-Advancement. Int. J. Food Sci. Nutr. 2018, 5(5), 69–73.
  • Bonilla, J.; Poloni, T.; Lourenço, R. V.; Sobral, P. J. Antioxidant Potential of Eugenol and Ginger Essential Oils with Gelatin/Chitosan Films. Food Biosci. 2018, 23, 107–114. DOI: 10.1016/j.fbio.2018.03.007.
  • Ninan, G.; Joseph, J.; Abubacker, Z. Physical, Mechanical, and Barrier Properties of Carp and Mammalian Skin Gelatin Films. J. Food Sci. 2010, 75(9), 620–626. DOI: 10.1111/j.1750-3841.2010.01851.x.
  • Nur Hanani, Z. A.; Roos, Y. H.; Kerry, J. P. Use of Beef, Pork and Fish Gelatin Sources in the Manufacture of Films and Assessment of Their Composition and Mechanical Properties. Food Hydrocolloids. 2012, 29(1), 144–151. DOI: 10.1016/j.foodhyd.2012.01.015.
  • Selke, S. E. M.; Culter, J. D.; Auras, R. A. (2015). Major Plastics in Packaging, Plastics Packaging. Carl Hanser Verlag GmbH & Co KG, Cincinnati. DOI: 10.3139/9783446437197.fmnee

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.