292
Views
2
CrossRef citations to date
0
Altmetric
Review

Chemical, Structural, Technological Properties and Applications of Andean Tuber Starches: A Review

ORCID Icon & ORCID Icon

References

  • Velásquez-Barreto, F.; Velezmoro, C.; Rheological and Viscoelastic Properties of Andean Tubers Starches. Sci. Agropecu. 2018, 92, 189–197. DOI:10.17268/sci.agropecu.2018.02.03.
  • Chirinos, R.; Campos, D.; Costa, N.; Arbizu, C.; Pedreschi, R.; Larondelle, Y. Phenolic Profiles of Andean Mashua (Tropaeolum Tuberosum Ruíz & Pavón) Tubers: Identification by HPLC-DAD and Evaluation of Their Antioxidant Activity. Food Chem. 2008, 106(3), 1285–1298. DOI: 10.1016/j.foodchem.2007.07.024.
  • Guevara-Freire, D.; Valle-Velástegui, L.; Barros-Rodríguez, M.; Vásquez, C.; Zurita-Vásquez, H.; Dobronski-Arcos, J.; Pomboza-Tamaquiza, P. Nutritional Composition and Bioactive Components of Mashua (Tropaeolum Tuberosum Ruiz and Pavón). Trop. Subtrop. Agroecosystems. 2018, 21, 53–68.
  • Ramallo, R.; Wathelet, J. P.; Le Boulengé, E.; Torres, E.; Marlier, M.; Ledent, J.-F.; Guidi, A.; Larondelle, Y. Glucosinolates in isaño(Tropaeolum Tuberosum) Tubers: Qualitative and Quantitative Content and Changes after Maturity. J. Sci. Food Agric. 2004, 84(7), 701–706. DOI: 10.1002/jsfa.1691.
  • Tagliapietra, B. L.; Felisberto, M. H. F.; Sanches, E. A.; Campelo, P. H.; Clerici, M. T. P. S. Non-conventional Starch Sources. Curr. Opin. Food Sci. 2021, 39, 93–102. DOI: 10.1016/j.cofs.2020.11.011.
  • Agama-Acevedo, E.; Bello-Perez, L. A. Starch as an Emulsions Stability: The Case of Octenyl Succinic Anhydride (OSA) Starch. Curr. Opin. Food Sci. 2017, 13, 78–83. DOI: 10.1016/j.cofs.2017.02.014.
  • Hong, Y.; Li, Z.; Gu, Z.; Wang, Y.; Pang, Y. Structure and Emulsification Properties of Octenyl Succinic Anhydride Starch Using Acid-hydrolyzed Method. Starch - Stärke. 2017, 69(1–2), 1600039. DOI: 10.1002/star.201600039.
  • Cruz, G.; Ribotta, P.; Ferrero, C.; Iturriaga, L. Physicochemical and Rheological Characterization of Andean Tuber Starches: Potato (Solanum Tuberosum Ssp. Andigenum), Oca (Oxalis Tuberosa Molina) and Papalisa (Ullucus Tuberosus Caldas). Starch – Stärke. 2016, 68(11–12), 1084–1094. DOI: 10.1002/star.201600103.
  • Shevkani, K.; Singh, N.; Bajaj, R.; Kaur, A. Wheat Starch Production, Structure, Functionality and Applications-a Review. Int. J. Food Sci. Technol. 2017, 52(1), 38–58. DOI: 10.1111/ijfs.13266.
  • Velásquez-Barreto, F. F.; Bello-Pérez, L. A.; Yee-Madeira, H.; Velezmoro, C. E. Esterification and Characterization of Starch from Andean Tubers. Starch - Stärke. 2019, 71(1–2), 1800101. DOI: 10.1002/star.201800101.
  • Velásquez‐Barreto, F. F.; Bello‐Pérez, L. A.; Yee‐Madeira, H.; Alvarez‐Ramirez, J.; Velezmoro‐Sánchez, C. E. Effect of the OSA Esterification of Oxalis Tuberosa Starch on the Physicochemical, Molecular, and Emulsification Properties. Starch - Stärke. 2020, 72(5–6), 1900305. DOI: 10.1002/star.201900305.
  • Hernández-Lauzardo, A. N.; Méndez-Montealvo, G.; Velázquez Del Valle, M. G.; Solorza-Feria, J.; Bello-Pérez, L. A. Isolation and Partial Characterization of MexicanOxalis Tuberosa Starch. Starch - Stärke. 2004, 56(8), 357–363. DOI: 10.1002/star.200300235.
  • Valcárcel-Yamani, B.; Rondán-Sanabria, G. G.; Finardi-Filho, F. The Physical, Chemical and Functional Characterization of Starches from Andean Tubers: Oca (Oxalis Tuberosa Molina), Olluco (Ullucus Tuberosus Caldas) and Mashua (Tropaeolum Tuberosum Ruiz & Pavón). Brazilian J. Pharm. Sci. 2013, 49(3), 453–464. DOI: 10.1590/S1984-82502013000300007.
  • Cruz-Tirado, J. P.; Vejarano, R.; Tapia-Blácido, D. R.; Barraza-Jáuregui, G.; Siche, R. Biodegradable Foam Tray Based on Starches Isolated from Different Peruvian Species. Int. J. Biol. Macromol. 2019, 125, 800–807. DOI: 10.1016/j.ijbiomac.2018.12.111.
  • Galindez, A.; Daza, L. D.; Homez-Jara, A.; Eim, V. S.; Váquiro, H. A. Characterization of Ulluco Starch and Its Potential for Use in Edible Films Prepared at Low Drying Temperature. Carbohydr. Polym. 2019, 215, 143–150. DOI: 10.1016/j.carbpol.2019.03.074.
  • Leidi, E. O.; Altamirano, A. M.; Mercado, G.; Rodriguez, J. P.; Ramos, A.; Alandia, G.; Sørensen, M.; Jacobsen, S. E. Andean Roots and Tubers Crops as Sources of Functional Foods. J. Funct. Foods. 2018, 51, 86–93. DOI: 10.1016/j.jff.2018.10.007.
  • Pacheco, M. T.; Moreno, F. J.; Moreno, R.; Villamiel, M.; Hernandez-Hernandez, O. Morphological, Technological and Nutritional Properties of Flours and Starches from Mashua (Tropaeolum Tuberosum) and Melloco (Ullucus Tuberosus) Cultivated in Ecuador. Food Chem. 2019, 301, 125268. DOI: 10.1016/j.foodchem.2019.125268.
  • Zhu, F.; Cui, R. Comparison of Molecular Structure of Oca (Oxalis Tuberosa), Potato, and Maize Starches. Food Chem. 2019, 296, 116–122. DOI: 10.1016/j.foodchem.2019.05.192.
  • Santacruz, S.; Ruales, J.; Eliasson, A. C. Three Under-utilised Sources of Starch from the Andean Region in Ecuador. Part II. Rheological Characterisation. Carbohydr. Polym. 2003, 51(1), 85–92. DOI: 10.1016/S0144-8617(02)00140-6.
  • Glorio, P.; Bello-pérez, L. A.; Salas, F.; Buleje, E. Características Viscoelásticas Y Estimaciones De Masas Moleculares En Almidón De Oca (Oxalis Tuberosum). Rev. La Soc. Química Del Perú. 2009, 75, 266–276.
  • Zhu, F.; Cui, R. Comparison of Physicochemical Properties of Oca (Oxalis Tuberosa), Potato, and Maize Starches. Int. J. Biol. Macromol. 2020, 148, 601–607. DOI: 10.1016/j.ijbiomac.2020.01.028.
  • Rahman, S. M. M.; Wheatley, C.; Rakshit, S. K. Selection of Sweet Potato Variety for High Starch Extraction. Int. J. Food Prop. 2003, 6(3), 419–430. DOI: 10.1081/JFP-120021333.
  • Ratnayake, W. S.; Jackson, D. S. Starch: Sources and Processing. In Encyclopedia of Food Sciences and Nutrition, 2nd ed. ed.; Caballero, B., Trugo, L., Finglas, P.M., Eds.; San Diego, USA: Academic Press, 2003; pp 5567–5572.
  • Ramirez-Cortes, R.; Bello-Pérez, L. A.; Gonzalez-Soto, R. A.; Gutierrez-Meraz, F.; Alvarez-Ramirez, J. Isolation of Plantain Starch on a Large Laboratory Scale. Starch - Stärke. 2016, 68(5–6), 488–495. DOI: 10.1002/star.201500272.
  • Hoover, R.;. Composition, Molecular Structure, and Physicochemical Properties of Tuber and Root Starches: A Review. Carbohydr. Polym. 2001, 45(3), 253–267. DOI: 10.1016/S0144-8617(00)00260-5.
  • Karim, A. A.; Toon, L. C.; Lee, V. P. L.; Ong, W. Y.; Fazilah, A.; Noda, T. Effects of Phosphorus Contents on the Gelatinization and Retrogradation of Potato Starch. J. Food Sci. 2007, 72(2), C132–C138. DOI: 10.1111/j.1750-3841.2006.00251.x.
  • Gao, H.; Cai, J.; Han, W.; Huai, H.; Chen, Y.; Wei, C. Comparison of Starches Isolated from Three Different Trapa Species. Food Hydrocoll. 2014, 37, 174–181. DOI: 10.1016/j.foodhyd.2013.11.001.
  • Zhu, F. Structure, Z. F.; Properties, P. Modifications, and Uses of Sorghum Starch. Compr. Rev. Food Sci. Food Saf. 2014, 13(4), 597–610. DOI: 10.1111/1541-4337.12070.
  • Gutiérrez, T. J.; Tovar, J. Update of the Concept of Type 5 Resistant Starch (RS5): Self-assembled Starch V-type Complexes. Trends in Food Science & Technology, 109, 2021, 711-724.
  • Yee, J.; Roman, L.; Pico, J.; Aguirre-Cruz, A.; Bello-Perez, L. A.; Bertoft, E.; Martinez, M. M. The Molecular Structure of Starch from Different Musa Genotypes: Higher Branching Density of Amylose Chains Seems to Promote Enzyme-resistant Structures. Food Hydrocoll. 2021, 112, 106351. DOI: 10.1016/j.foodhyd.2020.106351.
  • Bellido-Valencia, O.; Huanca-Zúñiga, P. K.; Medina-Marroquín, L. A.; Determination of the Morphology of the Starch Granules and the Optimum Internal Cooking Temperature of Four Andean Crops: Oca (Oxalis Tuberosa Molina), Olluco (Ullucus tuberosusLoz), Isaño (Tropaeolum Tuberosum Ruiz & Pavon) and Arracacha (Arracacia xanthorrhiza Bancroft). Acta Univ. Cibiniensis. Ser. E Food Technol. 2017, 212, 33–42. DOI:10.1515/aucft-2017-0013.
  • Cortella, A. R.; Pochettino, M. L. Comparative Morphology of Starch of Three Andean Tubers. Starch - Stärke. 1995, 47(12), 455–461. DOI: 10.1002/star.19950471202.
  • Vandeputte, G.; Delcour, J. From Sucrose to Starch Granule to Starch Physical Behaviour: A Focus on Rice Starch. Carbohydr. Polym. 2004, 58(3), 245–266. DOI: 10.1016/j.carbpol.2004.06.003.
  • Zhao, F.; Jing, L.; Wang, D.; Bao, F.; Lu, W.; Wang, G. Grain and Starch Granule Morphology in Superior and Inferior Kernels of Maize in Response to Nitrogen. Sci. Rep. 2018, 8(1), 6343. DOI: 10.1038/s41598-018-23977-0.
  • Qu, J.; Xu, S.; Zhang, Z.; Chen, G.; Zhong, Y.; Liu, L.; Zhang, R.; Xue, J.; Guo, D. Evolutionary, Structural and Expression Analysis of Core Genes Involved in Starch Synthesis. Sci. Rep. 2018, 8(1), 1–16. DOI: 10.1038/s41598-018-30411-y.
  • Hoyos-Leyva, J. D.; Bello-Pérez, L. A.; Yee-Madeira, H.; Rodríguez-García, M. E.; Aguirre-Cruz, A. Characterization of the Flour and Starch of Aroid Cultivars Grown in Mexico. Starch - Stärke. 2017, 69(9–10), 1600370. DOI: 10.1002/star.201600370.
  • Al-Rabadi, G. J. S.; Gilbert, R. G.; Gidley, M. J. Effect of Particle Size on Kinetics of Starch Digestion in Milled Barley and Sorghum Grains by Porcine Alpha-amylase. J. Cereal Sci. 2009, 50(2), 198–204. DOI: 10.1016/j.jcs.2009.05.001.
  • Timgren, A.; Rayner, M.; Dejmek, P.; Marku, D.; Sjöö, M. Emulsion Stabilizing Capacity of Intact Starch Granules Modified by Heat Treatment or Octenyl Succinic Anhydride. Food Sci. Nutr. 2013, 1(2), 157–171. DOI: 10.1002/fsn3.17.
  • Romero-Hernandez, H. A.; Sánchez-Rivera, M. M.; Alvarez-Ramirez, J.; Yee-Madeira, H.; Yañez-Fernandez, J.; Bello-Pérez, L. A. Avocado Oil Encapsulation with OSA-esterified Taro Starch as Wall Material: Physicochemical and Morphology Characteristics. LWT- Food Sci. Technol. 2021, 138, 110629. DOI: 10.1016/j.lwt.2020.110629.
  • Hoyos-Leyva, J. D.; Bello-Perez, L. A.; Agama-Acevedo, J. E.; Alvarez-Ramirez, J.; Jaramillo-Echeverry, L. M. Characterization of Spray Drying Microencapsulation of Almond Oil into Taro Starch Spherical Aggregates. LWT- Food Sci. Technol. 2019, 101, 526–533. DOI: 10.1016/j.lwt.2018.11.079.
  • Hoyos-Leyva, J. D.; Chavez-Salazar, A.; Castellanos-Galeano, F.; Bello-Perez, L. A.; Alvarez-Ramirez, J. Physical and Chemical Stability of L-ascorbic Acid Microencapsulated into Taro Starch Spherical Aggregates by Spray Drying. Food Hydrocoll. 2018, 83, 143–152. DOI: 10.1016/j.foodhyd.2018.05.002.
  • Torres, F. G.; Troncoso, O. P.; Díaz, D. A.; Amaya, E. Morphological and Thermal Characterization of Native Starches from Andean Crops. Starch - Stärke. 2011, 63(6), 381–389. DOI: 10.1002/star.201000155.
  • Islas, S. G.; Quintero, L.; Piloni, M. J.; Guemes, V. N.; Hernandez, U. J. P. Caracterización Térmica Y Estructural Del Bagazo De Oca. Boletín Ciencias Agropecu. Del ICAP. 2020, 6(11), 8–11. DOI: 10.29057/icap.v6i11.5327.
  • Wang, S.; Copeland, L. Effect of Acid Hydrolysis on Starch Structure and Functionality: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55(8), 1081–1097. DOI: 10.1080/10408398.2012.684551.
  • Allan, M. C.; Chamberlain, M.; Mauer, L. J. Effects of Sugars and Sugar Alcohols on the Gelatinization Temperatures of Wheat, Potato, and Corn Starches. Foods. 2020, 9(6), 757. DOI: 10.3390/foods9060757.
  • Fredriksson, H.; Silverio, J.; Andersson, R.; Eliasson, A. C.; Åman, P. The Influence of Amylose and Amylopectin Characteristics on Gelatinization and Retrogradation Properties of Different Starches. Carbohydr. Polym. 1998, 35(3–4), 119–134. DOI: 10.1016/S0144-8617(97)00247-6.
  • Vamadevan, V.; Bertoft, E.; Seetharaman, K. On the Importance of Organization of Glucan Chains on Thermal Properties of Starch. Carbohydr. Polym. 2013, 92(2), 1653–1659. DOI: 10.1016/j.carbpol.2012.11.003.
  • Shi, Y. C.; Seib, P. A. The Structure of Four Waxy Starches Related to Gelatinization and Retrogradation. Carbohydr. Res. 1992, 227, 131–145. DOI: 10.1016/0008-6215(92)85066-9.
  • Hoyos-Leyva, J. D.; Alonso-Gomez, L.; Rueda-Enciso, J.; Yee-Madeira, H.; Bello-Perez, L. A.; Alvarez-Ramirez, J. Morphological, Physicochemical and Functional Characteristics of Starch from Marantha Ruiziana Koern. LWT - Food Sci. Technol. 2017, 83, 150–156. DOI: 10.1016/j.lwt.2017.05.019.
  • Utrilla-Coello, R. G.; Hernández-Jaimes, C.; Carrillo-Navas, H.; González, F.; Rodríguez, E.; Bello-Pérez, L. A.; Vernon-Carter, E. J.; Alvarez-Ramirez, J. Acid Hydrolysis of Native Corn Starch: Morphology, Crystallinity, Rheological and Thermal Properties. Carbohydr. Polym. 2014, 103, 596–602. DOI: 10.1016/j.carbpol.2014.01.046.
  • Castanha, N.; Villar, J.; Da Matta Junior, M. D.; Dos Anjos, C. B. P.; Augusto, P. E. D. Structure and Properties of Starches from Arracacha (Arracacia Xanthorrhiza) Roots. Int. J. Biol. Macromol. 2018, 117, 1029–1038. DOI: 10.1016/j.ijbiomac.2018.06.015.
  • Singh, N.; Singh, J.; Kaur, L.; Singh, N.; Singh, B. Morphological, Thermal and Rheological Properties of Starches from Different Botanical Sources. Food Chem. 2003, 81(2), 219–231. DOI: 10.1016/S0308-8146(02)00416-8.
  • Wang, S.; Chao, C.; Xiang, F.; Zhang, X.; Wang, S.; Copeland, L. New Insights into Gelatinization Mechanisms of Cereal Endosperm Starches. Sci. Rep. 2018, 8(1), 3011. DOI: 10.1038/s41598-018-21451-5.
  • Chen, P.; Liu, X.; Zhang, X.; Sangwan, P.; Phase, Y. L. Transition of Waxy and Normal Wheat Starch Granules during Gelatinization. Int. J. Polym. Sci. 2015, 1–7. DOI: 10.1155/2015/397128.
  • Chávez-Salazar, A.; Bello-Pérez, L. A.; Agama-Acevedo, E.; Castellanos-Galeano, F. J.; Álvarez-Barreto, C. I.; Pacheco-Vargas, G. Isolation and Partial Characterization of Starch from Banana Cultivars Grown in Colombia. Int. J. Biol. Macromol. 2017, 98, 240–246. DOI: 10.1016/j.ijbiomac.2017.01.024.
  • Nara, S.; Mori, A.; Komiya, T. Study on Relative Crystallinity of Moist Potato Starch. Starch - Stärke. 1978, 30(4), 111–114. DOI: 10.1002/star.19780300403.
  • Singh, V.; Ali, S. Z.; Somashekar, R.; Mukherjee, P. S. Nature of Crystallinity in Native and Acid Modified Starches. Int. J. Food Prop. 2006, 9(4), 845–854. DOI: 10.1080/10942910600698922.
  • Angellier, H.; Molina-Boisseau, S.; Lebrun, L.; Dufresne, A. Processing and Structural Properties of Waxy Maize Starch Nanocrystals Reinforced Natural Rubber. Macromolecules. 2005, 38(9), 3783–3792. DOI: 10.1021/ma050054z.
  • Sánchez, D. L. C.; Agama‐Acevedo, B. B.; Agurirre‐Cruz, E.; Bello‐Pérez, A.; Alvarez‐Ramírez, L. A.; Osa, J. Esterification of Amaranth and Maize Starch Nanocrystals and Their Use in “Pickering” Emulsions. Starch - Stärke. 2020, 72(7–8), 1900271. DOI: 10.1002/star.201900271.
  • Sanchez De La Concha, B. B.; Agama-Acevedo, E.; Nuñez-Santiago, M. C.; Bello-Perez, L. A.; Garcia, H. S.; Alvarez-Ramirez, J. Acid Hydrolysis of Waxy Starches with Different Granule Size for Nanocrystal Production. J. Cereal Sci. 2018, 79, 193–200. DOI: 10.1016/j.jcs.2017.10.018.
  • Kalita, D.; Kaushik, N.; Mahanta, C. L. Physicochemical, Morphological, Thermal and IR Spectral Changes in the Properties of Waxy Rice Starch Modified with Vinyl Acetate. J. Food Sci. Technol. 2014, 51(10), 2790–2796. DOI: 10.1007/s13197-012-0829-2.
  • Miao, M.; Li, R.; Jiang, B.; Cui, S. W.; Zhang, T.; Jin, Z. Structure and Physicochemical Properties of Octenyl Succinic Esters of Sugary Maize Soluble Starch and Waxy Maize Starch. Food Chem. 2014, 151, 154–160. DOI: 10.1016/j.foodchem.2013.11.043.
  • Wang, J.; Su, L.; Wang, S. Physicochemical Properties of Octenyl Succinic Anhydride-modified Potato Starch with Different Degrees of Substitution. J. Sci. Food Agric. 2010, 90(3), 424–429. DOI: 10.1002/jsfa.3832.
  • Karwasra, B. L.; Gill, B. S.; Kaur, M. Rheological and Structural Properties of Starches from Different Indian Wheat Cultivars and Their Relationships. Int. J. Food Prop. 2017, 20(sup1), S1093–S1106. DOI: 10.1080/10942912.2017.1328439.
  • Vamadevan, V.; Bertoft, E. Structure-function Relationships of Starch Components. Starch - Stärke. 2015, 67(1–2), 55–68. DOI: 10.1002/star.201400188.
  • Chávez-Murillo, C. E.; Wang, Y.-J.; Bello-Pérez, L. A.; Morphological, P. Structural Characteristics of Oxidized Barley and Corn Starches. Starch - Stärke. 2008, 60(11), 634–645. DOI: 10.1002/star.200800016.
  • Hoyos-Leyva, J. D.; Bello-Pérez, L. A.; Alvarez-Ramirez, J.; Agama-Acevedo, E. Structural Characterization of Aroid Starches by Means of Chromatographic Techniques. Food Hydrocoll. 2017, 69, 97–102. DOI: 10.1016/j.foodhyd.2017.01.034.
  • Espinosa-Solis, V.; Jane, J.; Bello-Perez, L. A. Physicochemical Characteristics of Starches from Unripe Fruits of Mango and Banana. Starch - Stärke. 2009, 61(5), 291–299. DOI: 10.1002/star.200800103.
  • Yuan, R. C.; Thompson, D. B.; Boyer, C. D. Fine Structure of Amylopectin in Relation to Gelatinization and Retrogradation Behavior of Maize Starches from Three Wx-containing Genotypes in Two Inbred Lines. Cereal Chem. 1993, 70, 81–89.
  • Zhang, G.; Venkatachalam, M.; Hamaker, B. R. Structural Basis for the Slow Digestion Property of Native Cereal Starches. Biomacromolecules. 2006, 7(11), 3259–3266. DOI: 10.1021/bm060343a.
  • Zhang, G.; Ao, Z.; Hamaker, B. R. Slow Digestion Property of Native Cereal Starches. Biomacromolecules. 2006, 7(11), 3252–3258. DOI: 10.1021/bm060342i.
  • Gaenssle, A. L. O.; Satyawan, C. A.; Xiang, G.; Van Der Maarel, M. J. E. C.; Jurak, E. Long Chains and Crystallinity Govern the Enzymatic Degradability of Gelatinized Starches from Conventional and New Sources, Carbohydr. Polym. 2021, 260, 117801. DOI: 10.1016/j.carbpol.2021.117801.
  • Velásquez-Barreto, F. F.; Bello-Pérez, L. A.; Nuñez-Santiago, C.; Yee-Madeira, H.; Velezmoro, C. E. Relationships among Molecular, Physicochemical and Digestibility Characteristics of Andean Tuber Starches. Int. J. Biol. Macromol. 2021, 182, 472–481. DOI: 10.1016/j.ijbiomac.2021.04.039.
  • Bertoft, E.; Annor, G. A.; Shen, X.; Rumpagaporn, P.; Seetharaman, K.; Hamaker, B. R. Small Differences in Amylopectin Fine Structure May Explain Large Functional Differences of Starch. Carbohydr. Polym. 2016, 140, 113–121. DOI: 10.1016/j.carbpol.2015.12.025.
  • Bertoft, E.; Piyachomkwan, K.; Chatakanonda, P.; Sriroth, K. Internal Unit Chain Composition in Amylopectins. Carbohydr. Polym. 2008, 74(3), 527–543. DOI: 10.1016/j.carbpol.2008.04.011.
  • Bertoft, E.; Koch, K.; Åman, P. Building Block Organisation of Clusters in Amylopectin from Different Structural Types. Int. J. Biol. Macromol. 2012, 50(5), 1212–1223. DOI: 10.1016/j.ijbiomac.2012.03.004.
  • Yang, L.; Xia, Y.; Junejo, S. A.; Zhou, Y. Composition, Structure and Physicochemical Properties of Three Coloured Potato Starches. Int. J. Food Sci. Technol. 2018, 53(10), 2325–2334. DOI: 10.1111/ijfs.13824.
  • Cornejo-Ramírez, Y. I.; Martínez-Cruz, O.; Del Toro-Sánchez, C. L.; Wong-Corral, F. J.; Borboa-Flores, J.; Cinco-Moroyoqui, F. J. The Structural Characteristics of Starches and Their Functional Properties. CyTA - J. Food. 2018, 16(1), 1003–1017. DOI: 10.1080/19476337.2018.1518343.
  • Gidley, M. J.; Bulpin, P. V. Aggregation of Amylose in Aqueous Systems: The Effect of Chain Length on Phase Behavior and Aggregation Kinetics. Macromolecules. 1989, 22(1), 341–346. DOI: 10.1021/ma00191a062.
  • Torruco-Uco, J. G.; Chávez-Murillo, C. E.; Hernández-Centeno, F.; Salgado-Delgado, R.; Tirado-Gallegos, J. M.; Zamudio-Flores, P. B. Use of High-Performance Size-Exclusion Chromatography for Characterization of Amylose Isolated from Diverse Botanical Sources. Int. J. Food Prop. 2016, 19(6), 1362–1369. DOI: 10.1080/10942912.2015.1080269.
  • Yoo, S.; Jane, J. Structural and Physical Characteristics of Waxy and Other Wheat Starches. Carbohydr. Polym. 2002, 49(3), 297–305. DOI: 10.1016/S0144-8617(01)00338-1.
  • Zhong, F.; Yokoyama, W.; Wang, Q.; Shoemaker, C. F.; Starch, R. Amylopectin, and Amylose: Molecular Weight and Solubility in Dimethyl Sulfoxide-Based Solvents. J. Agric. Food Chem. 2006, 54(6), 2320–2326. DOI: 10.1021/jf051918i.
  • Genovese, D. B.; Lozano, J. E. The Effect of Hydrocolloids on the Stability and Viscosity of Cloudy Apple Juices. Food Hydrocoll. 2001, 15(1), 1–7. DOI: 10.1016/S0268-005X(00)00053-9.
  • Fang, F.; Luo, X.; Fei, X.; Mathews, M. A. A.; Lim, J.; Hamaker, B. R.; Campanella, O. H. Stored Gelatinized Waxy Potato Starch Forms a Strong Retrograded Gel at Low pH with the Formation of Intermolecular Double Helices. J. Agric. Food Chem. 2020, 68(13), 4036–4041. DOI: 10.1021/acs.jafc.9b08268.
  • Bhandari, P. N.; Singhal, R.; Kale, D. Effect of Succinylation on the Rheological Profile of Starch Pastes. Carbohydr. Polym. 2002, 47(4), 365–371. DOI: 10.1016/S0144-8617(01)00215-6.
  • Nguyen, Q.; Jensen, C.; Kristensen, P. Experimental and Modelling Studies of the Flow Properties of Maize and Waxy Maize Starch Pastes. Chem. Eng. J. 1998, 70(2), 165–171. DOI: 10.1016/S1385-8947(98)00081-3.
  • Kyung, J.-S.; Yoo, B. Rheological Properties of Azuki Bean Starch Pastes in Steady and Dynamic Shear. Starch - Stärke. 2014, 66(9–10), 802–808. DOI: 10.1002/star.201400024.
  • Chen, L.; Tong, Q.; Ren, F.; Zhu, G. Pasting and Rheological Properties of Rice Starch as Affected by Pullulan. Int. J. Biol. Macromol. 2014, 66, 325–331. DOI: 10.1016/j.ijbiomac.2014.02.052.
  • Bello-Pérez, L. A.; Starch, P.-L. O. Amylopectin — Rheological Behavior of Gels. Starch - Stärke. 1994, 46(11), 411–413. DOI: 10.1002/star.19940461102.
  • Olu-Owolabi, B. I.; Afolabi, T. A.; Adebowale, K. O. Pasting, Thermal, Hydration, and Functional Properties of Annealed and Heat-Moisture Treated Starch of Sword Bean (Canavalia Gladiata). Int. J. Food Prop. 2011, 14(1), 157–174. DOI: 10.1080/10942910903160331.
  • Oh, S. M.; Kim, H.; Bae, J. E.; Ye, S. J. ;.; Kim, B. Y.; Choi, H. D.; Choi, H. W.; Baik, M. Y. Physicochemical and Retrogradation Properties of Modified Chestnut Starches. Food Sci. Biotechnol. 2019, 28(6), 1723–1731. DOI: 10.1007/s10068-019-00622-8.
  • Martínez, P.; Málaga, A.; Betalleluz, I.; Ibarz, A.; Velezmoro, C. Functional Characterization on Native Starch of Peruvian Native Potatoes (Solanum Phureja). Sci. Agropecu. 2015, 6, 291–301. DOI: 10.17268/sci.agropecu.2015.04.06.
  • Jan, K. N.; Panesar, P. S.; Rana, J. C.; Singh, S. Structural, Thermal and Rheological Properties of Starches Isolated from Indian Quinoa Varieties. Int. J. Biol. Macromol. 2017, 102, 315–322. DOI: 10.1016/j.ijbiomac.2017.04.027.
  • Perera, C.; Hoover, R. Influence of Hydroxypropylation on Retrogradation Properties of Native, Defatted and Heat-moisture Treated Potato Starches. Food Chem. 1999, 64, 361–375. DOI: 10.1016/S0308-8146(98)00130-7.
  • Bello-Pérez, L. A.; Contreras-Ramos, S. M.; Romero-Manilla, R.; Solorza-Feria, J.; Jiménez-Aparicio, A. Propiedades químicas y funcionales del almidón modificado de plátano Musa paradisiaca L. (Var. Macho). Agrocencia. 2002, 36, 169–180.
  • Matsuguma, L. S.; Lacerda, L. G.; Schnitzler, E.; Filho, M. A. S. C.; Franco, C. M. L.; Demiate, I. M.; Characterization of Native and Oxidized Starches of Two Varieties of Peruvian Carrot (Arracacia Xanthorrhiza, B.) From Two Production Areas of Paraná State, Brazil. Brazilian Arch. Biol. Technol. 2009, 523, 701–713. DOI:10.1590/S1516-89132009000300022.
  • Ye, J.; Yang, R.; Liu, C.; Luo, S.; Chen, J.; Hu, X.; Wu, J. Improvement in Freeze-thaw Stability of Rice Starch Gel by Inulin and Its Mechanism. Food Chem. 2018, 268, 324–333. DOI: 10.1016/j.foodchem.2018.06.086.
  • Hernández-Medina, M.; Torruco-Uco, J. G.; Chel-Guerrero, L.; Betancur-Ancona, D. Caracterización fisicoquímica de almidones de tubérculos cultivados en Yucatán, México. Ciência E Tecnol. Aliment. 2008, 28(3), 718–726. DOI: 10.1590/S0101-20612008000300031.
  • Villas-Boas, F.; Yamauti, Y.; Moretti, M. M. S.; Franco, C. M. L. Influence of Molecular Structure on the Susceptibility of Starch to α-amylase. Carbohydr. Res. 2019, 479, 23–30. DOI: 10.1016/j.carres.2019.05.001.
  • Ashwar, B. A.; Gani, A.; Shah, A.; Wani, I. A.; Masoodi, F. A. Preparation, Health Benefits and Applications of Resistant Starch-a Review. Starch - Stärke. 2016, 68(3–4), 287–301. DOI: 10.1002/star.201500064.
  • Raigond, P.; Ezekiel, R.; Raigond, B. Resistant Starch in Food: A Review. J. Sci. Food Agric. 2015, 95(10), 1968–1978. DOI: 10.1002/jsfa.6966.
  • Tacer-Caba, Z.; Nilufer-Erdil, D. Resistant Starch. In Encyclopedia of Food Chemistry; Melton, L., Shahidi, F., Varelis, P., Eds.; Elsevier, 2019; pp 571–575.
  • Xie, -Y.-Y.; Hu, X.-P.; Jin, Z.-Y.; Xu, X.-M.; Chen, H.-Q. Effect of Repeated Retrogradation on Structural Characteristics and in Vitro Digestibility of Waxy Potato Starch. Food Chemistry. 2014, 163, 219–225. DOI: 10.1016/j.foodchem.2014.04.102.
  • Tian, J.; Chen, S.; Wu, C.; Chen, J.; Du, X.; Chen, J.; Liu, D.; Ye, X. Effects of Preparation Methods on Potato Microstructure and Digestibility: An in Vitro Study. Food Chem. 2016, 211, 564–569. DOI: 10.1016/j.foodchem.2016.05.112.
  • Castro-Mendoza, M. P.; Palma-Rodriguez, H. M.; Heredia-Olea, E.; Hernández-Uribe, J. P.; López-Villegas, E. O.; Serna-Saldivar, S. O.; Vargas-Torres, A. Characterization of a Mixture of Oca (Oxalis Tuberosa) and Oat Extrudate Flours: Antioxidant and Physicochemical Attributes. J. Food Qual. 2019, 2019, 1–10. DOI: 10.1155/2019/1238562.
  • Cruz-Tirado, J. P.; Siche, R.; Cabanillas, A.; Díaz-Sánchez, L.; Vejarano, R.; Tapia-Blácido, D. R. Properties of Baked Foams from Oca (Oxalis Tuberosa) Starch Reinforced with Sugarcane Bagasse and Asparagus Peel Fiber. Procedia Eng. 2017, 200, 178–185. DOI: 10.1016/j.proeng.2017.07.026.
  • Daza, L. D.; Homez-Jara, A.; Solanilla, J. F.; Váquiro, H. A. Effects of Temperature, Starch Concentration, and Plasticizer Concentration on the Physical Properties of Ulluco (Ullucus Tuberosus Caldas)-based Edible Films. Int. J. Biol. Macromol. 2018, 120, 1834–1845. DOI: 10.1016/j.ijbiomac.2018.09.211.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.