664
Views
3
CrossRef citations to date
0
Altmetric
Review

Food Contact Surfaces: Challenges, Legislation and Solutions

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Srey, S.; Jahid, I. K.; Ha, S. D. Biofilm Formation in Food Industries: A Food Safety Concern. Food Control. 2013, 31(2), 572– 585. DOI: 10.1016/j.foodcont.2012.12.001.
  • Yang, H.; Kendall, P. A.; Medeiros, L. C.; Sofos, J. N. Efficacy of Sanitizing Agents against Listeria Monocytogenes Biofilms on High-density Polyethylene Cutting Board Surfaces. J. Food Prot. 2009, 72(5),990– 998. DOI: 10.4315/0362-028X-72.5.990.
  • Brooks, J. D.; Flint, S. H. Biofilms in the Food Industry: Problems and Potential Solutions. Int. J. Food Sci. Technol. 2008, 43(12), 2163– 2176. DOI: 10.1111/j.1365-2621.2008.01839.x.
  • Galie, S.; García-Gutiérrez, C.; Miguélez, E. M.; Villar, C. J.; Lombó, F. Biofilms in the Food Industry: Health Aspects and Control Methods. Front. Microbiol. 2018, 9, 898. DOI: 10.3389/fmicb.2018.00898.
  • Nahar, S.; Mizan, M. F. R.; Ha, A. J. W.; Ha, S. D. Advances and Future Prospects of Enzyme‐Based Biofilm Prevention Approaches in the Food Industry. Compr. Rev. Food Sci. Food Saf. 2018, 17(6), 1484– 1502. DOI: 10.1111/1541-4337.12382.
  • Chaturongkasumrit, Y.; Takahashi, H.; Keeratipibul, S.; Kuda, T.; Kimura, B. The Effect of Polyesterurethane Belt Surface Roughness on Listeria Monocytogenes Biofilm Formation and Its Cleaning Efficiency. Food Control. 2011, 22(12),1893– 1899. DOI: 10.1016/j.foodcont.2011.04.032.
  • Hu, J.; Lin, J.; Zhang, Y.; Lin, Z.; Qiao, Z.; Liu, Z.; Yang, W.; Liu, X.; Dong, M.; Guo, Z. A New Anti-Biofilm Strategy of Enabling Arbitrary Surfaces of Materials and Devices with Robust Bacterial Anti-Adhesion via A Spraying Modified Microsphere Method. J. Mater. Chem. A. 2019, 7(45), 26039– 26052. DOI: 10.1039/C9TA07236E.
  • Hua, G.; Reckhow, D. A. Comparison of Disinfection Byproduct Formation from Chlorine and Alternative Disinfectants. Water Res. 2007, 41(8),1667–1678. DOI: 10.1016/j.watres.2007.01.032.
  • Brodowska, A. J.; Nowak, A.; Śmigielski, K. Ozone in the Food Industry: Principles of Ozone Treatment, Mechanisms of Action, and Applications: An Overview. Crit. Rev. Food Sci. Nutr. 2018, 58(13), 2176– 2201. DOI: 10.1080/10408398.2017.1308313.
  • Miller, F. A.; Silva, C. L.; Brandão, T. R. A Review on Ozone-based Treatments for Fruit and Vegetables Preservation. Food Eng. Rev. 2013, 5(2),77–106. DOI: 10.1007/s12393-013-9064-5.
  • Pereira, R.; Vicente, A. Environmental Impact of Novel Thermal and Non-Thermal Technologies in Food Processing. Food Res. Int. 2010, 43(7),1936–1943. DOI: 10.1016/j.foodres.2009.09.013.
  • Casariego, A.; Souza, B.; Vicente, A.; Teixeira, J.; Cruz, L.; Díaz, R. Chitosan Coating Surface Properties as Affected by Plasticizer, Surfactant and Polymer Concentrations in Relation to the Surface Properties of Tomato and Carrot. Food Hydrocoll. 2008, 22(8), 1452– 1459. DOI: 10.1016/j.foodhyd.2007.09.010.
  • Yu, Q.; Wu, Z.; Chen, H. Dual-Function Antibacterial Surfaces for Biomedical Applications. Acta Biomater. 2015, 16, 1–13. DOI: 10.1016/j.actbio.2015.01.018.
  • Hasan, J.; Crawford, R. J.; Ivanova, E. P. Antibacterial Surfaces: The Quest for a New Generation of Biomaterials. Trends Biotechnol. 2013, 31(5),295–304. DOI: 10.1016/j.tibtech.2013.01.017.
  • Commission, E. Commission Regulation (EU) No 10/2011 of 14 January 2011 on Plastic Materials and Articles Intended to Come into Contact with Food. Off. J. Eur. Union. 2011, 12(1), 1– 89.
  • EC, Commission regulation (EC) No 282/2008 of 27 March 2008 on Recycled Plastic Materials and Articles Intended to Come into Contact with Foods and Amending Regulation (EC) No 2023/2006. Off. J. Eur. Union L. 2008, OJ L86, 9 – 18.
  • Commission Directive 2007/42/EC of 29 June 2007 Relating to Materials and Articles Made of Regenerated Cellulose Film Intended to Come into Contact with Foodstuffs. Off. J. Eur. Union L., 22, 120–131.
  • Commission, E. Commission Regulation (EC) No 450/2009 of 29 May 2009 on Active and Intelligent Materials and Articles Intended to Come into Contact with Food. Off. J. Eur. Union. 2009, 135, 3– 11.
  • Trienekens, J.; Zuurbier, P. Quality and Safety Standards in the Food Industry, Developments and Challenges. Int. J. Prod. Econ. 2008, 113, 107–122.
  • Watling, H.; Watkin, E.; Ralph, D. The Resilience and Versatility of Acidophiles that Contribute to the Bio‐assisted Extraction of Metals from Mineral Sulphides. Environ. Technol. 2010, 31(8–9), 915–933. DOI: 10.1080/09593331003646646.
  • Duan, J.; Wu, S.; Zhang, X.; Huang, G.; Du, M.; Hou, B. Corrosion of Carbon Steel Influenced by Anaerobic Biofilm in Natural Seawater. Electrochim. Acta. 2008, 54(1), 22– 28. DOI: 10.1016/j.electacta.2008.04.085.
  • Dong, Y.; Jiang, B.; Xu, D.; Jiang, C.; Li, Q.; Gu, T. Severe Microbiologically Influenced Corrosion of S32654 Super Austenitic Stainless Steel by Acid Producing Bacterium Acidithiobacillus caldus SM-1. Bioelectrochemistry, 2018, 123, 34–44.
  • Purwasena, I. A.; Astuti, D. I.; Fauziyyah, N. A.; Putri, D. A. S.; Sugai, Y. Inhibition of Microbial Influenced Corrosion on Carbon Steel ST37 Using Biosurfactant Produced by Bacillus Sp. Mater. Res. Express. 2019, 6(11), 115405. DOI: 10.1088/2053-1591/ab4948.
  • Stoodley, P.; Sauer, K.; Davies, D. G.; Costerton, J. W. Biofilms as Complex Differentiated Communities. Ann. Rev. Microbiol. 2002, 56(1),187–209. DOI: 10.1146/annurev.micro.56.012302.160705.
  • Addis, M.; Sisay, D. A Review on Major-Food Borne Bacterial Illnesses. J. Trop. Dis. 2015, 3(4), 176– 183.
  • Scott, E. Relationship Between Cross-Contamination and the Transmission of Foodborne Pathogens in the Home. Pediatr. Infect. Dis. J. 2000, 19(10), S111– S113. DOI: 10.1097/00006454-200010001-00005.
  • Bedford, B.; Liggans, G.; Williams, L.; Jackson, L. Allergen Removal and Transfer with Wiping and Cleaning Methods Used in Retail and Food Service Establishments. J. Food Prot. 2020, 83(7), 1248– 1260. DOI: 10.4315/JFP-20-025.
  • Chatterjee, A.; Abraham, J. Microbial Contamination, Prevention, and Early Detection in Food Industry. In Microbial Contamination and Food Degradation; Academic Press University of Bucharest, Bucharest, Romania, 2018, 21– 47.
  • Nerin, C.; Aznar, M.; Carrizo, D. Food Contamination During Food Process. Trends Food Sci. Technol. 2016, 48, 63– 68. DOI: 10.1016/j.tifs.2015.12.004.
  • Medrano‐Félix, A.; Martínez, C.; Castro‐del Campo, N.; León‐Félix, J.; Peraza‐Garay, F.; Gerba, C. P.; Chaidez, C. Impact of Prescribed Cleaning and Disinfectant Use on Microbial Contamination in the Home. J. Appl. Microbiol. 2011, 110(2), 463– 471. DOI: 10.1111/j.1365-2672.2010.04901.x.
  • Lim, S. M.; Lim, E. S.; Kim, J. S.; Paik, H. D.; Koo, O. K. Survival of Foodborne Pathogens on Stainless Steel Soiled with Different Food Residues, Food Sci. Biotechnol. 2020, 29, 729–737. DOI: 10.1007/s10068-019-00705-6
  • Lelieveld, H. L.; Holah, J.; Gabric, D. Handbook of Hygiene Control in the Food Industry; Second edition, Woodhead Publishing, UK, 2016.
  • Sharma, S.; Jaiswal, A. K.; Duffy, B.; Jaiswal, S. Ferulic Acid Incorporated Active Films Based on Poly (Lactide)/poly (Butylene Adipate-co-terephthalate) Blend for Food Packaging. Food Pack. Shelf Life. 2020a, 24, 100491. DOI: 10.1016/j.fpsl.2020.100491.
  • Hollmann, B.; Perkins, M.; Walsh, D. Biofilms and Their Role in Pathogenesis. British Society for Immunology, 2014. https://www.immunology.org/public-information/bitesized-immunology/pathogens-anddisease/biofilms-and-their-role-in (accessed on 20 February 2021)
  • Sauer, K. The Genomics and Proteomics of Biofilm Formation. Genome Biol. 2003, 4(6), 1– 5. DOI: 10.1186/gb-2003-4-6-219.
  • Vasudevan, R. Biofilms: Microbial Cities of Scientific Significance. J. Microbiol Exp. 2014, 1(3), 00014. DOI: 10.15406/jmen.2014.01.00014.
  • Shi, X.; Zhu, X. Biofilm Formation and Food Safety in Food Industries. Trends Food Sci. Technol. 2009, 20(9), 407– 413. DOI: 10.1016/j.tifs.2009.01.054.
  • Barroso, I. L. Listeria Monocytogenes Biofilms Produced under Nutrient Scarcity and Cold Stress: Disinfectant Susceptibility of Persistent Strains Collected from the Meat Industry in Spain, 2007.
  • Kocot, A. M.; Olszewska, M. A. Biofilm Formation and Microscopic Analysis of Biofilms Formed by Listeria Monocytogenes in a Food Processing Context.LWT- Food Sci. Technol. 2017, 84, 47– 57. DOI: 10.1016/j.lwt.2017.05.042.
  • Di Bonaventura, G.; Piccolomini, R.; Paludi, D.; D’orio, V.; Vergara, A.; Conter, M.; Ianieri, A. Influence of Temperature on Biofilm Formation by Listeria Monocytogenes on Various Food‐Contact Surfaces: Relationship with Motility and Cell Surface Hydrophobicity. J. Appl. Microbiol. 2008, 104(6),1552– 1561. DOI: 10.1111/j.1365-2672.2007.03688.x.
  • Dourou, D.; Beauchamp, C. S.; Yoon, Y.; Geornaras, I.; Belk, K. E.; Smith, G. C.; Nychas, G.J.E.; Sofos, J. N. Attachment and Biofilm Formation by Escherichia Coli O157: H7 at Different Temperatures, on Various Food-Contact Surfaces Encountered in Beef Processing. Int. J. Food Microbiol. 2011, 149(3),262– 268. DOI: 10.1016/j.ijfoodmicro.2011.07.004.
  • Corcoran, M.; Morris, D.; De Lappe, N.; O’Connor, J.; Lalor, P.; Dockery, P.; Cormican, M. Commonly Used Disinfectants Fail to Eradicate Salmonella Enterica Biofilms from Food Contact Surface Materials. Appl. Environ. Microbiol. 2014, 80(4),1507– 1514. DOI: 10.1128/AEM.03109-13.
  • Vazquez-Armenta, F. J.; Bernal-Mercado, A. T.; Lizardi-Mendoza, J.; Silva-Espinoza, B. A.; Cruz-Valenzuela, M. R.; Gonzalez-Aguilar, G. A.; Nazzaro, F.; Fratianni, F.; Ayala-Zavala, J. F. Phenolic Extracts from Grape Stems Inhibit Listeria Monocytogenes Motility and Adhesion to Food Contact Surfaces. J. Adhes. Sci. Technol. 2018, 32(8),889– 907. DOI: 10.1080/01694243.2017.1387093.
  • Pontin, K. P.; Borges, K. A.; Furian, T. Q.; Carvalho, D.; Wilsmann, D. E.; Cardoso, H.R.P.; Alves, A.K.; Chitolina, G.Z.; Salle, C.T.P.; de Souza Moraes, H.L.; do Nascimento, V.P. Antimicrobial Activity of Copper Surfaces against Biofilm Formation by Salmonella enteritidis and Its Potential Application in the Poultry Industry. Food Microbiol. 2021, 94, 103645. DOI: 10.1016/j.fm.2020.103645
  • Sharma, S.; Barkauskaite, S.; Duffy, B.; Jaiswal, A. K.; Jaiswal, S. Characterization and Antimicrobial Activity of Biodegradable Active Packaging Enriched with Clove and Thyme Essential Oil for Food Packaging Application. Foods. 2020b, 9(8), 1117. DOI: 10.3390/foods9081117.
  • Sharma, S.; Barkauskaite, S.; Jaiswal, A. K.; Jaiswal, A. K.; Jaiswal, S. Development of Essential Oil Incorporated Active Film Based on Biodegradable Blends of Poly (Lactide)/poly (Butylene Adipate co terephthalate) for Food Packaging Application. J. Packag. Technol. Res. 2020c, 4(3), 235– 245. DOI: 10.1007/s41783-020-00099-5
  • Han, N.; Mizan, M. F. R.; Jahid, I. K.; Ha, S. D. Biofilm Formation by Vibrio parahaemolyticus on Food and Food Contact Surfaces Increases with Rise in Temperature. Food Control. 2016, 70, 161– 166. DOI: 10.1016/j.foodcont.2016.05.054.
  • Akbas, M. Y.; Cag, S. Use of Organic Acids for Prevention and Removal of Bacillus subtilis Biofilms on Food Contact Surfaces. Food Sci. Technol. Int. 2016, 22(7),587–597. DOI: 10.1177/1082013216633545.
  • Kim, S. H.; Park, S. H.; Kim, S. S.; Kang, D. H. Inactivation of Staphylococcus aureus Biofilms on Food Contact Surfaces by Superheated Steam Treatment. J. Food Prot. 2019, 82(9),1496– 1500. DOI: 10.4315/0362-028X.JFP-18-572.
  • Sarjit, A.; Dykes, G. A. Antimicrobial Activity of Trisodium Phosphate and Sodium Hypochlorite against Salmonella Biofilms on Abiotic Surfaces with and without Soiling with Chicken Juice. Food Control. 2017, 73, 1016– 1022. DOI: 10.1016/j.foodcont.2016.10.003.
  • Fysun, O.; Kern, H.; Wilke, B.; Langowski, H. C. Evaluation of Factors Influencing Dairy Biofilm Formation in Filling Hoses of Food-Processing Equipment. Food Bioprod. Process. 2019, 113, 39– 48. DOI: 10.1016/j.fbp.2018.10.009.
  • Wang, H.; Cai, L.; Li, Y.; Xu, X.; Zhou, G. Biofilm Formation by Meat-borne Pseudomonas fluorescens on Stainless Steel and Its Resistance to Disinfectants. Food Control. 2018, 91, 397– 403. DOI: 10.1016/j.foodcont.2018.04.035.
  • Ripolles-Avila, C.; Hascoët, A. S.; Guerrero-Navarro, A. E.; Rodríguez-Jerez, J. J. Establishment of Incubation Conditions to Optimize the in Vitro Formation of Mature Listeria monocytogenes Biofilms on Food-Contact Surfaces. Food Control. 2018, 92, 240– 248. DOI: 10.1016/j.foodcont.2018.04.054.
  • Herzberg, M.; Pandit, S.; Mauter, M. S.; Oren, Y. Bacterial Biofilm Formation on Ion Exchange Membranes. J. Membr. Sci. 2020, 596, 117564. DOI: 10.1016/j.memsci.2019.117564.
  • Heckler, C.; Silva, C. M. M.; Cacciatore, F. A.; Daroit, D. J.; Da Silva Malheiros, P. Thymol and Carvacrol in Nanoliposomes: Characterization and a Comparison with Free Counterparts Against Planktonic and Glass-Adhered Salmonella. LWT-Food Sci. Tech. 2020, 127, 109382. DOI: 10.1016/j.lwt.2020.109382.
  • EFSA Panel on Food Contact Materials, Flavourings and Processing Aids. Scientific Opinion on the Criteria to be Used for Safety Evaluation of a Mechanical Recycling Process to Produce Recycled PET Intended to be used for Manufacture of Materials and Articles in Contact with Food. EFSA Journal, 2011, 9, 2184. DOI:10.2903/j.efsa.2011.2184.
  • Ariosti, A. Global Legislation for Regenerated Cellulose Materials in Contact with Food. In Global Legislation for Food Contact Materials; Joan Sylvain Baughan (ed,) Woodhead Publishing, Elsevier, 2015, 109– 139.
  • Directive, C. 84/500/EEC of 15 October 1984 on the Approximation of the Laws of the Member States Relating to Ceramic Articles Intended to Come into Contact with Foodstuffs. OJ L. 277, 1984, 12– 16.
  • Commission, E., Regulation (EC) No 1935/2004 of the European Parliament and of the Council of 27 October 2004 on Materials and Articles Intended to Come into Contact with Food and Repealing Directives 80/590/EEC and 89/109/EEC. EEC. Off. J. Eur. Communities., 2004, OJ L338, 4 – 17.
  • Commission, E. Regulation (EC) No 852/2004 of the European Parliament and of the Council of 29 April 2004 on the Hygiene of Foodstuffs. Off. J. Eur. Union, 2004, 50.
  • Directive, C. On the Quality of Water Intended for Human Consumption. Off. J. Eur. Communities.1998, 330, 32–54.
  • Commission, E., “Regulation (EC) No 854/2004 of the European Parliament and of the Council of 29 April 2004 Laying Down Specific Rules for the Organisation of Official Controls on Products of Animal Origin Intended for Human Consumption,” Off. J. Eur. Union L., 2004, 139, 206.
  • Hueck, H. J., The Biodeterioration of Materials - an Appraisal. Int. Biodeterior. Biodegrad. 2001, 48(1–4), 5– 11. DOI:10.1016/S0964-8305(01) 00061-0.
  • Tillner, J.; Grob, K. Compliance Work for Food Contact Materials: Feasibility of the Legally Required Safety Assessment of an Epoxy/amine-based Coating for Domestic Water Pipe Restoration. Food Addit. Contam. 2014, 31(7), 1310– 1323. DOI: 10.1080/19440049.2014.916421
  • Moerman, F. Antimicrobial Materials, Coatings and Biomimetic Surfaces with Modified Microtography to Control Microbial Fouling of Product Contact Surfaces within Food Processing Equipment: Legislation, Requirements, Effectiveness and Challenges. J. Hygienic Eng. Des. 2014, 7, 8– 29.
  • Karimi, M.; Habibi-Rezaei, M.; Safari, M.; Moosavi-Movahedi, A. A.; Sayyah, M.; Sadeghi, R.; Kokini, J. Immobilization of Endo-inulinase on Poly-d-lysine Coated CaCO3 Micro-particles. Food Res. Int. 2014, 66, 485– 492. DOI: 10.1016/j.foodres.2014.08.041.
  • Peng, C.; Zhao, Q.; Gao, C. Sustained Delivery of Doxorubicin by Porous CaCO3 and Chitosan/Alginate Multilayers-Coated CaCO3 Microparticles. Colloids Surf. A. 2010, 353(2–3),132– 139. DOI: 10.1016/j.colsurfa.2009.11.004.
  • Jaiswal, S.; McHale, P.; Duffy, B. Preparation and Rapid Analysis of Antibacterial Silver, Copper and Zinc Doped Sol–gel Surfaces. Colloids Surf. B. 2012, 94, 170– 176. DOI: 10.1016/j.colsurfb.2012.01.035.
  • Valerini, D.; Tammaro, L.; Di Benedetto, F.; Vigliotta, G.; Capodieci, L.; Terzi, R.; Rizzo, A. Aluminum-Doped Zinc Oxide Coatings on Polylactic Acid Films for Antimicrobial Food Packaging. Thin Solid Films. 2018, 645, 187– 192. DOI: 10.1016/j.tsf.2017.10.038.
  • Von Goetz, N.; Fabricius, L.; Glaus, R.; Weitbrecht, V.; Günther, D.; Hungerbühler, K. Migration of Silver from Commercial Plastic Food Containers and Implications for Consumer Exposure Assessment. Food Addit. Contam. 2013, 30(3), 612– 620. DOI: 10.1080/19440049.2012.762693.
  • Kolewe, K. W.; Dobosz, K. M.; Rieger, K. A.; Chang, C. C.; Emrick, T.; Schiffman, J. D. Antifouling Electrospun Nanofiber Mats Functionalized with Polymer Zwitterions. ACS Appl. Mater. Interfaces. 2016, 8(41), 27585– 27593. DOI: 10.1021/acsami.6b09839.
  • Li, Q.; Imbrogno, J.; Belfort, G.; Wang, X. L. Making Polymeric Membranes Antifouling via “Grafting From” Polymerization of Zwitterions. J. Appl. Polym. Sci. 2015, 132(21), 1–12. DOI: 10.1002/app.41781
  • Asri, L. A.; Crismaru, M.; Roest, S.; Chen, Y.; Ivashenko, O.; Rudolf, P.; Tiller, J. C.; Van Der Mei, H. C.; Loontjens, T. J.; Busscher, H. J. A Shape‐Adaptive, Antibacterial‐Coating of Immobilized Quaternary‐Ammonium Compounds Tethered on Hyperbranched Polyurea and Its Mechanism of Action. Adv. Funct. Mater. 2014, 24(3), 346– 355. DOI: 10.1002/adfm.201301686.
  • Bastarrachea, L. J.; Denis-Rohr, A.; Goddard, J. M. Antimicrobial Food Equipment Coatings: Applications and Challenges. Ann. Rev. Food Sci. Technol. 2015, 6, 97– 118. DOI: 10.1146/annurev-food-022814-015453.
  • Dizaj, S. M.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M. H.; Adibkia, K. Antimicrobial Activity of the Metals and Metal Oxide Nanoparticles. Mater. Sci. Eng C. 2014, 44, 278– 284. DOI: 10.1016/j.msec.2014.08.031.
  • Llorens, A.; Lloret, E.; Picouet, P. A.; Trbojevich, R.; Fernandez, A. Metallic-based Micro and Nanocomposites in Food Contact Materials and Active Food Packaging. Trends Food Sci. Technol. 2012, 24(1), 19–29. DOI: 10.1016/j.tifs.2011.10.001.
  • Smolander, M.; Chaudhry, Q. Nanotechnologies in Food Packaging. Nanotechnol Food. 2010, 14(2010), 86e– 101e.
  • Yemmireddy, V. K.; Hung, Y. C. Photocatalytic TiO2 Coating of Plastic Cutting Board to Prevent Microbial Cross-Contamination. Food Control. 2017, 77, 88– 95. DOI: 10.1016/j.foodcont.2017.01.025.
  • Nekmard, F.; Komesvarakul, N.; Varga-Baragh, O.; Sun, G. Polymer-containing Cleaning Compositions and Methods of Production and Use Thereof: Google Patents. U.S. Patent No. 9,464,261. 2016 Oct 11.
  • Pei, D. F.; Chen, S.; Li, S. Q.; Shi, H. F.; Li, W.; Li, X.; Zhang, X. Fabrication and Properties of Poly (Polyethylene Glycol N-alkyl Ether Vinyl Ether) S as Polymeric Phase Change Materials. Thermochim. Acta. 2016, 633, 161– 169. DOI: 10.1016/j.tca.2016.04.007.
  • Dong, A.; Xue, M.; Lan, S.; Wang, Q.; Zhao, Y.; Wang, Y.; Harnoode, C.; Gao, G.; Liu, F.; Harnoode, C. Bactericidal Evaluation of N-Halamine-Functionalized Silica Nanoparticles Based on Barbituric Acid. Colloids Surf. B. 2014, 113, 450– 457. DOI: 10.1016/j.colsurfb.2013.09.048.
  • Dong, A.; Zhang, Q.; Wang, T.; Wang, W.; Liu, F.; Gao, G. Immobilization of Cyclic N-Halamine on Polystyrene-Functionalized Silica Nanoparticles: Synthesis, Characterization, and Biocidal Activity. J. Phys. Chem. C. 2010, 114(41), 17298– 17303. DOI: 10.1021/jp104083h.
  • Li, L.; Ma, W.; Cheng, X.; Ren, X.; Xie, Z.; Liang, J. Synthesis and Characterization of Biocompatible Antimicrobial N-Halamine-Functionalized Titanium Dioxide Core-shell Nanoparticles. Colloids Surf. B. 2016, 148, 511–517. DOI: 10.1016/j.colsurfb.2016.09.030.
  • Qiao, M.; Ren, T.; Huang, T.-S.; Weese, J.; Liu, Y.; Ren, X.; Farag, R. N-Halamine Modified Thermoplastic Polyurethane with Rechargeable Antimicrobial Function for Food Contact Surface. RSC Adv. 2017, 7(3),1233–1240. DOI: 10.1039/C6RA25502G.
  • Musavian, H. S.; Butt, T. M.; Larsen, A. B.; Krebs, N. Combined Steam-Ultrasound Treatment of 2 Seconds Achieves Significant High Aerobic Count and Enterobacteriaceae Reduction on Naturally Contaminated Food Boxes, Crates, Conveyor Belts, and Meat Knives. J. Food Prot. 2015, 78(2), 430– 435. DOI: 10.4315/0362-028X.JFP-14-155.
  • Falcó, I.; Verdeguer, M.; Aznar, R.; Sánchez, G.; Randazzo, W. Sanitizing Food Contact Surfaces by the Use of Essential Oils. Innovative Food Sci. Emerg. Technol. 2019, 51, 220– 228. DOI: 10.1016/j.ifset.2018.02.013.
  • Lin, C. M.; Sheu, S. R.; Hsu, S. C.; Tsai, Y. H. Determination of Bactericidal Efficacy of Essential Oil Extracted from Orange Peel on the Food Contact Surfaces. Food Control. 2010, 21(12), 1710– 1715. DOI: 10.1016/j.foodcont.2010.06.008.
  • Rodrigues, F. F.; Costa, J. G.; Coutinho, H. D. Synergy Effects of the Antibiotics Gentamicin and the Essential Oil of Croton Zehntneri. Phytomedicine. 2009, 16(11),1052– 1055. DOI: 10.1016/j.phymed.2009.04.004.
  • Abeysundara, P. D. A.; Dhowlaghar, N.; Nannapaneni, R.; Schilling, M. W.; Chang, S.; Mahmoud, B.; Sharma, C. S.; Ma, D. P. Growth and Biofilm Formation by Listeria Monocytogenes in Cantaloupe Flesh and Peel Extracts on Four Food-Contact Surfaces at 22° C and 10° C. Food Control. 2017, 80, 131– 142. DOI: 10.1016/j.foodcont.2017.04.043.
  • Azeredo, H. M.; Waldron, K. W. Crosslinking in Polysaccharide and Protein Films and Coatings for Food Contact – A Review. Trends Food Sci. Technol. 2016, 52, 109– 122. DOI: 10.1016/j.tifs.2016.04.008.
  • Corrales, M.; Fernández, A.; Han, J. H. Antimicrobial Packaging Systems. Innovations in Food Packaging, Jung H. Han (ed.), PepsiCo Corporate R&D/PepsiCo Advanced Research, USA, Elsevier, 2014, 133– 170.
  • Du, W. X.; Olsen, C.; Avena‐Bustillos, R.; Friedman, M.; McHugh, T. Physical and Antibacterial Properties of Edible Films Formulated with Apple Skin Polyphenols. J. Food Sci. 2011, 76(2), M149– M155. DOI: 10.1111/j.1750-3841.2010.02012.x.
  • Lee, H.; Min, S. C. Development of Antimicrobial Defatted Soybean Meal-Based Edible Films Incorporating the Lactoperoxidase System by Heat Pressing. J. Food Eng. 2014, 120, 183– 190. DOI: 10.1016/j.jfoodeng.2013.07.035.
  • Mousavi Khaneghah, A.; Hashemi, S. M. B.; Eş, I.; Fracassetti, D.; Limbo, S. Efficacy of Antimicrobial Agents for Food Contact Applications: Biological Activity, Incorporation into Packaging, and Assessment Methods: A Review. J. Food Prot. 2018, 81(7), 1142– 1156. DOI: 10.4315/0362-028X.JFP-17-509.
  • Padrão, J.; Gonçalves, S.; Silva, J. P.; Sencadas, V.; Lanceros-Méndez, S.; Pinheiro, A. C.; Vincente, A. A.; Rodrigues, L. R.; Dourado, F. Bacterial Cellulose-Lactoferrin as an Antimicrobial Edible Packaging. Food Hydrocolloids. 2016, 58, 126– 140. DOI: 10.1016/j.foodhyd.2016.02.019.
  • Khwaldia, K.; Arab‐Tehrany, E.; Desobry, S. Biopolymer Coatings on Paper Packaging Materials. Compr. Rev. Food Sci. Food Saf. 2010, 9(1), 82– 91. DOI: 10.1111/j.1541-4337.2009.00095.x.
  • Zemljič, L. F.; Tkavc, T.; Vesel, A.; Šauperl, O. Chitosan Coatings onto Polyethylene Terephthalate for the Development of Potential Active Packaging Material. Appl. Surf. Sci. 2013, 265, 697– 703. DOI: 10.1016/j.apsusc.2012.11.086.
  • Di Pierro, P.; Sorrentino, A.; Mariniello, L.; Giosafatto, C. V. L.; Porta, R. Chitosan/Whey Protein Film as Active Coating to Extend Ricotta Cheese Shelf-life. LWT Food Sci. Technol. 2011, 44(10), 2324– 2327. DOI: 10.1016/j.lwt.2010.11.031.
  • Pankaj, S. K.; Bueno-Ferrer, C.; Misra, N.; Milosavljević, V.; O’donnell, C. P.; Bourke, P.; Keener, K.M.; Cullen, P. J. Applications of Cold Plasma Technology in Food Packaging. Trends Food Sci. Technol. 2014, 35(1), 5– 17. DOI: 10.1016/j.tifs.2013.10.009.
  • Rtimi, S.; Nesic, J.; Pulgarin, C.; Sanjines, R.; Bensimon, M.; Kiwi, J. Effect of Surface Pretreatment of TiO2 Films on Interfacial Processes Leading to Bacterial Inactivation in the Dark and Under Light Irradiation. Interface Focus. 2015, 5(1),20140046. DOI: 10.1098/rsfs.2014.0046.
  • Commission, E. “ Commission Regulation (EC) No 2023/2006 of 22 December 2006 on Good Manufacturing Practice for Materials and Articles Intended to Come into Contact with Food,” Off J Eur Union., 2006, 50, 75–78.
  • Matthews, C.; Moran, F.; Jaiswal, A. K. A Review on European Union’s Strategy for Plastics in A Circular Economy and Its Impact on Food Safety. J. Cleaner Prod. 2021, 125263, 1– 13. DOI: 10.1016/j.jclepro.2020.125263.
  • Simoneau, C. Guidelines on Testing Conditions for Articles in Contact with Foodstuffs. Eur. Commun. (JRC Scientific and Technical Reports). Retrieved January. 2009, 14, 2016.
  • Day, B. P. F.; Potter, L., Active Packaging. Food and Beverage Packaging Technology, Second Edition, Blackwell Publishing Ltd., London, 2011, 251–262. doi:10.1002/9781444392180.ch9
  • Störmer, A.; Bott, J.; Kemmer, D.; Franz, R. Critical Review of the Migration Potential of Nanoparticles in Food Contact Plastics, Trends in Food Sci Tech.y, 2017, 63, 39–50. DOI: 10.1016/j.tifs.2017.01.011
  • Corona, T.; Iglesias, M.; Anticó, E. Migration of Components from Cork Stoppers to Food: Challenges in Determining Inorganic Elements in Food Simulants. J. Agric. Food Chem. 2014, 62(24), 5690– 5698. DOI: 10.1021/jf500170w.
  • Commission, E., Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 Laying Down Specific Hygiene Rules for Food of Animal Origin, J. Eur. Union L., 2004, 139, 55–205.
  • Lopp, S.; Goebelbecker, J. M.; Ruff, P. C. The Draft of the Regulation (EC) No 852/2004: Food Safety Culture Under New Administration. J. Consumer Protect Food Safety. 2021, 14. doi:10.1007/s00003-020-01306-w.
  • Knetsch, M. L.; Koole, L. H. New Strategies in the Development of Antimicrobial Coatings: The Example of Increasing Usage of Silver and Silver Nanoparticles. Polymers. 2011, 3(1), 340– 366. DOI: 10.3390/polym3010340.
  • Rosmaninho, R.; Santos, O.; Nylander, T.; Paulsson, M.; Beuf, M.; Benezech, T.; Yiantsios, S.; Andritsos, N.; Karabelas, A.; Rizzo, G. Modified Stainless Steel Surfaces Targeted to Reduce Fouling – Evaluation of Fouling by Milk Components. J. Food Eng. 2007, 80(4), 1176– 1187. DOI: 10.1016/j.jfoodeng.2006.09.008.
  • Calzolai, L.; Gilliland, D.; Rossi, F. Measuring Nanoparticles Size Distribution in Food and Consumer Products: A Review. Food Addit. Contam. 2012, 29(8), 1183– 1193. DOI: 10.1080/19440049.2012.689777.
  • Cushen, M.; Kerry, J.; Morris, M.; Cruz-Romero, M.; Cummins, E. Evaluation and Simulation of Silver and Copper Nanoparticle Migration from Polyethylene Nanocomposites to Food and an Associated Exposure Assessment. J. Agric. Food Chem. 2014, 62(6), 1403– 1411. DOI: 10.1021/jf404038y.
  • Niemira, B. A.; Boyd, G.; Sites, J. Cold Plasma Rapid Decontamination of Food Contact Surfaces Contaminated with Salmonella Biofilms. J. Food Sci. 2014, 79(5), M917 – M922. DOI: 10.1111/1750-3841.12379.
  • Yemmireddy, V. K.; Hung, Y. C. Using Photocatalyst Metal Oxides as Antimicrobial Surface Coatings to Ensure Food Safety - Opportunities and Challenges. Compr. Rev. Food Sci. Food Saf. 2017, 16(4), 617– 631. DOI: 10.1111/1541-4337.12267.
  • Borrelli, N. F.; Morse, D. L.; Senaratne, W.; Verrier, F. C. M.; Wei, Y. Coated, Antimicrobial, Chemically Strengthened Glass and Method of Making: Google Patents. U.S. Patent No. 9,609,873, 2017 Apr 4.
  • Griffith, A.; Neethirajan, S.; Warriner, K. Development and Evaluation of Silver Zeolite Antifouling Coatings on Stainless Steel for Food Contact Surfaces. J. Food Saf. 2015, 35(3), 345– 354. DOI: 10.1111/jfs.12181.
  • Mérian, T.; Goddard, J. M. Advances in Nonfouling Materials: Perspectives for the Food Industry. J. Agric. Food Chem. 2012, 60(12), 2943– 2957. DOI: 10.1021/jf204741p.
  • Makwana, M. R. Characterization of Biofilm Forming Microbes and Their Control; NDRI: Karnal, 2015.
  • Jaiswal, S.; Bhattacharya, K.; McHale, P.; Duffy, B. Dual Effects of β-Cyclodextrin-Stabilised Silver Nanoparticles: Enhanced Biofilm Inhibition and Reduced Cytotoxicity. J. Mater. Sci.: Mater. Med. 2015, 26(1), 52. DOI: 10.1007/s10856-014-5367-1.
  • Choi, N. C.; Park, S. J.; Lee, C. G.; Park, J. A.; Kim, S. B. Influence of Surfactants on Bacterial Adhesion to Metal Oxide-Coated Surfaces. Environ. Eng. Res. 2011, 16(4), 219– 225. DOI: 10.4491/eer.2011.16.4.219.
  • Zeraik, A. E.; Nitschke, M. Biosurfactants as Agents to Reduce Adhesion of Pathogenic Bacteria to Polystyrene Surfaces: Effect of Temperature and Hydrophobicity. Curr. Microbiol. 2010, 61(6), 554– 559. DOI: 10.1007/s00284-010-9652-z.
  • Cheng, G.; Li, G.; Xue, H.; Chen, S.; Bryers, J. D.; Jiang, S. Zwitterionic Carboxybetaine Polymer Surfaces and Their Resistance to Long-Term Biofilm Formation. Biomaterials. 2009, 30(28), 5234– 5240. DOI: 10.1016/j.biomaterials.2009.05.058.
  • Ravindran, R.; Jaiswal, A. K. Current Advances in Immobilization Techniques of Enzymes. Enzym Fuel Cells. 2019, 44, 51–72.
  • Kregiel, D., Advances in Biofilm Control for Food and Beverage Industry Using Organo-Silane Technology: A Review. Food Control. 2014, 40, 32–40. DOI: 10.1016/j.foodcont.2013.11.014.
  • Ivanova, E. P.; Hasan, J.; Truong, V. K.; Wang, J. Y.; Raveggi, M.; Fluke, C.; Crawford, R. J. The Influence of Nanoscopically Thin Silver Films on Bacterial Viability and Attachment. Appl. Microbiol. Biotechnol. 2011, 91(4), 1149– 1157. DOI: 10.1007/s00253-011-3195-5.
  • Swartjes, J.; Sharma, P.; Kooten, T.; Van Der Mei, H.; Mahmoudi, M.; Busscher, H.; Rochford, E. Current Developments in Antimicrobial Surface Coatings for Biomedical Applications. Curr. Med. Chem. 2015, 22(18), 2116– 2129. DOI: 10.2174/0929867321666140916121355.
  • Marini, M.; De Niederhausern, S.; Iseppi, R.; Bondi, M.; Sabia, C.; Toselli, M. Antibacterial Activity of Plastics Coated with Silver-Doped Organic- Inorganic Hybrid Coatings Prepared by Sol− gel Processes, Biomacromolecules, 2007, 8, 1246–1254.
  • Yin, Y.; Wang, C. Multifunctional Performances of Nanocomposite SiO2/TiO2 Doped Cationic EBODAC Film Coated on Natural Cellulose Matrix. J. Sol-Gel Sci. Technol. 2011, 59(1),36– 42. DOI: 10.1007/s10971-011-2458-z.
  • Goddard, J. M.; Hotchkiss, J. Polymer Surface Modification for the Attachment of Bioactive Compounds. Prog. Polym. Sci. 2007, 32(7), 698– 725. DOI: 10.1016/j.progpolymsci.2007.04.002.
  • Harney, M. B.; Pant, R. R.; Fulmer, P. A.; Wynne, J. H. Surface Self-Concentrating Amphiphilic Quaternary Ammonium Biocides as Coating Additives. ACS Appl. Mater. Interfaces. 2008, 1(1), 39– 41. DOI: 10.1021/am800046r.
  • Siedenbiedel, F.; Tiller, J. C. Antimicrobial Polymers in Solution and on Surfaces: Overview and Functional Principles. Polymers. 2012, 4(1), 46– 71. DOI: 10.3390/polym4010046.
  • Kollath, A.; Brezhneva, N.; Skorb, E. V.; Andreeva, D. V. Microbubbles Trigger Oscillation of Crystal Size in Solids. Phys. Chem. Chem. Phys. 2017, 19(8), 6286–6291. DOI: 10.1039/C6CP07456A.
  • Gutierrez, J.; Barry-Ryan, C.; Bourke, P. Antimicrobial Activity of Plant Essential Oils Using Food Model Media: Efficacy, Synergistic Potential and Interactions with Food Components. Food Microbiol. 2009, 26(2), 142– 150. DOI: 10.1016/j.fm.2008.10.008.
  • Soni, K. A.; Oladunjoye, A.; Nannapaneni, R.; Schilling, M. W.; Silva, J. L.; Mikel, B.; Bailey, R. H. Inhibition and Inactivation of Salmonella typhimurium Biofilms from Polystyrene and Stainless Steel Surfaces by Essential Oils and Phenolic Constituent Carvacrol. J. Food Prot. 2013, 76(2), 205– 212. DOI: 10.4315/0362-028X.JFP-12-196.
  • Campana, R.; Casettari, L.; Fagioli, L.; Cespi, M.; Bonacucina, G.; Baffone, W. Activity of Essential Oil-Based Microemulsions Against Staphylococcus aureus Biofilms Developed on Stainless Steel Surface in Different Culture Media and Growth Conditions,” Int. J. of Food Micro., 2017, 241, 132–140. DOI: 10.1016/j.ijfoodmicro.2016.10.021
  • Juneja, V. K.; Dwivedi, H. P.; Yan, X. Novel Natural Food Antimicrobials. Ann. Rev. Food Sci. Technol. 2012, 3, 381– 403. DOI: 10.1146/annurev-food-022811-101241.
  • Arevalos-Sánchez, M.; Regalado, C.; Martin, S. E.; Domínguez-Domínguez, J.; García-Almendárez, B. E. Effect of Neutral Electrolyzed Water and Nisin on Listeria Monocytogenes Biofilms, and on Listeriolysin O Activity. Food Control. 2012, 24(1–2),116– 119. DOI: 10.1016/j.foodcont.2011.09.012.
  • Conte, A.; Buonocore, G. G.; Sinigaglia, M.; Lopez, L. C.; Favia, P.; d’Agostino, R.; Del Nobile, M. A. Antimicrobial Activity of Immobilized Lysozyme on Plasma-treated Polyethylene Films. J. Food Prot. 2008, 71(1),119 – 125. DOI:10.4315/0362-028X-71.1.119.
  • Theapsak, S.; Watthanaphanit, A.; Rujiravanit, R. Preparation of Chitosan-Coated Polyethylene Packaging Films by DBD Plasma Treatment. ACS Appl. Mater. Interfaces. 2012, 4(5),2474–2482. DOI: 10.1021/am300168a
  • Karam, L.; Jama, C.; Mamede, A. S.; Fahs, A.; Louarn, G.; Dhulster, P.; Chihib, N.-E. Study of Nisin Adsorption on Plasma-Treated Polymer Surfaces for Setting Up Materials with Antibacterial Properties. React. Funct. Polym. 2013, 73(11),1473–1479. DOI: 10.1016/j.reactfunctpolym.2013.07.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.