940
Views
6
CrossRef citations to date
0
Altmetric
Review

Recent Development in Formation, Toxic Effects, Human Health and Analytical Techniques of Food Contaminants

, & ORCID Icon

References

  • Walls, H.; Baker, P.; Chirwa, E.; Hawkins, B. Food Security, Food Safety & Healthy Nutrition: Are They Compatible? Global Food Security. Elsevier B.V. June 1, 2019, pp. 69–71. 10.1016/j.gfs.2019.05.005.
  • Lawley, R.; Curtis, L.; Davis, J. The Food Safety Hazard Guidebook; Royal Society of Chemistry, 2012. 10.1039/9781849734813.
  • Roberts, C. A. The Food Safety Information Handbook; Oryx Press: Westport; 2001.
  • Hurst, W. J.; Finley, J. W.; deMan, J. M. Additives and Contaminants; 2018; pp 527–565. 10.1007/978-3-319-63607-8_15.
  • Barzegar, F.; Kamankesh, M.; Mohammadi, A. Heterocyclic Aromatic Amines in Cooked Food: A Review on Formation, Health Risk-Toxicology and Their Analytical Techniques. Food Chem. 2019, 280, 240–254. DOI: 10.1016/j.foodchem.2018.12.058.
  • Nielsen, S. S.; Introduction to Food Analysis; 2010; pp 3–14. doi:10.1007/978-1-4419-1478-1_1.
  • Petisca, C.; Henriques, A. R.; Pérez-Palacios, T.; Pinho, O.; Ferreira, I. M. P. L. V. O. Assessment of Hydroxymethylfurfural and Furfural in Commercial Bakery Products. J. Food Compos. Anal. 2014, 33(1), 20–25. DOI: 10.1016/j.jfca.2013.10.004.
  • Türköz Acar, E.; Helvacioğlu, S.; Charehsaz, M.; Aydin, A. Determination and Safety Evaluation of Furfural and Hydroxymethylfurfural in Some Honey Samples by Using a Validated Hplc-Dad Method. Marmara Pharm. J. 2018, 22 (4), 519–527. DOI:10.12991/jrp.2018.93.
  • Mesías, M.; Sáez-Escudero, L.; Morales, F. J.; Delgado-Andrade, C. Occurrence of Furosine and Hydroxymethylfurfural in Breakfast Cereals. Evolution of the Spanish Market from 2006 to 2018. Foods. MDPI Multidisciplinary Digital Publishing Institute May 1. 2019, 8 (5), 158. DOI: 10.3390/foods8050158.
  • Madani-Tonekaboni, M.; Kamankesh, M.; Mohammadi, A. Determination of Furfural and Hydroxymethyl Furfural from Baby Formula Using Dispersive Liquid–liquid Microextraction Coupled with High Performance Liquid Chromatography and Method Optimization by Response Surface Methodology. J. Food Compos. Anal. 2015, 40, 1–7. DOI: 10.1016/j.jfca.2014.12.004.
  • Durling, L. J. K.; Busk, L.; Hellman, B. E. Evaluation of the DNA Damaging Effect of the Heat-Induced Food Toxicant 5-Hydroxymethylfurfural (HMF) in Various Cell Lines with Different Activities of Sulfotransferases. Food Chem. Toxicol. 2009, 47(4), 880–884. DOI: 10.1016/j.fct.2009.01.022.
  • Czerwonka, M.; Pietrzak-Sajjad, R.; Bobrowska-Korczak, B. Evaluation of 5-Hydroxymethylfurfural Content in Market Milk Products. Food Additives & Contaminants: Part A. 2020, 37(7), 1135–1144. DOI: 10.1080/19440049.2020.1757162.
  • Kamalabadi, M.; Ghaemi, E.; Mohammadi, A.; Alizadeh, N. Determination of Furfural and Hydroxymethylfurfural from Baby Formula Using Headspace Solid Phase Microextraction Based on Nanostructured Polypyrrole Fiber Coupled with Ion Mobility Spectrometry. Food Chem. 2015, 181, 72–77. DOI: 10.1016/j.foodchem.2015.02.069.
  • Veríssimo, M. I. S.; Gamelas, J. A. F.; Evtuguin, D. V.; Gomes, M. T. S. R. Determination of 5-Hydroxymethylfurfural in Honey, Using Headspace-Solid-Phase Microextraction Coupled with a Polyoxometalate-Coated Piezoelectric Quartz Crystal. Food Chem. 2017, 220, 420–426. DOI: 10.1016/j.foodchem.2016.09.204.
  • Švecová, B.; Mach, M. Content of 5-Hydroxymethyl-2-Furfural in Biscuits for Kids. Interdiscip. Toxicol. 2017, 10(2), 66–69. DOI: 10.1515/intox-2017-0011.
  • Chaichi, M.; Mohammadi, A.; Hashemi, M. Optimization and Application of Headspace Liquid-Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry for Determination of Furanic Compounds in Coffee Using Response Surface Methodology. Microchem. J. 2013, 108, 46–52. DOI: 10.1016/j.microc.2012.12.009.
  • Sakač, M.; Jovanov, P.; Petrović, J.; Pezo, L.; Fišteš, A.; Lončarević, I.; Pajin, B. Hydroxymethylfurfural Content and Colour Parameters of Cookies with Defatted Wheat Germ. Czech J. Food Sci. 2019, 37 (2019)(4), 285–291. DOI: 10.17221/324/2017-CJFS.
  • Habibi, H.; Mohammadi, A.; Kamankesh, M. Application and Optimization of Dispersive Liquid-Liquid Microextraction Coupled with High-Performance Liquid Chromatography for Sensitive Determination of Furfural and Hydroxymethyl Furfural in Jarred and Canned Baby-Foods. Nutr. Food Sci. Res. 2017, 4 (1), 25–32. DOI:10.18869/acadpub.nfsr.4.1.25.
  • Mańkowska, D.; Majak, I.; Bartos, A.; Słowianek, M.; Łącka, A.; Leszczyńska, J. 2017. Biotechnology and Food Science 5-Hydroxymethylfurfural Content in Selected Gluten-and Gluten-Free Cereal Food Products. Biotechnol Food Sci. 2017, 81 (1), 11–21 .
  • Bouzalakou-Butel, L.-A.; Provatidis, P.; Sturrock, K.; Fiore, A. Primary Investigation into the Occurrence of Hydroxymethylfurfural (HMF) in a Range of Smoked Products. J. Chem. 2018, 2018, 5942081. DOI: 10.1155/2018/5942081.
  • Qi, Y.; Zhang, H.; Wu, G.; Zhang, H.; Wang, L.; Qian, H.; Qi, X. Reduction of 5-Hydroxymethylfurfural Formation by Flavan-3-Ols in Maillard Reaction Models and Fried Potato Chips. J. Sci. Food Agric. 2018, 98(14), 5294–5301. DOI: 10.1002/jsfa.9068.
  • Feng, T.; Zhang, Q.; Wang, X.; Xia, S.; Fang, Z.; Li, J.; Zhang, X.; Yu, J. Determination of 5-Hydroxymethyl-2-Furaldehyde in Cooked Japonica Rice Using a Modified QuEChERS Method Combined with Dispersive Liquid-Liquid Microextraction Followed by UPLC-ESI-MS/MS. Food Anal. Methods. 2019, 12(8), 1838–1848. DOI: 10.1007/s12161-019-01533-4.
  • Xu, X. B.; Liu, D. B.; Yu, S. J.; Yu, P.; Zhao, Z. G. Separation and Determination of 4-Methylimidazole, 2-Methylimidazole and 5-Hydroxymethylfurfural in Beverages by Amino Trap Column Coupled with Pulsed Amperometric Detection. Food Chem. 2015, 169, 224–229. DOI: 10.1016/j.foodchem.2014.07.149.
  • Habibi, H.; Mohammadi, A.; Kamankesh, M. Hydroxymethylfurfural in Fruit Puree and Juice: Preconcentration and Determination Using Microextraction Method Coupled with High-Performance Liquid Chromatography and Optimization by Box–Behnken Design. J. Food Meas. Charact. 2018, 12(1), 191–199. DOI: 10.1007/s11694-017-9630-2.
  • Marsol-Vall, A.; Balcells, M.; Eras, J.; Canela-Garayoa, R. A Rapid Gas Chromatographic Injection-Port Derivatization Method for the Tandem Mass Spectrometric Determination of Patulin and 5-Hydroxymethylfurfural in Fruit Juices. J. Chromatogr. A. 2016, 1453, 99–104. DOI: 10.1016/j.chroma.2016.05.043.
  • Córdova, A.; Saavedra, J.; Mondaca, V.; Vidal, J.; Astudillo-Castro, C. Quality Assessment and Multivariate Calibration of 5-Hydroxymethylfurfural during a Concentration Process for Clarified Apple Juice. Food Control. 2019, 95, 106–114. DOI: 10.1016/j.foodcont.2018.07.050.
  • Shiri, F.; Hashemi, B.; Sobhani, S. Central Composite Design Optimization of Dispersive Liquid–Liquid Microextraction Based on Solidification of Organic Drop for the Determination of 5-Hydroxymethyl-2-Furfural in Orange Juice Using High-Performance Liquid Chromatography. J. Anal. Chem. 2017, 72(6), 671–677. DOI: 10.1134/S1061934817060065.
  • Pérez-Burillo, S.; Jiménez-Zamora, A.; Párraga, J.; Rufián-Henares, J. A.; Pastoriza, S. Furosine and 5-Hydroxymethylfurfural as Chemical Markers of Tea Processing and Storage. Food Control. 2019, 99, 73–78. DOI: 10.1016/j.foodcont.2018.12.029.
  • İçli, N.;. Occurrence of Patulin and 5-Hydroxymethylfurfural in Apple Sour, Which Is a Traditional Product of Kastamonu, Turkey. Food Additives & Contaminants: Part A. 2019, 36(6), 952–963. DOI: 10.1080/19440049.2019.1605207.
  • Qi, W.; Bao, Y.; Li, X.; Guo, Y.; Wang, N.; Luo, X. The Occurrence of 5-Hydroxymethylfurfural, Furan and Nitrite in Commercial Soy Sauce from the Chinese. In AIP Conference Proceedings; American Institute of Physics Inc., 2019, 2110, 020006. https://doi.org/10.1063/1.5110800
  • Zhang Li-Li, S.-Y. Z.-Y.-Y. S. B.-G. C. H.-T.; (n.d.). Determination and Quantification of 5-Hydroxymethylfurfural in Vinegars and Soy Sauces. Retrieved June 17, 2020, from https://www.hindawi.com/journals/jfq/2017/8314354/
  • Constantin, O. E.; Kukurová, K.; Daško, Ľ.; Stănciuc, N.; Ciesarova, Z.; Croitoru, C.; Rapeanu, G. Effect of Thermal Processing on Simultaneous Formation of Acrylamide and Hydroxymethylfurfural in Plum Purée. Polish J. Food Nutr. Sci. 2019, 69(2), 179–189. DOI: 10.31883/pjfns/106128.
  • Wojnowski, W.; Namieśnik, J.; Płotka-Wasylka, J. Dispersive Liquid-Liquid Microextraction Combined with Gas Chromatography–Mass Spectrometry for in Situ Determination of Biogenic Amines in Meat: Estimation of Meat’s Freshness. Microchem. J. 2019, 145, 130–138. DOI: 10.1016/j.microc.2018.10.034.
  • Zarghampour, F.; Yamini, Y.; Baharfar, M.; Faraji, M. Electromembrane Extraction of Biogenic Amines in Food Samples by a Microfluidic-Chip System Followed by Dabsyl Derivatization Prior to High Performance Liquid Chromatography Analysis. J. Chromatogr. A. 2018, 1556, 21–28. DOI: 10.1016/j.chroma.2018.04.046.
  • Cao, D.; Xu, X.; Xue, S.; Feng, X.; Zhang, L. An in Situ Derivatization Combined with Magnetic Ionic Liquid-Based Fast Dispersive Liquid-Liquid Microextraction for Determination of Biogenic Amines in Food Samples. Talanta. 2019, 199, 212–219. DOI: 10.1016/j.talanta.2019.02.065.
  • Chang, Q.; Zang, X.; Wu, T.; Wang, M.; Pang, Y.; Wang, C.; Wang, Z. Use of Functionalized Covalent Organic Framework as Sorbent for the Solid-Phase Extraction of Biogenic Amines from Meat Samples Followed by High-Performance Liquid Chromatography. Food Anal. Methods. 2019, 12(1), 1–11. DOI: 10.1007/s12161-018-1324-9.
  • Papageorgiou, M.; Lambropoulou, D.; Morrison, C.; Namieśnik, J.; Płotka-Wasylka, J. Direct Solid Phase Microextraction Combined with Gas Chromatography – Mass Spectrometry for the Determination of Biogenic Amines in Wine. Talanta. 2018, 183, 276–282. DOI: 10.1016/j.talanta.2018.02.006.
  • Dong, H.; Xiao, K. Modified QuEChERS Combined with Ultra High Performance Liquid Chromatography Tandem Mass Spectrometry to Determine Seven Biogenic Amines in Chinese Traditional Condiment Soy Sauce. Food Chem. 2017, 229, 502–508. DOI: 10.1016/j.foodchem.2017.02.120.
  • Ochi, N.;. Simultaneous Determination of Eight Underivatized Biogenic Amines in Salted Mackerel Fillet by Ion-Pair Solid-Phase Extraction and Volatile Ion-Pair Reversed-Phase Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A. 2019, 1601, 115–120. DOI: 10.1016/j.chroma.2019.06.027.
  • Alizadeh, N.; Kamalabadi, M.; Mohammadi, A. Determination of Histamine and Tyramine in Canned Fish Samples by Headspace Solid-Phase Microextraction Based on a Nanostructured Polypyrrole Fiber Followed by Ion Mobility Spectrometry. Food Anal. Methods. 2017, 10(9), 3001–3008. DOI: 10.1007/s12161-017-0860-z.
  • Kamankesh, M.; Mohammadi, A.; Mollahosseini, A.; Seidi, S. Application of a Novel Electromembrane Extraction and Microextraction Method Followed by Gas Chromatography-Mass Spectrometry to Determine Biogenic Amines in Canned Fish. Anal. Methods. 2019, 11(14), 1898–1907. DOI: 10.1039/c9ay00224c.
  • Schirone, M.; Tofalo, R.; Perpetuini, G.; Manetta, A. C.; Di Gianvito, P.; Tittarelli, F.; Battistelli, N.; Corsetti, A.; Suzzi, G.; Martino, G. Influence of Iodine Feeding on Microbiological and Physico-Chemical Characteristics and Biogenic Amines Content in a Raw Ewes’ Milk Cheese. Foods. 2018, 7(7), 108. DOI: 10.3390/foods7070108.
  • Palomino-Vasco, M.; Acedo-Valenzuela, M. I.; Rodríguez-Cáceres, M. I.; Mora-Diez, N. Automated Chromatographic Method with Fluorescent Detection to Determine Biogenic Amines and Amino Acids. Application to Craft Beer Brewing Process. J. Chromatogr. A. 2019, 1601, 155–163. DOI: 10.1016/j.chroma.2019.04.063.
  • He, L.; Xu, Z.; Hirokawa, T.; Shen, L. Simultaneous Determination of Aliphatic, Aromatic and Heterocyclic Biogenic Amines without Derivatization by Capillary Electrophoresis and Application in Beer Analysis. J. Chromatogr. A. 2017, 1482, 109–114. DOI: 10.1016/j.chroma.2016.12.067.
  • Mohammadi, M.; Kamankesh, M.; Hadian, Z.; Mortazavian, A. M.; Mohammadi, A. Determination of Biogenic Amines in Cheese Using Simultaneous Derivatization and Microextraction Method Followed by Gas Chromatography–Mass Spectrometry. Chromatographia. 2017, 80(1), 119–126. DOI: 10.1007/s10337-016-3217-7.
  • Restuccia, D.; Spizzirri, U. G.; Puoci, F.; Picci, N. Determination of Biogenic Amine Profiles in Conventional and Organic Cocoa-Based Products. Food Additives & Contaminants: Part A. 2015, 32(7), 1156–1163. DOI: 10.1080/19440049.2015.1036322.
  • Ishimaru, M.; Muto, Y.; Nakayama, A.; Hatate, H.; Tanaka, R. Determination of Biogenic Amines in Fish Meat and Fermented Foods Using Column-Switching High-Performance Liquid Chromatography with Fluorescence Detection. Food Anal. Methods. 2019, 12(1), 166–175. DOI: 10.1007/s12161-018-1349-0.
  • Zhang, J.; Hu, J.; Wang, S.; Lin, X.; Liang, H.; Li, S.; Yu, C.; Dong, X.; Ji, C. Developing and Validating a UPLC-MS Method with a StageTip-Based Extraction for the Biogenic Amines Analysis in Fish. J. Food Sci. 2019, 84(5), 1138–1144. DOI: 10.1111/1750-3841.14597.
  • Molognoni, L.; Daguer, H.; De Sá Ploêncio, L. A.; De Dea Lindner, J. A Multi-Purpose Tool for Food Inspection: Simultaneous Determination of Various Classes of Preservatives and Biogenic Amines in Meat and Fish Products by LC-MS. Talanta. 2018, 178, 1053–1066. DOI: 10.1016/j.talanta.2017.08.081.
  • Jain, A.; Gupta, M.; Verma, K. K. Salting-out Assisted Liquid-Liquid Extraction for the Determination of Biogenic Amines in Fruit Juices and Alcoholic Beverages after Derivatization with 1-Naphthylisothiocyanate and High Performance Liquid Chromatography. J. Chromatogr. A. 2015, 1422, 60–72. DOI: 10.1016/j.chroma.2015.10.036.
  • Molaei, R.; Tajik, H.; Moradi, M. Magnetic Solid Phase Extraction Based on Mesoporous Silica-Coated Iron Oxide Nanoparticles for Simultaneous Determination of Biogenic Amines in an Iranian Traditional Dairy Product; Kashk. Food Control. 2019, 101, 1–8. DOI: 10.1016/j.foodcont.2019.02.011.
  • Gobbi, L.; Ciano, S.; Rapa, M.; Ruggieri, R. Biogenic Amines Determination in “Plant Milks.”. Beverages. 2019, 5(2), 40. DOI: 10.3390/beverages5020040.
  • Liu, S. J.; Xu, J. J.; Ma, C. L.; Guo, C. F. A Comparative Analysis of Derivatization Strategies for the Determination of Biogenic Amines in Sausage and Cheese by HPLC. Food Chem. 2018, 266, 275–283. DOI: 10.1016/j.foodchem.2018.06.001.
  • Kamalabadi, M.; Kamankesh, M.; Mohammadi, A.; Hadian, Z.; Ferdowsi, R. Contamination and Daily Intake of Polycyclic Aromatic Hydrocarbons in Iranian Bread Samples. Polycycl. Aromat. Compd. 2019. DOI: 10.1080/10406638.2018.1534747.
  • Rostampour, R.; Kamalabadi, M.; Kamankesh, M.; Hadian, Z.; Jazaeri, S.; Mohammadi, A.; Zolgharnein, J. An Efficient, Sensitive and Fast Microextraction Method Followed by Gas Chromatography-Mass Spectrometry for the Determination of Polycyclic Aromatic Hydrocarbons in Bread Samples. Anal. Methods. 2017, 9(44), 6246–6253. DOI: 10.1039/c7ay02229h.
  • Lin, W.; Wei, S.; Jiang, R.; Zhu, F.; Ouyang, G. Calibration of the Complex Matrix Effects on the Sampling of Polycyclic Aromatic Hydrocarbons in Milk Samples Using Solid Phase Microextraction. Anal. Chim. Acta. 2016, 933, 117–123. DOI: 10.1016/j.aca.2016.05.045.
  • Battisti, C.; Girelli, A. M.; Tarola, A. M. Polycyclic Aromatic Hydrocarbons (Pahs) in Yogurt Samples. Food Addit. Contam. Part B Surveill. 2015, 8(1), 50–55. DOI: 10.1080/19393210.2014.968880.
  • Mohammadi, A.; Malek-Mohammadi Jahani, S.; Kamankesh, M.; Jazaeri, S.; Eivani, M.; Esmaeili, S.; Abdi, S. Determination of Polycyclic Aromatic Hydrocarbons in Edible Oil Using Fast and Sensitive Microwave-Assisted Extraction and Dispersive Liquid–Liquid Microextraction Followed by Gas Chromatography-Mass Spectrometry. Polycyclic Aromatic Compounds. Taylor and Francis Inc. 2018. 10.1080/10406638.2018.1481110.
  • Bogdanović, T.; Pleadin, J.; Petričević, S.; Listeš, E.; Sokolić, D.; Marković, K.; Ozogul, F.; Šimat, V. The Occurrence of Polycyclic Aromatic Hydrocarbons in Fish and Meat Products of Croatia and Dietary Exposure. J. Food Compos. Anal. 2019, 75, 49–60. DOI: 10.1016/j.jfca.2018.09.017.
  • Petrarca, M. H.; Godoy, H. T. Gas Chromatography–Mass Spectrometry Determination of Polycyclic Aromatic Hydrocarbons in Baby Food Using QuEChERS Combined with Low-Density Solvent Dispersive Liquid–Liquid Microextraction. Food Chem. 2018, 257, 44–52. DOI: 10.1016/j.foodchem.2018.02.135.
  • Rivera-Vera, C.; Lasarte-Aragonés, G.; Bravo, M. A.; Muñoz-Lira, D.; Salazar, R.; Toledo-Neira, C. Ionic Liquids-Based Dispersive Liquid-Liquid Microextraction for Determination of Carcinogenic Polycyclic Aromatic Hydrocarbons in Tea Beverages: Evaluation of Infusion Preparation on Pollutants Release. Food Control. 2019, 106, 106685. DOI: 10.1016/j.foodcont.2019.06.011.
  • Belo, R. F. C.; Figueiredo, J. P.; Nunes, C. M.; Pissinatti, R.; Souza, S. V. C. D.; Junqueira, R. G. Accelerated Solvent Extraction Method for the Quantification of Polycyclic Aromatic Hydrocarbons in Cocoa Beans by Gas Chromatography–Mass Spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1053, 87–100. DOI: 10.1016/j.jchromb.2017.03.017.
  • Sess-Tchotch, D. A.; Kedjebo, K. B. D.; Faulet, B. M.; Fontana-Tachon, A.; Alter, P.; Durand, N.; Grabulos, J.; Montet, D.; Guehi, T. S. Analytical Method Validation and Rapid Determination of Polycyclic Aromatic Hydrocarbons (Pahs) in Cocoa Butter Using HPLC-FLD. Food Anal. Methods. 2018, 11(11), 3138–3146. DOI: 10.1007/s12161-018-1282-2.
  • Shi, Y.; Wu, H.; Wang, C.; Guo, X.; Du, J.; Du, L. Determination of Polycyclic Aromatic Hydrocarbons in Coffee and Tea Samples by Magnetic Solid-Phase Extraction Coupled with HPLC-FLD. Food Chem. 2016, 199, 75–80. DOI: 10.1016/j.foodchem.2015.11.137.
  • Kamalabadi, M.; Mohammadi, A.; Alizadeh, N. Simultaneous Determination of Seven Polycyclic Aromatic Hydrocarbons in Coffee Samples Using Effective Microwave-Assisted Extraction and Microextraction Method Followed by Gas Chromatography-Mass Spectrometry and Method Optimization Using Central Composite Design. Food Anal. Methods. 2018, 11(3), 781–789. DOI: 10.1007/s12161-017-1042-8.
  • Ciecierska, M.; Derewiaka, D.; Kowalska, J.; Majewska, E.; Drużyńska, B.; Wołosiak, R. Effect of Mild Roasting on Arabica and Robusta Coffee Beans Contamination with Polycyclic Aromatic Hydrocarbons. J. Food Sci. Technol. 2019, 56(2), 737–745. DOI: 10.1007/s13197-018-3532-0.
  • Wang, C.; Xie, Y.; Wang, H.; Bai, Y.; Dai, C.; Li, C.; Xu, X.; Zhou, G. The Influence of Natural Antioxidants on Polycyclic Aromatic Hydrocarbon Formation in Charcoal-Grilled Chicken Wings. Food Control. 2019, 98, 34–41. DOI: 10.1016/j.foodcont.2018.11.012.
  • Kamankesh, M.; Mohammadi, A.; Hosseini, H.; Modarres Tehrani, Z. Rapid Determination of Polycyclic Aromatic Hydrocarbons in Grilled Meat Using Microwave-Assisted Extraction and Dispersive Liquid-Liquid Microextraction Coupled to Gas Chromatography-Mass Spectrometry. Meat Sci. 2015, 103, 61–67. DOI: 10.1016/j.meatsci.2015.01.001.
  • Rascón, A. J.; Azzouz, A.; Ballesteros, E. Trace Level Determination of Polycyclic Aromatic Hydrocarbons in Raw and Processed Meat and Fish Products from European Markets by GC-MS. Food Control. 2019, 101, 198–208. DOI: 10.1016/j.foodcont.2019.02.037.
  • Ghasemzadeh-Mohammadi, V.; Mohammadi, A.; Hashemi, M.; Khaksar, R.; Haratian, P. Microwave-Assisted Extraction and Dispersive Liquid-Liquid Microextraction Followed by Gas Chromatography-Mass Spectrometry for Isolation and Determination of Polycyclic Aromatic Hydrocarbons in Smoked Fish. J. Chromatogr. A. 2012, 1237, 30–36. DOI: 10.1016/j.chroma.2012.02.078.
  • Ma, T. T.; Shen, X. F.; Yang, C.; Qian, H. L.; Pang, Y. H.; Yan, X. P. Covalent Immobilization of Covalent Organic Framework on Stainless Steel Wire for Solid-Phase Microextraction GC-MS/MS Determination of Sixteen Polycyclic Aromatic Hydrocarbons in Grilled Meat Samples. Talanta. 2019, 201, 413–418. DOI: 10.1016/j.talanta.2019.04.031.
  • Szternfeld, P.; Marchi, J.; Malysheva, S. V.; Joly, L. Modular Method for the Determination of Polycyclic Aromatic Hydrocarbons in Spices and Dried Herbs by Gas Chromatography–Tandem Mass Spectrometry. Food Anal. Methods. 2019, 12(10), 2383–2391. DOI: 10.1007/s12161-019-01579-4.
  • Mee Kin, C.; Devi Chander, P.; Ling Shing, W. Modified Dispersive Liquid-liquid Microextraction Using Green Solvent for Determination of Polycyclic Aromatic Hydrocarbons (Pahs) in Vegetable Samples. Malaysian J. Anal. Sci. 2016, 20(1), 14–20. DOI: 10.17576/mjas-2016-2001-02.
  • Will, C.; Huelsmann, R. D.; Da Cunha, H. C.; Carasek, E.; Martendal, E. Improvement of Dispersive Liquid-Liquid Microextraction Robustness by Performing Consecutive Extractions: Determination of Polycyclic Aromatic Hydrocarbons in Brazilian Sugar Cane Spirits by GC-MS. Sep. Sci. Plus. 2018, 1 (8), 564–573. DOI:10.1002/sscp.201800089.
  • Wang, L.; Liu, A.; Zhao, Y.; Mu, X.; Huang, T.; Gao, H.; Ma, J. The Levels of Polycyclic Aromatic Hydrocarbons (Pahs) in Human Milk and Exposure Risk to Breastfed Infants in Petrochemical Industrialized Lanzhou Valley, Northwest China. Environ. Sci. Pollut. Res. 2018, 25(17), 16754–16766. DOI: 10.1007/s11356-018-1799-3.
  • Badibostan, H.; Feizy, J.; Daraei, B.; Shoeibi, S.; Rajabnejad, S. H.; Asili, J.; Taghizadeh, S. F.; Giesyh, J. P.; Karimi, G. Polycyclic Aromatic Hydrocarbons in Infant Formulae, Follow-on Formulae, and Baby Foods in Iran: An Assessment of Risk. Food Chem. Toxicol. 2019, 131, 110640. DOI: 10.1016/j.fct.2019.110640.
  • Rascón, A. J.; Azzouz, A.; Ballesteros, E. Use of Semi-Automated Continuous Solid-Phase Extraction and Gas Chromatography–Mass Spectrometry for the Determination of Polycyclic Aromatic Hydrocarbons in Alcoholic and Non-Alcoholic Drinks from Andalucía (Spain). J. Sci. Food Agric. 2019, 99(3), 1117–1125. DOI: 10.1002/jsfa.9279.
  • Rocío-Bautista, P.; Pino, V.; Ayala, J. H.; Pasán, J.; Ruiz-Pérez, C.; Afonso, A. M. A Magnetic-Based Dispersive Micro-Solid-Phase Extraction Method Using the Metal-Organic Framework HKUST-and Ultra-High-Performance Liquid Chromatography with Fluorescence Detection for Determining Polycyclic Aromatic Hydrocarbons in Waters and Fruit Tea Infusions. J. Chromatogr. A. 2016, 1436, 42–50. DOI: 10.1016/j.chroma.2016.01.067.
  • Norouzi, E.; Kamankesh, M.; Mohammadi, A.; Attaran, A. Acrylamide in Bread Samples: Determining Using Ultrasonic-Assisted Extraction and Microextraction Method Followed by Gas Chromatography-Mass Spectrometry. J. Cereal Sci. 2018, 79, 1–5. DOI: 10.1016/j.jcs.2017.09.011.
  • Eslamizad, S.; Kobarfard, F.; Tsitsimpikou, C.; Tsatsakis, A.; Tabib, K.; Yazdanpanah, H. Health Risk Assessment of Acrylamide in Bread in Iran Using LC-MS/MS. Food Chem. Toxicol. 2019, 126, 162–168. DOI: 10.1016/j.fct.2019.02.019.
  • Nematollahi, A.; Kamankesh, M.; Hosseini, H.; Ghasemi, J.; Hosseini-Esfahani, F.; Mohammadi, A. Investigation and Determination of Acrylamide in the Main Group of Cereal Products Using Advanced Microextraction Method Coupled with Gas Chromatography-Mass Spectrometry. J. Cereal Sci. 2019, 87, 157–164. DOI: 10.1016/j.jcs.2019.03.019.
  • Altunay, N.; Elik, A.; Gürkan, R. Extraction and Reliable Determination of Acrylamide from Thermally Processed Foods Using Ionic Liquid-Based Ultrasound-Assisted Selective Microextraction Combined with Spectrophotometry. Food Additives & Contaminants: Part A. 2018, 35(2), 222–232. DOI: 10.1080/19440049.2017.1394585.
  • Saraji, M.; Javadian, S. Single-Drop Microextraction Combined with Gas Chromatography-Electron Capture Detection for the Determination of Acrylamide in Food Samples. Food Chem. 2019, 274, 55–60. DOI: 10.1016/j.foodchem.2018.08.108.
  • Yoshioka, T.; Izumi, Y.; Nagatomi, Y.; Miyamoto, Y.; Suzuki, K.; Bamba, T. A Highly Sensitive Determination Method for Acrylamide in Beverages, Grains, and Confectioneries by Supercritical Fluid Chromatography Tandem Mass Spectrometry. Food Chem. 2019, 294, 486–492. DOI: 10.1016/j.foodchem.2019.05.033.
  • Elahi, M.; Kamankesh, M.; Mohammadi, A.; Jazaeri, S. Acrylamide in Cookie Samples: Analysis Using an Efficient Co-Derivatization Coupled with Sensitive Microextraction Method Followed by Gas Chromatography-Mass Spectrometry. Food Anal. Methods. 2019, 12(6), 1439–1447. DOI: 10.1007/s12161-019-01479-7.
  • Ghiasvand, A. R.; Hajipour, S. Direct Determination of Acrylamide in Potato Chips by Using Headspace Solid-Phase Microextraction Coupled with Gas Chromatography-Flame Ionization Detection. Talanta. 2016, 146, 417–422. DOI: 10.1016/j.talanta.2015.09.004.
  • Zokaei, M.; Abedi, A. S.; Kamankesh, M.; Shojaee-Aliababadi, S.; Mohammadi, A. Ultrasonic-Assisted Extraction and Dispersive Liquid-Liquid Microextraction Combined with Gas Chromatography-Mass Spectrometry as an Efficient and Sensitive Method for Determining of Acrylamide in Potato Chips Samples. Food Chem. 2017, 234, 55–61. DOI: 10.1016/j.foodchem.2017.04.141.
  • Martínez, E.; Rodríguez, J. A.; Bautista, M.; Rangel-Vargas, E.; Santos, E. M. Use of 2-Naphthalenethiol for Derivatization and Determination of Acrylamide in Potato Crisps by High-Performance Liquid Chromatographic with Fluorescence Detection. Food Anal. Methods. 2018, 11(6), 1636–1644. DOI: 10.1007/s12161-018-1150-0.
  • Hariri, E.; Abboud, M. I.; Demirdjian, S.; Korfali, S.; Mroueh, M.; Taleb, R. I. Carcinogenic and Neurotoxic Risks of Acrylamide and Heavy Metals from Potato and Corn Chips Consumed by the Lebanese Population. J. Food Compos. Anal. 2015, 42, 91–97. DOI: 10.1016/j.jfca.2015.03.009.
  • Hai, Y. D.; Tran-Lam, T. T.; Nguyen, T. Q.; Vu, N. D.; Ma, K. H.; Le, G. T. Acrylamide in Daily Food in the Metropolitan Area of Hanoi, Vietnam. Food Addit. Contam. Part B Surveill. 2019, 12(3), 159–166. DOI: 10.1080/19393210.2019.1576774.
  • Wawrzyniak, R.; Jasiewicz, B. Straightforward and Rapid Determination of Acrylamide in Coffee Beans by Means of HS-SPME/GC-MS. Food Chem. 2019, 301, 125264. DOI: 10.1016/j.foodchem.2019.125264.
  • Cagliero, C.; Ho, T. D.; Zhang, C.; Bicchi, C.; Anderson, J. L. Determination of Acrylamide in Brewed Coffee and Coffee Powder Using Polymeric Ionic Liquid-Based Sorbent Coatings in Solid-Phase Microextraction Coupled to Gas Chromatography-Mass Spectrometry. J. Chromatogr. A. 2016, 1449, 2–7. DOI: 10.1016/j.chroma.2016.04.034.
  • Galuch, M. B.; Magon, T. F. S.; Silveira, R.; Nicácio, A. E.; Pizzo, J. S.; Bonafe, E. G.; Maldaner, L.; Santos, O. O.; Visentainer, J. V. Determination of Acrylamide in Brewed Coffee by Dispersive Liquid–Liquid Microextraction (DLLME) and Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS/MS). Food Chem. 2019, 282, 120–126. DOI: 10.1016/j.foodchem.2018.12.114.
  • Raters, M.; Matissek, R. Acrylamide in Cocoa: A Survey of Acrylamide Levels in Cocoa and Cocoa Products Sourced from the German Market. Eur. Food Res. Technol. 2018, 244(8), 1381–1388. DOI: 10.1007/s00217-018-3051-2.
  • Sayah, M.; Kiarostami, V. Rapid Analysis of Acrylamide in Tap and Well Water Samples by Solvent Terminated Dispersive Liquid–Liquid Microextraction Followed by GC–FID. Bull. Environ. Contam. Toxicol. 2019, 102(4), 560–566. DOI: 10.1007/s00128-019-02575-4.
  • Reyes-Gallardo, E. M.; Lucena, R.; Cárdenas, S.; Valcárcel, M. Dispersive Micro-Solid Phase Extraction of Bisphenol A from Milk Using Magnetic Nylon 6 Composite and Its Final Determination by HPLC-UV. Microchem. J. 2016, 124, 751–756. DOI: 10.1016/j.microc.2015.10.025.
  • Qiu, Y.; Xia, Z.; Li, G.; Yu, Q.; Lu, J.; Li, Y. Rapid Supercritical Fluid Chromatography Analysis for 18 Phthalate Esters and Bisphenol A in Dairy Products. IOP Conf. Ser. Mater. Sci. Eng. 2019, 592(1), 012015. DOI: 10.1088/1757-899X/592/1/012015.
  • Cao, X. L.; Perez-Locas, C.; Dufresne, G.; Clement, G.; Popovic, S.; Beraldin, F.; Dabeka, R. W.; Feeley, M. Concentrations of Bisphenol a in the Composite Food Samples from the 2008 Canadian Total Diet Study in Quebec City and Dietary Intake Estimates. Food Additives & Contaminants: Part A. 2011, 28(6), 791–798. DOI: 10.1080/19440049.2010.513015.
  • Noureddine El Moussawi, S.; Ouaini, R.; Matta, J.; Chébib, H.; Cladière, M.; Camel, V. Simultaneous Migration of Bisphenol Compounds and Trace Metals in Canned Vegetable Food. Food Chem. 2019, 288, 228–238. DOI: 10.1016/j.foodchem.2019.02.116.
  • Abou Omar, T. F.; Sukhn, C.; Fares, S. A.; Abiad, M. G.; Habib, R. R.; Dhaini, H. R. Bisphenol A Exposure Assessment from Olive Oil Consumption. Environ. Monit. Assess. 2017, 189(7). DOI: 10.1007/s10661-017-6048-6.
  • Tian, H.; Bai, X.; Xu, J. Extraction of Bisphenol A in Honey Samples Using Aqueous Biphasic Systems Coupled with High-Performance Liquid Chromatography. Sep. Sci. Plus. 2018, 1 (5), 374–381. DOI:10.1002/sscp.201800019.
  • Cinelli, G.; Cuomo, F.; Ambrosone, L.; Venditti, F.; Lopez, F. Determination of Bisphenol A in Red Wine Using A Double Vortex–Ultrasound-Assisted Microextraction Assay: Role of the Interfacial Properties. Biotechnol. Prog. 2019, 35(3), e2780. DOI: 10.1002/btpr.2780.
  • Lu, S.; Wu, D.; Li, G.; Lv, Z.; Gong, P.; Xia, L.; Sun, Z.; Chen, G.; Chen, X.; You, J. et al. Facile and Sensitive Determination of N-Nitrosamines in Food Samples by High-Performance Liquid Chromatography via Combining Fluorescent Labeling with Dispersive Liquid-Liquid Microextraction. Food Chem. 2017, 234, 408–415. DOI: 10.1016/j.foodchem.2017.05.032.
  • Cintya, H.; Silalahi, J.; De Lux Putra, E.; Siburian, R. Analysis of Nitrosamines in Processed Meat Products in Medan City by Liquid Chromatography-Mass Spectrometry. Open Access Maced. J. Med. Sci. 2019, 7(8), 1382–1387. DOI: 10.3889/oamjms.2019.261.
  • Ramezani, H.; Hosseini, H.; Kamankesh, M.; Ghasemzadeh-Mohammadi, V.; Mohammadi, A. Rapid Determination of Nitrosamines in Sausage and Salami Using Microwave-Assisted Extraction and Dispersive Liquid–Liquid Microextraction Followed by Gas Chromatography–Mass Spectrometry. Eur. Food Res. Technol. 2014, 240(2), 441–450. DOI: 10.1007/s00217-014-2343-4.
  • Zhang, Q.; Jin, L.; Zhang, F.; Yao, K.; Ren, Y.; Zhang, J.; Zhang, Q.; He, Q.; Wan, Y.; Chi, Y. Analysis of 7 Volatile N-Nitrosamines in Chinese Sichuan Salted Vegetables by Gas Chromatography-Tandem Mass Spectrometry Coupled to Modified QuEchERS Extraction. Food Control. 2019, 98, 342–347. DOI: 10.1016/j.foodcont.2018.11.047.
  • Qiu, Y.; Chen, J.-H.; Yu, W.; Wang, P.; Rong, M.; Deng, H. Contamination of Chinese Salted Fish with Volatile N-Nitrosamines as Determined by QuEChERS and Gas Chromatography–Tandem Mass Spectrometry. Food Chem. 2017, 232, 763–769. DOI: 10.1016/J.FOODCHEM.2017.04.055.
  • Li, Z.; Wang, J.; Chen, X.; Hu, S.; Gong, T.; Xian, Q. A Novel Molecularly Imprinted Polymer-Solid Phase Extraction Method Coupled with High Performance Liquid Chromatography Tandem Mass Spectrometry for the Determination of Nitrosamines in Water and Beverage Samples. Food Chem. 2019, 292, 267–274. DOI: 10.1016/j.foodchem.2019.04.036.
  • Fan, C. C.; Lin, T. F. N-Nitrosamines in Drinking Water and Beer: Detection and Risk Assessment. Chemosphere. 2018, 200, 48–56. DOI: 10.1016/j.chemosphere.2018.02.025.
  • Wu, Q.; Shi, H.; Ma, Y.; Adams, C.; Eichholz, T.; Timmons, T.; Jiang, H. Determination of Secondary and Tertiary Amines as N-Nitrosamine Precursors in Drinking Water System Using Ultra-Fast Liquid Chromatography-Tandem Mass Spectrometry. Talanta. 2015, 131, 736–741. DOI: 10.1016/j.talanta.2014.08.003.
  • Lona-Ramirez, F. J.; Gonzalez-Alatorre, G.; Rico-Ramírez, V.; Perez-Perez, M. C. I.; Castrejón-González, E. O. Gas Chromatography/Mass Spectrometry for the Determination of Nitrosamines in Red Wine. Food Chem. 2016, 196, 1131–1136. DOI: 10.1016/j.foodchem.2015.09.090.
  • Seo, J. E.; Park, J. E.; Lee, J. Y.; Kwon, H. Determination of Seven N-Nitrosamines in Agricultural Food Matrices Using GC-PCI-MS/MS. Food Anal. Methods. 2016, 9(6), 1595–1605. DOI: 10.1007/s12161-015-0335-z.
  • Zeng, X.; Bai, W.; Xian, Y.; Dong, H.; Luo, D. Application of QuEChERS-Based Purification Coupled with Isotope Dilution Gas Chromatography-Mass Spectrometry Method for the Determination Of: N -nitrosamines in Soy Sauce. Anal. Methods. 2016, 8(26), 5248–5254. DOI: 10.1039/c6ay01169a.
  • Sallan, S.; Kaban, G.; Kaya, M. Nitrosamines in Sucuk: Effects of Black Pepper, Sodium Ascorbate and Cooking Level. Food Chem. 2019, 288, 341–346. DOI: 10.1016/j.foodchem.2019.02.129.
  • Sun, M.; Xu, D.; Wang, S.; Uchiyama, K. Inkjet-Based Dispersive Liquid-Liquid Microextraction Method Coupled with UHPLC-MS/MS for the Determination of Aflatoxins in Wheat. Anal. Chem. 2019, 91(4), 3027–3034. DOI: 10.1021/acs.analchem.8b05344.
  • Satarpai, T.; Siripinyanond, A.; Su, H.; Shiea, J. Rapid Characterization of Trace Aflatoxin B1 in Groundnuts, Wheat and Maize by Dispersive Liquid-Liquid Microextraction Followed by Direct Electrospray Probe Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2017, 31(8), 728–736. DOI: 10.1002/rcm.7837.
  • Kanik, T.; Kabak, B. Aflatoxins in Almonds: Monitoring and Exposure Assessment. J. Food Saf. 2019, 39(4). DOI: 10.1111/jfs.12646.
  • Hidalgo-Ruiz, J. L.; Romero-González, R.; Martínez Vidal, J. L.; Garrido Frenich, A. Determination of Mycotoxins in Nuts by Ultra High-Performance Liquid Chromatography-Tandem Mass Spectrometry: Looking for a Representative Matrix. J. Food Compos. Anal. 2019, 82, 103228. DOI: 10.1016/j.jfca.2019.05.011.
  • Taghizadeh, S. F.; Rezaee, R.; Davarynejad, G.; Asili, J.; Nemati, S. H.; Goumenou, M.; Tsakiris, I.; Tsatsakis, A. M.; Shirani, K.; Karimi, G. Risk Assessment of Exposure to Aflatoxin B1 and Ochratoxin A through Consumption of Different Pistachio (Pistacia Vera L.) Cultivars Collected from Four Geographical Regions of Iran. Environ. Toxicol. Pharmacol. 2018, 61, 61–66. DOI: 10.1016/j.etap.2018.05.010.
  • Sereshti, H.; Khodayari, F.; Nouri, N. Simultaneous Determination of Aflatoxins in Bread by In-Syringe Dispersive Micro-Solid Phase Extraction Using Magnetic Three-Dimensional Graphene Followed by HPLC-FLD. Food Anal. Methods. 2019, 12(10), 2273–2281. DOI: 10.1007/s12161-019-01582-9.
  • Huang, S.; Hu, D.; Wang, Y.; Zhu, F.; Jiang, R.; Ouyang, G. Automated Hollow-Fiber Liquid-Phase Microextraction Coupled with Liquid Chromatography/Tandem Mass Spectrometry for the Analysis of Aflatoxin M1 in Milk. J. Chromatogr. A. 2015, 1416, 137–140. DOI: 10.1016/j.chroma.2015.09.012.
  • Jafari, T.; Fallah, A. A.; Kheiri, S.; Fadaei, A.; Amini, S. A. Aflatoxin M1 in Human Breast Milk in Shahrekord, Iran and Association with Dietary Factors. Food Additives & Contaminants: Part B. 2017, 10(2), 128–136. DOI: 10.1080/19393210.2017.1282545.
  • Amirkhizi, B.; Nemati, M.; Arefhosseini, S. R.; Shahraki, S. H. Application of the Ultrasonic-Assisted Extraction and Dispersive Liquid–Liquid Microextraction for the Analysis of AFB1 in Egg. Food Anal. Methods. 2017, 11(3), 913–920. DOI: 10.1007/S12161-017-1052-6.
  • Hamed, A. M.; Moreno-González, D.; García-Campaña, A. M.; Gámiz-Gracia, L. Determination of Aflatoxins in Yogurt by Dispersive Liquid–Liquid Microextraction and HPLC with Photo-Induced Fluorescence Detection. Food Anal. Methods. 2017, 10(2), 516–521. DOI: 10.1007/s12161-016-0611-6.
  • Zhang, R.; Tan, Z. C.; Huang, K. C.; Wen, Y.; Li, X. Y.; Zhao, J. L.; Liu, C. L. A Vortex-Assisted Dispersive Liquid-Liquid Microextraction Followed by UPLC-MS/MS for Simultaneous Determination of Pesticides and Aflatoxins in Herbal Tea. Molecules. 2019, 24(6). DOI: 10.3390/molecules24061029.
  • Hidalgo-Ruiz, J. L.; Romero-González, R.; Martínez Vidal, J. L.; Garrido Frenich, A.; Rapid, A. Method for the Determination of Mycotoxins in Edible Vegetable Oils by Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. Food Chem. 2019, 288, 22–28. DOI: 10.1016/j.foodchem.2019.03.003.
  • Wang, N.; Duan, C.; Geng, X.; Li, S.; Ding, K.; Guan, Y. One Step Rapid Dispersive Liquid-Liquid Micro-Extraction with in-Situ Derivatization for Determination of Aflatoxins in Vegetable Oils Based on High Performance Liquid Chromatography Fluorescence Detection. Food Chem. 2019, 287, 333–337. DOI: 10.1016/j.foodchem.2019.02.099.
  • Simão, V.; Merib, J.; Dias, A. N.; Carasek, E. Novel Analytical Procedure Using a Combination of Hollow Fiber Supported Liquid Membrane and Dispersive Liquid-Liquid Microextraction for the Determination of Aflatoxins in Soybean Juice by High Performance Liquid Chromatography - Fluorescence Detector. Food Chem. 2016, 196, 292–300. DOI: 10.1016/j.foodchem.2015.09.018.
  • Hamed, A. M.; Abdel-Hamid, M.; Gámiz-Gracia, L.; García-Campaña, A. M.; Arroyo-Manzanares, N. Determination of Aflatoxins in Plant-Based Milk and Dairy Products by Dispersive Liquid–Liquid Microextraction and High-Performance Liquid Chromatography with Fluorescence Detection. Anal. Lett. 2019, 52(2), 363–372. DOI: 10.1080/00032719.2018.1467434.
  • Pleadin, J.; Staver, M. M.; Vahčić, N.; Kovačević, D.; Milone, S.; Saftić, L.; Scortichini, G. Survey of Aflatoxin B1 and Ochratoxin A Occurrence in Traditional Meat Products Coming from Croatian Households and Markets. Food Control. 2015, 52, 71–77. DOI: 10.1016/j.foodcont.2014.12.027.
  • Khazaeli, P.; Mehrabani, M.; Heidari, M. R.; Asadikaram, G.; Lari Najafi, M. Prevalence of Aflatoxin Contamination in Herbs and Spices in Different Regions of Iran. Iran. J. Public Health. 2017, 46(11), 1540–1545.
  • Alsharif, A. M. A.; Choo, Y. M.; Tan, G. H.; Abdulra’uf, L. B. Determination of Mycotoxins Using Hollow Fiber Dispersive Liquid–Liquid–Microextraction (HF-DLLME) Prior to High-Performance Liquid Chromatography–Tandem Mass Spectrometry (HPLC - MS/MS). Anal. Lett. 2019, 52(12), 1976–1990. DOI: 10.1080/00032719.2019.1587766.
  • Güray, T.; Yılmaz Tuncel, N.; Tunçel, M.; Uysal, U. D. Validated Micellar Electrokinetic Capillary Chromatography (MECC) Method for Determination of 5-Hydroxymethylfurfural in Honey and Comparison with HPLC. Chem. Pap. 2019, 73(9), 2209–2220. DOI: 10.1007/s11696-019-00770-5.
  • Ruiz-Capillas, C.; Herrero, A. Impact of Biogenic Amines on Food Quality and Safety. Foods. 2019, 8(2), 62. DOI: 10.3390/foods8020062.
  • Biji, K. B.; Ravishankar, C. N.; Venkateswarlu, R.; Mohan, C. O.; Gopal, T. K. S. Biogenic Amines in Seafood: A Review. J.Food Sci Technol. Springer India May 1. 2016, 53 (5), 2210–2218. DOI:10.1007/s13197-016-2224-x.
  • Doeun, D.; Davaatseren, M.; Chung, M. S. Biogenic Amines in Foods. Food Sci. Biotechnol. The Korean Society of Food Science and Technology December 1. 2017, 26 (6), 1463–1474. DOI:10.1007/s10068-017-0239-3.
  • Singh, L.; Varshney, J. G.; Agarwal, T. Polycyclic Aromatic Hydrocarbons’ Formation and Occurrence in Processed Food. Food Chem. Elsevier Ltd May 15. 2016, 199, 768–781. DOI: 10.1016/j.foodchem.2015.12.074.
  • Lawal, A. T.;. Polycyclic Aromatic Hydrocarbons. A Review. Cogent Environ. Sci. 2017, 3(1), 537–567. DOI: 10.1080/23311843.2017.1339841.
  • Amirdivani, S.; Khorshidian, N.; Ghobadi Dana, M.; Mohammadi, R.; Mortazavian, A. M.; Quiterio De Souza, S. L.; Barbosa Rocha, H.; Raices, R. Polycyclic Aromatic Hydrocarbons in Milk and Dairy Products. Int. J. Dairy Technol. 2019, 72(1), 120–131. DOI: 10.1111/1471-0307.12567.
  • Khezerlou, A.; Alizadeh-Sani, M.; Firouzsalari, N. Z.; Ehsani, A. Formation, Properties, and Reduction Methods of Acrylamide in Foods: A Review Study. J. Nutr. Fasting Heal. 2018, 6 (1), 52–59. DOI:10.22038/JNFH.2018.34179.1133.
  • Mollakhalili-Meybodi, N.; Khorshidian, N.; Nematollahi, A.; Arab, M. Acrylamide in Bread: A Review on Formation, Health Risk Assessment, and Determination by Analytical Techniques. Environ. Sci. Pollut. Res. 2021, 1–19. DOI: 10.1007/s11356-021-12775-3.
  • Tardiff, R. G.; Gargas, M. L.; Kirman, C. R.; Leigh Carson, M.; Sweeney, L. M. Estimation of Safe Dietary Intake Levels of Acrylamide for Humans. Food Chem. Toxicol. 2010, 48(2), 658–667. DOI: 10.1016/j.fct.2009.11.048.
  • Almeida, S.; Raposo, A.; Almeida-González, M.; Carrascosa, C. Bisphenol A: Food Exposure and Impact on Human Health. Compr. Rev. Food Sci. Food Saf. 2018, 17(6), 1503–1517. DOI: 10.1111/1541-4337.12388.
  • Konieczna, A.; Rutkowska, A.; Szczepańska, N.; Namiesnik, J.; Rachoń, D. Canned Food as a Source of Bisphenol a (BPA) Exposure – Estimation of Consumption among Young Women from Gdańsk, Poland. undefined, 2018. 10.19243/2018104.
  • Cantwell, M.; Elliott, C. Nitrates, Nitrites and Nitrosamines from Processed Meat Intake and ColorectalCancer Risk. J. Clin. Nutr. Diet.2017, 3 (4). doi:10.4172/2472-1921.100062.
  • Lee, H. S. Literature Compilation of Volatile N-nitrosamines in Processed Meat and Poultry Products - an Update. Food Additives & Contaminants: Part A. 2019, 36(10), 1491–1500. DOI: 10.1080/19440049.2019.1649472.
  • Herrmann, S. S.; Duedahl-Olesen, L.; Christensen, T.; Olesen, P. T.; Granby, K. Dietary Exposure to Volatile and Non-Volatile N-Nitrosamines from Processed Meat Products in Denmark. Food Chem. Toxicol. 2015, 80, 137–143. DOI: 10.1016/j.fct.2015.03.008.
  • Somsubsin, S.; Seebunrueng, K.; Boonchiangma, S.; Srijaranai, S. A Simple Solvent Based Microextraction for High Performance Liquid Chromatographic Analysis of Aflatoxins in Rice Samples. Talanta. 2018, 176, 172–177. DOI: 10.1016/j.talanta.2017.08.028.
  • Iqbal, S. Z.; Jinap, S.; Pirouz, A. A.; Ahmad Faizal, A. R. Aflatoxin M1 in Milk and Dairy Products, Occurrence and Recent Challenges: A Review. Trends in Food Science and Technology. Elsevier Ltd November 1, 2015, pp 110–119. 10.1016/j.tifs.2015.08.005.
  • Amoli-Diva, M.; Taherimaslak, Z.; Allahyari, M.; Pourghazi, K.; Manafi, M. H. Application of Dispersive Liquid-Liquid Microextraction Coupled with Vortex-Assisted Hydrophobic Magnetic Nanoparticles Based Solid-Phase Extraction for Determination of Aflatoxin M1 in Milk Samples by Sensitive Micelle Enhanced Spectrofluorimetry. Talanta. 2015, 134, 98–104. DOI: 10.1016/j.talanta.2014.11.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.