497
Views
4
CrossRef citations to date
0
Altmetric
Review

A Review on Mechanistic Overview on the Formation of Toxic Substances during the Traditional Fermented Food Processing

, , , , , , , , , , & show all

References

  • Zang, J.; Xu, Y.; Xia, W.; Regenstein, J. M. Quality, Functionality, and Microbiology of Fermented Fish: A Review. Crit. Rev. Food Sci. Nutr. 2020, 60(7), 1228–1242. DOI: 10.1080/10408398.2019.1565491.
  • Čakar, U.; Grozdanić, N.; Pejin, B.; Vasić, V.; Čakar, M.; Petrović, A.; Djordjević, B. Impact of Vinification Procedure on Fruit Wine Inhibitory Activity against α-glucosidase. Food Biosci. 2018, 25, 1–7. DOI: 10.1016/j.fbio.2018.06.00.
  • Lu, T.; Shi, W. Current Situation Analysis and Development Strategy of Biological Fermentation Industry in China. Biotechnology&Business. 2019, 70, 6–9.
  • Shabbir, M. A.; Raza, A.; Anjum, F. M.; Khan, M. R.; Suleria, H. A. R. Effect of Thermal Treatment on Meat Proteins with Special Reference to Heterocyclic Aromatic Amines (Haas). Crit. Rev. Food Sci. Nutr. 2015, 55(1), 82–93. DOI: 10.1080/10408398.2011.647122.
  • Van Hylckama Vlieg, J. E.; Veiga, P.; Zhang, C.; Derrien, M.; Zhao, L. Impact of Microbial Transformation of Food on Health—from Fermented Foods to Fermentation in the Gastro-intestinal Tract. Curr. Opin. Biotechnol. 2011, 22(2), 211–219. DOI: 10.1016/j.copbio.2010.12.004.
  • Komprda, T.; Sládková, P.; Dohnal, V. Biogenic Amine Content in Dry Fermented Sausages as Influenced by a Producer, Spice Mix, Starter Culture, Sausage Diameter and Time of Ripening. Meat Sci. 2009, 83(3), 534–542. DOI: 10.1016/j.meatsci.2009.07.002.
  • Ladero, V.; Linares, D. M.; Pérez, M.; del Rio, B.; Fernández, M.; Alvarez, M. A. Biogenic Amines in Dairy Products. Crit. Rev. Food Sci. Nutr. 2011, 51(7), 691–703. DOI: 10.1002/9781118823095.ch4.
  • Lu, S.; Wu, D.; Li, G.; Lv, Z.; Gong, P.; Xia, L.; Sun, Z.; Chen, G.; Chen, X.; You, J. Facile and Sensitive Determination of N-nitrosamines in Food Samples by High-performance Liquid Chromatography via Combining Fluorescent Labeling with Dispersive Liquid-liquid Microextraction. Food Chem. 2017, 234, 408–415. DOI: 10.1016/j.foodchem.2017.05.032.
  • Yurchenko, S.; Mölder, U. Volatile N-nitrosamines in Various Fish Products. Food Chem. 2006, 96(2), 325–333. DOI: 10.1016/j.foodchem.2005.04.009.
  • Zhu, Y.; Wang, P.P.; Zhao, J.; Green, R.; Sun, Z.; Roebothan, B.; Squires, J.; Buehler, S.; Dicks, E.; Zhao, J.; et al. Dietary N -nitroso Compounds and Risk of Colorectal Cancer: A Case–control Study in Newfoundland and Labrador and Ontario, Canada. Br. J. Nutr. 2014, 111(6), 1109–1117. DOI: 10.1017/s0007114513003462.
  • Song, P.; Wu, L.; Guan, W. Dietary Nitrates, Nitrites, and Nitrosamines Intake and the Risk of Gastric Cancer: A Meta-analysis. Nutrients. 2015, 7(12), 9872–9895. DOI: 10.3390/nu7125505.
  • Keszei, A. P.; Goldbohm, R. A.; Schouten, L. J.; Jakszyn, P.; van den Brandt, P. A. Dietary N-nitroso Compounds, Endogenous Nitrosation, and the Risk of Esophageal and Gastric Cancer Subtypes in the Netherlands Cohort Study. Am. J. Clin. Nutr. 2013, 97(1), 135–146. DOI: 10.3945/ajcn.112.043885.
  • Gowd, V.; Su, H.; Karlovsky, P.; Chen, W.Ethyl Carbamate: An Emerging Food and Environmental Toxicant. Food Chem. 2018, 248, 312–321. DOI: 10.1016/j.foodchem.2017.12.072.
  • Cerreti, M.; Fidaleo, M.; Benucci, I.; Liburdi, K.; Tamborra, P.; Moresi, M.; et al. Assessing the Potential Content of Ethyl Carbamate in White, Red, and Rosé Wines as a Key Factor for Pursuing Urea Degradation by Purified Acid Urease. J. Food Sci. 2016, 81(7), C1603–C1612.
  • Sakano, K.; Oikawa, S.; Hiraku, Y.; Kawanishi, S. Metabolism of Carcinogenic Urethane to Nitric Oxide Is Involved in Oxidative DNA Damage. Free Radical Biol. Med. 2002, 33(5), 703–714.
  • Baan, R.; Straif, K.; Grosse, Y.; Secretan, B.; El Ghissassi, F.; Bouvard, V.; Altieri, A.; Cogliano, V. Carcinogenicity of Alcoholic Beverages. Lancet Oncology. 2007, 8(4), 292–293. DOI: 10.1016/S1470-2045(07)70099-2
  • Tekkeli, S. E. K.; Önal, C.; Önal, A. A Review of Current Methods for the Determination of Acrylamide in Food Products. Food Anal. Methods. 2012, 5(1), 29–39.
  • Jozinović, A.; Ačkar, Đ.; Babić, J.; Miličević, B.; Panak, J.; Šarkanj, B.; Šubarić, D. Drago in Development of LC-MS/MS Method for Determination of Acrylamide and 5-hydroxymethylfurfural in Extruded Products. International Congress “flour–Bread” 15 & Croatian Congress of Cereal Technologists “brašno-kru” 15. 2015.
  • Mo, W.; He, H.; Xu, X.; Huang, B.; Ren, Y. Simultaneous Determination of Ethyl Carbamate, Chloropropanols and Acrylamide in Fermented Products, Flavoring and Related Foods by Gas Chromatography–triple Quadrupole Mass Spectrometry. Food Control 2014, 43, 251–257. DOI: 10.1016/j.foodcont.2014.03.033.
  • Jayakody, L. N.; Lane, S.; Kim, H.; Jin, Y.-S. Mitigating Health Risks Associated with Alcoholic Beverages through Metabolic Engineering. Curr. Opin. Biotechnol. 2016, 37, 173–181. DOI: 10.1016/j.copbio.2015.12.001.
  • Awad, M.; Abdel-Rahman, M.; Hassan, S. Acrylamide Toxicity in Isolated Rat Hepatocytes. Toxicol. In Vitro. 1998, 12(6), 699–704.
  • Alturfan, A. A.; Tozan-Beceren, A.; Şehirli, A. Ö.;, et al. Resveratrol Ameliorates Oxidative DNA Damage and Protects against Acrylamide-induced Oxidative Stress in Rats. Mol. Biol. Rep. 2012, 39(4), 4589–4596.
  • Hu, H.; Kan, H.; Kearney, G. D.; Xu, X. Associations between Exposure to Polycyclic Aromatic Hydrocarbons and Glucose Homeostasis as Well as Metabolic Syndrome in Nondiabetic Adults. Sci. Total Environ. 2015, 505, 56–64. DOI: 10.1016/j.scitotenv.2014.09.085.
  • Xia, Z.; Duan, X.; Tao, S.; Qiu, W.; Liu, D.; Wang, Y.; Wei, S.; Wang, B.; Jiang, Q.; Lu, B.; et al. Pollution Level, Inhalation Exposure and Lung Cancer Risk of Ambient Atmospheric Polycyclic Aromatic Hydrocarbons (Pahs) in Taiyuan, China. Environ. Pollut. 2013, 173, 150–156. DOI: 10.1016/j.envpol.2012.10.009.
  • Gibis, M.Heterocyclic Aromatic Amines in Cooked Meat Products: Causes, Formation, Occurrence, and Risk Assessment. Compr. Rev. Food Sci. Food Saf. 2016, 15, 269–302.
  • Alaejos, M. S.; Ayala, J.; González, V.; Afonso, A. M. Analytical Methods Applied to the Determination of Heterocyclic Aromatic Amines in Foods. J. Chromatogr. B.2008, 862(1–2), 15–42. DOI: 10.1016/j.jchromb.2007.11.040.
  • Canales, R.; Guiñez, M.; Bazán, C.; Reta, M.; Cerutti, S.Determining Heterocyclic Aromatic Amines in Aqueous Samples: A Novel Dispersive Liquid-liquid Micro-extraction Method Based on Solidification of Floating Organic Drop and Ultrasound Assisted Back Extraction Followed by UPLC-MS/MS. Talanta 2017, 174, 548–555. DOI: 10.1016/j.talanta.2017.06.065.
  • Muckel, E.; Frandsen, H.; Glatt, H. Heterologous Expression of Human N-acetyltransferases 1 and 2 and Sulfotransferase 1A1 in Salmonella Typhimurium for Mutagenicity Testing of Heterocyclic Amines. Food Chem. Toxicol. 2002, 40(8), 1063–1068.
  • Oz, F.; Kaya, M. Heterocyclic Aromatic Amines in Meat. J. Food Process. Preserv. 2011, 35(6), 739–753.
  • Santos, M. S. Biogenic Amines: Their Importance in Foods. Int. J. Food Microbiol. 1996, 29(2–3), 213–231. DOI: 10.1016/0168-1605(95)00032-1.
  • Sciancalepore, A. G.; Mele, E.; Arcadio, V.; Reddavide, F.; Grieco, F.; Spano, G.; Lucas, P.; Mita, G.; Pisignano, D.Microdroplet-based Multiplex PCR on Chip to Detect Foodborne Bacteria Producing Biogenic Amines. Food Microbiol. 2013, 35(1), 10–14. DOI: 10.1016/j.fm.2013.02.010.
  • Liu, F.; Xu, W.; Du, L.; Wang, D.; Zhu, Y.; Geng, Z.; Zhang, M.; Xu, W. Heterologous Expression and Characterization of Tyrosine Decarboxylase from Enterococcus Faecalis R612Z1 and Enterococcus Faecium R615Z1. J. Food Prot. 2014, 77(4), 592–598.
  • Bartkiene, E.; Zavistanaviciute, P.; Lele, V.; Ruzauskas, M.; Bartkevics, V.; Bernatoniene, J.; Gallo, P.; Tenore, G. C.; Santini, A.Lactobacillus Plantarum LUHS135 and Paracasei LUHS244 as Functional Starter Cultures for the Food Fermentation Industry: Characterisation, Mycotoxin-reducing Properties, Optimisation of Biomass Growth and Sustainable Encapsulation by Using Dairy By-products. LWT. 2018, 93, 649–658. DOI: 10.1016/j.lwt.2018.04.017.
  • Bartkiene, E.; Lele, V.; Starkute, V.; Zavistanaviciute, P. ; Zokaityte, E.; Varinauskaite, I.; Pileckaite, G.; Paskeviciute, L.; Rutkauskaite, G.; Kanaporis, T.; et al. Plants and Lactic Acid Bacteria Combination for New Antimicrobial and Antioxidant Properties Product Development in a Sustainable Manner. Foods. 2020, 9(4), 433. DOI: 10.3390/foods9040433.
  • Bartkiene, E.; Bartkevics, V.; Mozuriene, E.;Krungleviciute, V.; Novoslavskij, A.; Santini, A.; Rozentale, I.; Juodeikiene, G.; Cizeikiene, D.The Impact of Lactic Acid Bacteria with Antimicrobial Properties on Biodegradation of Polycyclic Aromatic Hydrocarbons and Biogenic Amines in Cold Smoked Pork Sausages. Food Control. 2017, 71, 285–292. DOI: 10.1016/j.foodcont.2016.07.010.
  • Danilović, B.; Joković, N.; Petrović, L.; Veljović, K.; Tolinački, M.; Savić, D. The Characterisation of Lactic Acid Bacteria during the Fermentation of an Artisan Serbian Sausage (Petrovská Klobása). Meat Sci. 2011, 88(4), 668–674. DOI: 10.1016/j.meatsci.2011.02.026.
  • Dapkevicius, M. L. E.; Nout, M. R.; Rombouts, F. M.;Houben, J. H.; Wymenga, W.Biogenic Amine Formation and Degradation by Potential Fish Silage Starter Microorganisms. Int. J. Food Microbiol. 2000, 57(1–2), 107–114.
  • Masson, F.; Talon, R.; Montel, M.-C. Histamine and Tyramine Production by Bacteria from Meat Products. Int. J. Food Microbiol. 1996, 32(1–2), 199–207.
  • Lorenzo, J. M.; Cachaldora, A.; Fonseca, S.;, et al. Production of Biogenic Amines “In Vitro” in Relation to the Growth Phase by Enterobacteriaceae Species Isolated from Traditional Sausages. Meat Sci. 2010, 86(3), 684–691.
  • Zaman, M. Z. Isolation of Staphylococcus Carnosus and Bacillus Amyloliquefaciens as Potential Biogenic Amine Degraders in Fish Sauce. Serdang: Universiti Putra Malaysia
  • Roseiro, L.; Gomes, A.; Gonçalves, H.;Sol, M.; Cercas, R.; Santos, C.  Effect of Processing on Proteolysis and Biogenic Amines Formation in a Portuguese Traditional Dry-fermented Ripened Sausage “Chouriço Grosso De Estremoz E Borba PGI”. Meat Sci. 2010, 84(1), 172–179.
  • Zhong, J.; Ye, X.; Fang, Z.; Xie, G.; Liao, N.; Shu, J.; Liu, D.Determination of Biogenic Amines in Semi-dry and Semi-sweet Chinese Rice Wines from the Shaoxing Region. Food Control.2012, 28(1), 151–156. DOI: 10.1016/j.foodcont.2012.05.011.
  • Bjornsdottir, K.; Bolton, G. E.; McClellan-Green, P. D.; et al. Detection of Gram-negative Histamine-producing Bacteria in Fish: A Comparative Study. J. Food Prot. 2009, 72(9), 1987–1991.
  • Landete, J. M.; de las Rivas, B.; Marcobal, A.; Muñoz, R. Molecular Methods for the Detection of Biogenic Amine-producing Bacteria on Foods. Int. J. Food Microbiol. 2007, 117(3), 258–269. DOI: 10.1016/j.ijfoodmicro.2007.05.001.
  • Satomi, M.; Furushita, M.; Oikawa, H.; Yoshikawa-Takahashi, M.; Yano, Y. Analysis of a 30 Kbp Plasmid Encoding Histidine Decarboxylase Gene in Tetragenococcus Halophilus Isolated from Fish Sauce. Int. J. Food Microbiol. 2008, 126(1–2), 202–209. DOI: 10.1016/j.ijfoodmicro.2008.05.025.
  • Calles-Enríquez, M.; Eriksen, B. H.; Andersen, P. S.;, et al. Sequencing and Transcriptional Analysis of the Streptococcus Thermophilus Histamine Biosynthesis Gene Cluster: Factors that Affect Differential hdcA Expression. Appl. Environ. Microbiol. 2010, 76(18), 6231–6238.
  • Granvogl, M.; Schieberle, P. Thermally Generated 3-aminopropionamide as a Transient Intermediate in the Formation of Acrylamide. J. Agric. Food Chem. 2006, 54(16), 5933–5938. DOI: 10.1021/jf061150.
  • Hidalgo, F. J.; Navarro, J. L.; Delgado, R. M.; Zamora, R. Histamine Formation by Lipid Oxidation Products. Food Res. Int. 2013, 52(1), 206–213. DOI: 10.1016/j.foodres.2013.03.031.
  • Lundberg, J. O.; Weitzberg, E. Biology of Nitrogen Oxides in the Gastrointestinal Tract. Gut. 2013, 62(4), 616–629.
  • Krul, C. A.; Zeilmaker, M. J.; Schothorst, R. C.; Havenaar, R. Intragastric Formation and Modulation of N-nitrosodimethylamine in a Dynamic in Vitro Gastrointestinal Model under Human Physiological Conditions. Food Chem. Toxicol. 2004, 42(1), 51–63. DOI: 10.1016/j.fct.2003.08.005.
  • Li, L.; Wang, P.; Xu, X.;, et al. Influence of Various Cooking Methods on the Concentrations of Volatile N‐nitrosamines and Biogenic Amines in Dry‐cured Sausages. J. Food Sci. 2012, 77(5), C560–C565
  • Alahakoon, A. U.; Jayasena, D. D.; Ramachandra, S.; Jo, C. Alternatives to Nitrite in Processed Meat: Up to Date. Trends Food Sci. Technol. 2015, 45(1), 37–49. DOI: 10.1016/j.tifs.2015.05.008.
  • Sannino, A.; Bolzoni, L. GC/CI–MS/MS Method for the Identification and Quantification of Volatile N-nitrosamines in Meat Products. Food Chem. 2020, 60(4), 3925–3930. DOI: 10.1016/j.foodchem.2013.06.070.
  • Zhang, J.; Fang, F.; Chen, J.; et al. The Arginine Deiminase Pathway of Koji Bacteria Is Involved in Ethyl Carbamate Precursor Production in Soy Sauce. FEMS Microbiol. Lett. 2014, 358(1), 91–97.
  • Weber, J. V.; Sharypov, V. I. Ethyl Carbamate in Foods and Beverages: A Review. Environ. Chem. Lett. 2008, 7(3), 233–247. DOI: 10.1007/s10311-008-0168-8.
  • Vujovic, D.; Pejin, B.; Popovic Djordjevic, J.; Velickovic, M.; Tesevic, V. Phenolic Natural Products of the Wines Obtained from Three New Merlot Clone Candidates. Nat. Prod. Res. 2015, 30(8), 987–990. DOI: 10.1080/14786419.2015.1079191.
  • Francis, P. S.; Lewis, S. W.; Lim, K. F. Analytical Methodology for the Determination of Urea: Current Practice and Future Trends. TrAC Trends Anal. Chem. 2002, 21(5), 389–400.
  • Tate, J. J.; Georis, I.; Dubois, E.;Cooper, T. G. Distinct Phosphatase Requirements and GATA Factor Responses to Nitrogen Catabolite Repression and Rapamycin Treatment in Saccharomyces Cerevisiae. J. Biol. Chem. 2010, 285(23), 17880–17895. DOI: 10.1074/jbc.m109.085712.
  • Azevedo, Z.; Couto, J.; Hogg, T. Citrulline as the Main Precursor of Ethyl Carbamate in Model Fortified Wines Inoculated with Lactobacillus Hilgardii: A Marker of the Levels in a Spoiled Fortified Wine. Lett Appl. Microbiol. 2002, 34(1), 32–36.
  • Romero, S. V.; Reguant, C.; Bordons, A.;, et al. Potential Formation of Ethyl Carbamate in Simulated Wine Inoculated with Oenococcus Oeni and Lactobacillus Plantarum. Int. J. Food Sci. Technol. 2009, 44(6), 1206–1213.
  • Ough, C. S. Ethyl Carbamate in Fermented Beverages and Foods. I. Naturally occurring ethylcarbamate. J. Agricul Food Chem. 1976, 242, 323–328. DOI:10.1021/jf60204a033.
  • Adams, C.; van Vuuren, H. J. Effect of Timing of Diammonium Phosphate Addition to Fermenting Grape Must on the Production of Ethyl Carbamate in Wine. Am. J. Enol. Vitic. 2010, 61, 125–129.
  • Polychroniadou, E.; et al. Grape and Apple Wines Volatile Fermentation Products and Possible Relation to Spoilage. Bioresour. Technol. 2003, 87(3), 337–339.
  • Bruno, S. N. F.; Vaitsman, D. S.; Kunigami, C. N.; BRASIL, M. Influence of the Distillation Processes from Rio De Janeiro in the Ethyl Carbamate Formation in Brazilian Sugar Cane Spirits. Food Chem. 2007, 104(4), 1345–1352. DOI: 10.1016/j.foodchem.2007.01.048.
  • Olafsdottir, E. S.; Jørgensen, L. B.; Jaroszewski, J. W.; Jørgensen, L. B.; Jaroszewski, J. W.; Jaroszewski, J. W. Cyanogenesis in Glucosinolate-producing Plants: Carica Papaya and Carica Quercifolia. Phytochemistry. 2002, 60(3), 269–273.
  • Riachi, L.; Santos, A.; Moreira, R.; De Maria, C. A Review of Ethyl Carbamate and Polycyclic Aromatic Hydrocarbon Contamination Risk in Cachaça and Other Brazilian Sugarcane Spirits. Food Chem. 2014, 149, 159–169. DOI: 10.1016/j.foodchem.2013.10.088.
  • Singla, R. K.; Dubey, A. K.; Ameen, S. M.;Montalto, S.; Parisi, S. The Analytical Evaluation of Acrylamide in Foods as a Maillard Reaction Product. in Analytical Methods for the Assessment of Maillard Reactions in Foods; Springer International Publishing: New York; 2018, pp. 37–45.
  • Zyzak, D. V.; Stojanovic, M. Method for Reducing Acrylamide in Foods, Foods Having Reduced Levels of Acrylamide, and Article of Commerce; United States, 2009. Google Patents. US7524519B2.
  • Keramat, J.; LeBail, A.; Prost, C.; et al.Acrylamide in Foods: Chemistry and Analysis. A review. Food Bioproc. Technol. 2011, 4(3), 340–363
  • Iriondo-DeHond, A.; Elizondo, A. S.; Iriondo-DeHond, M.;Ríos, M. B.; Mufari, R.; Mendiola, J. A.; Ibañez, E.; Castillo, M. D. E.  Assessment of Healthy and Harmful Maillard Reaction Products in a Novel Coffee Cascara Beverage: Melanoidins and Acrylamide. Foods. 2020, 9(5), 620. DOI: 10.3390/foods9050620.
  • Visvanathan, K. T.;. Acrylamide in Food Products: A Review. J. Food Process. Technol. 2014, 5(07), 344.
  • Yaylayan, V. A.; Wnorowski, A.; Perez Locas, C. Why Asparagine Needs Carbohydrates to Generate Acrylamide. J. Agric. Food Chem. 2003, 51(6), 1753–1757. DOI: 10.1021/jf0261506.
  • Teng, J.; Hu, X.; Tao, N.;; et al. 2018. Impact and Inhibitory Mechanism of Phenolic Compounds on the Formation of Toxic Maillard Reaction Products in Food. Front. Agricul. Sci. Eng. 5(3)
  • Maan, A. A.; Anjum, M. A.; Khan, M. K. I.; Nazir, A.; Saeed, F.; Aadil, R. M. Acrylamide Formation and Different Mitigation Strategies during Food Processing–A Review. Food Rev. Int. 2020, 1–18. DOI: 10.1080/87559129.2020.1719505.
  • Ehling, S.; Hengel, M.; Shibamoto, T. Formation of acrylamide from lipids, in Chemistry and safety of acrylamide in food; Springer: Boston, MA, 2015; p. 223-233. https://doi.org/10.1007/0-387-24980-X_17.
  • Vattem, D. A.; Shetty, K. Acrylamide in Food: A Model for Mechanism of Formation and Its Reduction. Innovative Food Sci. Emerg. Technol. 2003, 4(3), 331–338.
  • Knol, J. J.; Linssen, J. P.; van Boekel, M. A. Unravelling the Kinetics of the Formation of Acrylamide in the Maillard Reaction of Fructose and Asparagine by Multiresponse Modelling. Food Chem. 2010, 120(4), 1047–1057. DOI: 10.1016/j.foodchem.2009.11.049.
  • Chen, B. H.; Chen, Y. C. Formation of Polycyclic Aromatic Hydrocarbons in the Smoke from Heated Model Lipids and Food Lipids. J. Agric. Food Chem. 2001, 49(11), 5238–5243. DOI: 10.1021/jf0106906.
  • Farhadian, A.; Jinap, S.; Abas, F.; Sakar, Z. I. Determination of Polycyclic Aromatic Hydrocarbons in Grilled Meat. Food Control.2010, 21(5), 606–610. DOI: 10.1016/j.foodcont.2009.09.002.
  • Stumpe-Vīksna, I.; Bartkevičs, V.; Kukāre, A.;Morozovs, A. Polycyclic Aromatic Hydrocarbons in Meat Smoked with Different Types of Wood. Food Chem. 2008, 110(3), 794–797. DOI: 10.1016/j.foodchem.2008.03.004.
  • Tanaka, N.; Ohtake, K.; Tsuzaki, M.; Miyazaki, A. Analysis of Polycyclic Aromatic Hydrocarbons in Oil-mist Emitted from Food Grilling. Bunseki Kagaku. 2012, 61(2), 77–86. DOI: 10.2116/bunsekikagaku.61.77.
  • Britt, P. F.; Buchanan, A.; Owens, C. V. Jr, Et Al. Fuel 2004, 83, 1417–1432. DOI: 10.1016/j.fuel.2004.02.009.
  • Saito, E.; Tanaka, N.; Miyazaki, A.; Tsuzaki, M. Concentration and Particle Size Distribution of Polycyclic Aromatic Hydrocarbons Formed by Thermal Cooking. Food Chem. 2014, 153, 285–291. DOI: 10.1016/j.foodchem.2013.12.055.
  • Murkovic, M. Formation of Heterocyclic Aromatic Amines in Model Systems. J. Chromatogr. B. 2004, 802(1), 3–10. DOI: 10.1016/j.jchromb.2003.09.026.
  • Koutros, S.; Cross, A. J.; Sandler, D. P.; Hoppin, J. A.; Ma, X.; Zheng, T.; Alavanja, M. C. R.; Sinha, R.;, et al. Meat and Meat Mutagens and Risk of Prostate Cancer in the Agricultural Health Study. Cancer Epidemiology Biomarkers & Prevention.2008, 17(1), 80–87.
  • Turesky, R. J.; Le Marchand, L. Metabolism and Biomarkers of Heterocyclic Aromatic Amines in Molecular Epidemiology Studies: Lessons Learned from Aromatic Amines. Chem. Res. Toxicol. 2011, 24, 1169–1214. DOI: 10.1021/tx200135s.
  • Khan, M. R.; Naushad, M.; Alothman, Z. A.; Algamdi, M. S.; Alsohaimi, I. H.; Ghfar, A. A. Effect of Natural Food Condiments on Carcinogenic/mutagenic Heterocyclic Amines Formation in Thermally Processed Camel Meat. J. Food Process. Preserv. 2017, 41(1), e12819. DOI: 10.1111/jfpp.12819.
  • Rönner, B.; Lerche, H.; Bergmüller, W.; Freilinger, C.; Severin, T.; Pischetsrieder, M. Formation of Tetrahydro-β-carbolines and β-Carbolines during the Reaction of l -tryptophan with d-Glucose. J. Agric. Food Chem. 2000, 48(6), 2111–2116. DOI: 10.1021/jf991237l.
  • Raatikainen, M.; Kronlöf, E.; Salovaara, H.; Koivisto, P. Acrylamide in Rye bread–A Risk in Finnish Diet?.Toxicology Letters. 2015, 238(2), S68.
  • Crews, C. Processing Contaminants: N-nitrosamines. Encyclopedia of Food Safety; Yasmine Motarjemi. 2014; pp. 409-415. ISBN 9780123786135. https://doi.org/10.1016/B978-0-12-378612-8.00217-1
  • Adımcılar, V.; Öztekin, N.; Erim, F. B. A Direct and Sensitive Analysis Method for Biogenic Amines in Dairy Products by Capillary Electrophoresis Coupled with Contactless Conductivity Detection. Food Anal. Methods. 2018, 11(5), 1374–1379.
  • Ščavničar, A.; Rogelj, I.; Kočar, D.; Kse, S.; Pompe, M. Determination of Biogenic Amines in Cheese by Ion Chromatography with Tandem Mass Spectrometry Detection. J. AOAC Int. 2018, 101(5), 1542–1547.
  • Shukla, S.; Park, H. K.; Lee, J. S.; Kim, J. K.; Kim, M. Reduction of Biogenic Amines and Aflatoxins in Doenjang Samples Fermented with Various Meju as Starter Cultures. Food Control. 2014, 42, 181-187. DOI:10.1016/j.foodcont.2014.02.006.
  • Biji, K.; Ravishankar, C.; Venkateswarlu, R.;, et al. Biogenic Amines in Seafood: A Review. J. Food Sci. Technol. 2016, 53(5), 2210–2218.
  • Zhao, X.; Du, G.; Zou, H.; Fu, J.; Zhou, J.; Chen, J. Progress in Preventing the Accumulation of Ethyl Carbamate in Alcoholic Beverages. Trends Food Sci. Technol. 2013, 32(2), 97–107. DOI: 10.1016/j.tifs.2013.05.009.
  • Sun, X.; Zhou, K.; Gong, Y.;, et al. Determination of Biogenic Amines in Sichuan-style Spontaneously Fermented Sausages. Food Anal. Methods.2016, 9(8), 2299–2307.
  • Vale, S. R.; Glória, M. B. A. Determination of Biogenic Amines in Cheese. J. AOAC Int. 1997, 80(5), 1006–1012. DOI: 10.1093/jaoac/80.5.1006.
  • Lu, Y.; Chen, X.; Jiang, M.; Lv, X.; Nurgul, R.; Dong, M.; Yan, G. Biogenic Amines in Chinese Soy Sauce. Food Control. 2009, 20(6), 593–597. DOI: 10.1016/j.foodcont.2008.08.020.
  • Kikuchi, H.; Tsutsumi, T.; Matsuda, R. Performance Evaluation of a Fluorescamine-hplc Method for Determination of Histamine in Fish and Fish Products. J Food Hygienic Safety Sci.Soc. Japan. 2012, 53(2), 121–127. DOI:10.3358/shokueishi.53.121.
  • Mey, E. D.; Klerck, K. D.; Maere, H. D.; Dewulf, L.; Derdelinckx, G.; Peeters, M.; Fraeye, I.; Heyden, Y. V.; Paelinck, H. The Occurrence of N-nitrosamines in Commercial Dry Fermented Sausages in Relation to Residual Nitrite and Biogenic Amines. Meat Sci. 2014, 96(2), 821–828.
  • Liu, Y.; Dong, B.; Qin, Z.; Yang, N.; Lu, Y.; Yang, L.; Chang, F.; Wu, Y. Ethyl Carbamate Levels in Wine and Spirits from Markets in Hebei Province, China. Food Addit. Contam. 2011, 4(1), 1–5. DOI: 10.1080/19393210.2011.557783.
  • Wu, P.; Pan, X.; Wang, L.; Shen, X.; Yang, D.A Survey of Ethyl Carbamate in Fermented Foods and Beverages from Zhejiang, China. Food Control. 2012, 23(1), 286–288. DOI: 10.1016/j.foodcont.2011.07.014.
  • Liu, J.; Liu, X.; Man, Y.; Liu, Y. Reduction of Acrylamide Content in Bread Crust by Starch Coating. J. Sci Food Agricul. 2018, 98(1), 336–345. DOI: 10.1002/jsfa.8476.
  • Hamzalıoğlu, A.; Gökmen, V. Investigation of the Reactions of Acrylamide during in Vitro Multistep Enzymatic Digestion of Thermally Processed Foods. Food Funct. 2015, 6(1), 108–113. DOI: 10.1039/c4fo00884g.
  • Zhang, S.; Liang, G. J.; Wu, S. L.; Qin, L. K. Determination of Acrylamide in Traditional Fermented Bean Products by HPLC-MS. Food & Fermentation Industries. 2012, 38(9), 151–155. https://doi.org/10.13995/j.cnki.11-1802/ts.2012.09.019
  • Shi, Y.; Wu, H.; Wang, C.; Guo, X.; Du, J.; Du, L. Determination of Polycyclic Aromatic Hydrocarbons in Coffee and Tea Samples by Magnetic Solid-phase Extraction Coupled with HPLC–FLD. Food Chem. 2016, 199, 75–80. DOI: 10.1016/j.foodchem.2015.11.137.
  • Udowelle, N. A.; Igweze, Z. N.; Asomugha, R. N.; Orisakwe, O. E.Health Risk Assessment and Dietary Exposure of Polycyclic Aromatic Hydrocarbons (Pahs), Lead and Cadmium from Bread Consumed in Nigeria. Roczniki Państwowego Zakładu Higieny; The National Institute of Public Health - National Institute of Hygiene; 2017, Vol. 68(3), pp. 269–280. PMID: 28895670.
  • Zachara, A.; Gałkowska, D.; Juszczak, L. Contamination of Smoked Meat and Fish Products from Polish Market with Polycyclic Aromatic Hydrocarbons. Food Control. 2017, 80, 45–51. DOI: 10.1016/j.foodcont.2017.04.024.
  • Yang, D.; He, Z.; Gao, D.; Qin, F.; Deng, S.; Wang, P.; Xu, X.; Chen, J.; Zeng, M. Effects of Smoking or Baking Procedures during Sausage Processing on the Formation of Heterocyclic Amines Measured Using UPLC-MS/MS. Food Chem. 2019, 276, 195–201. DOI: 10.1016/j.foodchem.2018.09.160.
  • Shalaby, A. R.;. Significance of Biogenic Amines to Food Safety and Human Health. Food Res. Int. 1996, 29(7), 675–690
  • Ruiz-Capillas, C.; Jiménez-Colmenero, F. Biogenic Amines in Meat and Meat Products. Crit. Rev. Food. Sci. Nut. 2005, 44(7–8), 489–599. DOI: 10.1080/10408690490489341.
  • Lynnes, T.; Horne, S.; Prüß., B. ß-phenylethylamine as a Novel Nutrient Treatment to Reduce Bacterial Contamination Due to Escherichia Coli O157: H7 on Beef Meat. Meat Sci. 2014, 96(1), 165–171. DOI: 10.1016/j.meatsci.2013.06.030.
  • Smit, A.; Du Toit, W.; Du Toit, M. Biogenic Amines in Wine: Understanding the Headache. S. Afr. J. Enol. Vitic. 2008, 29, 109–127.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.