884
Views
3
CrossRef citations to date
0
Altmetric
Review

Recent Developments in Processing, Functionality, and Food Applications of Microparticulated Proteins

, , , &

References

  • Santarelli, R.; Pierre, F.; Corpet, D. Processed Meat and Colorectal Cancer: A Review of Epidemiologic and Experimental Evidence. Nutr. Cancer. 2008, 60(2), 131–144. DOI: 10.1080/01635580701684872.
  • Yashini, M.; Sunil, C. K.; Sahana, S.; Hemanth, S. D.; Chidanand, D. V.; Rawson, A. Protein-based Fat Replacers–A Review of Recent Advances. Food Rev. Int. 2019, 27, 197–223. DOI: 10.1080/87559129.2019.1701007.
  • Beran, M.; Drahorad, J.; Vltavsky, O.; Urban, M.; Laknerova, I.; Fronek, M.; Sova, J.; Ondracek, J.; Ondrackova, L.; Kralova, S.; et al. Pilot-Scale Production and Application of Microparticulated Plant Proteins. J. Nutri. Food Sci. 2018, 08, 01. DOI: 10.4172/2155-9600.1000655.
  • Ipsen, R.;. Microparticulated Whey Proteins for Improving Dairy Product Texture. Int. Dairy J. 2017, 67, 73–79. DOI: 10.1016/j.idairyj.2016.08.009.
  • Liu, K.; Stieger, M.; Van Der Linden, E.; Van De Velde, F. Effect of Microparticulated Whey Protein on Sensory Properties of Liquid and Semi-solid Model Foods. Food Hydrocoll. 2016a, 60, 186–198. DOI: 10.1016/j.foodhyd.2016.03.036.
  • Toro-Sierra, J.; Schumann, J.; Kulozik, U. Impact of Spray-drying Conditions on the Particle Size of Microparticulated Whey Protein Fractions. Dairy Sci. Tech. 2013, 93(4), 487–503. DOI: 10.1007/s13594-013-0124-7.
  • Di Cagno, R.; De Pasquale, I.; De Angelis, M.; Buchin, S.; Rizzello, C. G.; Gobbetti, M. Use of Microparticulated Whey Protein Concentrate, Exopolysaccharide-Producing Streptococcus Thermophilus, and Adjunct Cultures for Making Low-Fat Italian Caciotta-Type Cheese. J. Dairy Sci. 2004, 97(1), 72–84. DOI: 10.3168/jds.2013-7078.
  • Urgu, M.; Türk, A.; Ünlütürk, S.; Kaymak-Ertekin, F.; Koca, N. Milk Fat Substitution by Microparticulated Protein in Reduced-fat Cheese Emulsion: The Effects on Stability, Microstructure, Rheological and Sensory Properties. Food Sci. Anim. Resour. 2019, 39(1), 23–34. DOI: 10.5851/kosfa.2018.e60.
  • Sánchez-Obando, J.; Cabrera-Trujillo, M.; Olivares-Tenorio, M.; Klotz, B. Use of Optimized Microparticulated Whey Protein in the Process of Reduced-Fat Spread and Petit-Suisse Cheeses. LWT. 2020, 120, 108933. DOI: 10.1016/j.lwt.2019.108933.
  • Torres, I.; Janhøj, T.; Mikkelsen, B.; Ipsen, R. Effect of Microparticulated Whey Protein with Varying Content of Denatured Protein on the Rheological and Sensory Characteristics of Low-fat Yoghurt. Int. Dairy J. 2011, 21(9), 645–655. DOI: 10.1016/j.idairyj.2010.12.013.
  • Torres, I.; Amigo Rubio, J.; Ipsen, R. Using Fractal Image Analysis to Characterize Microstructure of Low-Fat Stirred Yoghurt Manufactured with Microparticulated Whey Protein. J. Food Eng. 2012, 109(4), 721–729. DOI: 10.1016/j.jfoodeng.2011.11.016.
  • Torres, I.; Mutaf, G.; Larsen, F.; Ipsen, R. Effect of Hydration of Microparticulated Whey Protein Ingredients on Their Gelling Behaviour in a Non-Fat Milk System. J. Food Eng. 2016, 184, 31–37. DOI: 10.1016/j.jfoodeng.2016.03.018.
  • Yazici, F.; Akgun, A. Effect of Some Protein Based Fat Replacers on Physical, Chemical, Textural, and Sensory Properties of Strained Yoghurt. J. Food Eng. 2004, 62(3), 245–254. DOI: 10.1016/s0260-8774(03)00237-1.
  • Liu, K.; Tian, Y.; Stieger, M.; Van Der Linden, E.; Van De Velde, F. Evidence for Ball-bearing Mechanism of Microparticulated Whey Protein as Fat Replacer in Liquid and Semi-solid Multi-component Model Foods. Food Hydrocoll. 2016b, 52, 403–414. DOI: 10.1016/j.foodhyd.2015.07.016.
  • Chung, C.; Degner, B.; Mcclements, D. Reduced Calorie Emulsion-Based Foods: Protein Microparticles and Dietary Fiber as Fat Replacers. Food Res. Int. 2014b, 64, 664–676. DOI: 10.1016/j.foodres.2014.07.034.
  • Sun, C.; Liu, R.; Liang, B.; Wu, T.; Sui, W.; Zhang, M. Microparticulated Whey Protein-Pectin Complex: A Texture-Controllable Gel for Low-Fat Mayonnaise. Food Res. Int. 2018a, 108, 151–160. DOI: 10.1016/j.foodres.2018a.01.036.
  • Dissanayake, M.; Kelly, A.; Vasiljevic, T. Gelling Properties of Microparticulated Whey Proteins. J. Agri. Food Chem. 2010, 58(11), 6825–6832. DOI: 10.3168/jds.2008-1791.
  • Wolz, M.; Kulozik, U. System Parameters in a High Moisture Extrusion Process for Microparticulation of Whey Proteins. J. Food Eng. 2017, 209, 12–17. DOI: 10.1016/j.jfoodeng.2017.04.010.
  • Iordache, M.; Jelen, P. High Pressure Microfluidization Treatment of Heat Denatured Whey Proteins for Improved Functionality. IFSET. 2003, 4(4), 367–376. DOI: 10.1016/s1466-8564(03)00061-4.
  • Schokker, E.; Singh, H.; Creamer, L. Heat-induced Aggregation of β-lactoglobulin A and B with α-lactalbumin. Int. Dairy J. 2000, 10(12), 843–853. DOI: 10.1016/s0958-6946(01)00022-x.
  • Dissanayake, M.; Vasiljevic, T. Functional Properties of Whey Proteins Affected by Heat Treatment and Hydrodynamic High-Pressure Shearing. Journal of Dairy Science. 2009, 92(4), 1387–1397. DOI: 10.3168/jds.2008-1791.
  • Singer, N. S.; Dunn, J. M. Protein Micropaticulation - the Principle and the Process. J. Am. Coll. Nutr. 1990, 9(4), 388–397. DOI: 10.1080/07315724.1990.10720397.
  • Queguiner, C.; Dumay, E.; Salou-Cavalier, C.; Cheftel, J. C. Microcoagulation of a Whey Protein Isolate by Extrusion Cooking at Acid pH. J. Food Sci. 1992, 57(3), 610–616. DOI: 10.1111/j.1365-2621.1992.tb08054.x.
  • Hayakawa, I.; Yamada, Y.; Fugio, Y. Microparticulation by Jet Mill Grinding of Protein Powders and Effects on Hydrophobicity. J. Food Sci. 1993, 58(5), 1026–1029. DOI: 10.1111/j.1365-2621.1993.tb06104.x.
  • Sanchez, C.; Pouliot, M.; Gauthier, S. F.; Paquin, P. Thermal Aggregation of Whey Protein Isolate Containing Microparticulated or Hydrolyzed Whey Proteins. J. Agric. Food Chem. 1997, 45(7), 2384–2392. DOI: 10.1021/jf970061p.
  • Spiegel, T.;. Whey Protein Aggregation under Shear Conditions – Effects of Lactose and Heating Temperature on Aggregate Size and Structure. Int J. Food Sci & Tech. 1999, 34(5‐6), 523–531. DOI: 10.1046/j.1365-2621.1999.00309.x.
  • Spiegel, T.; Huss, M. Whey Protein Aggregation under Shear Conditions – Effects of pH‐Value and Removal of Calcium. Int J. Food Sci & Tech. 2002, 37(5), 559–568. DOI: 10.1046/j.1365-2621.2002.00612.x.
  • Sirikulchayanont, P.; Jayanta, S.; Pradipasena, P.; Miyawaki, O. Characteristics of Microparticulated Particles from Mung Bean Protein. Int. J. Food Prop. 2007, 10(3), 621–630. DOI: 10.1080/10942910601051212.
  • Dissanayake, M.; Liyanaarachchi, S.; Vasiljevic, T. Functional Properties of Whey Proteins Microparticulated at Low pH. J. Dairy Sci. 2012, 95(4), 1667–1679. DOI: 10.3168/jds.2011-4823.
  • Tobin, J. T.; Fitzsimons, S. M.; Kelly, A. L.; Kelly, P. M.; Auty, M. A. E.; Fenelon, M. A. Microparticulation of Mixtures of Whey Protein and Inulin. Int J. Dairy Tech. 2010, 63(1), 32–40. DOI: 10.1111/j.1471-0307.2009.00550.x.
  • Purwanti, N.; Moerkens, A.; Van Der Goot, A.; Boom, R. Reducing the Stiffness of Concentrated Whey Protein Isolate (WPI) Gels by Using WPI Microparticles. Food Hydrocoll. 2012, 26(1), 240–248. DOI: 10.1016/j.foodhyd.2011.05.015.
  • Erabit, N.; Flick, D.; Alvarez, G. Formation of β-lactoglobulin Aggregates during Thermomechanical Treatments under Controlled Shear and Temperature Conditions. J. Food Eng. 2014, 120(1), 57–68. DOI: 10.1016/j.jfoodeng.2013.07.003.
  • Öztürk, O. K.; Production and Characterization of Microparticulated Corn Zein, and Its Applications on Emulsions and Bread-making. Master of Science Thesis, Middle East Technical University, Ankara, Turkey, 2014.
  • Sağlam, D.; Venema, P.; De Vries, R.; Van Der Linden, E. Exceptional Heat Stability of High Protein Content Dispersions Containing Whey Protein Particles. Food Hydrocoll. 2014a, 34(1), 68–77. DOI: 10.1016/j.foodhyd.2012.12.016.
  • Sturaro, A.; De Marchi, M.; Zorzi, E.; Cassandro, M. Effect of Microparticulated Whey Protein Concentration and Protein-to-Fat Ratio on Caciotta Cheese Yield and Composition. Int. Dairy J. 2015, 48, 46–52. DOI: 10.1016/j.idairyj.2015.02.003.
  • Sun, C.; Liu, R.; Wu, T.; Liang, B.; Shi, C.; Zhang, M. Effect of Superfine Grinding on the Structural and Physicochemical Properties of Whey Protein and Applications for Microparticulated Proteins. Food Sci. Biotech. 2015b, 24(5), 1637–1643. DOI: 10.1007/s10068-015-0212-y.
  • Sun, C.; Liu, R.; Wu, T.; Liang, B.; Shi, C.; Cong, X.; Hou, T.; Zhang, M. Combined Superfine Grinding and Heat-Shearing Treatment for the Microparticulation of Whey Proteins. Food and Bioproc. Tech. 2016, 9(2), 378–386. DOI: 10.1007/s11947-015-1629-2.
  • Gu, J.; Xin, Z.; Meng, X.; Sun, S.; Qiao, Q.; Deng, H. A “Reduced-pressure Distillation” Method to Prepare Zein-Based Fat Analogue for Application in Mayonnaise Formulation. J. Food Eng. 2016, 182, 1–8. DOI: 10.1016/j.jfoodeng.2016.01.026.
  • Chang, C.; Niu, F.; Gu, L.; Li, X.; Yang, H.; Zhou, B.; Wang, J.; Su, Y.; Yanjun, Y. Formation of Fibrous or Granular Egg White Protein Microparticles and Properties of the Integrated Emulsions. Food Hydrocoll. 2016, 61, 477–486. DOI: 10.1016/j.foodhyd.2016.06.002.
  • Chang, C.; Li, X.; Li, J.; Niu, F.; Zhang, M.; Zhou, B.; Su, Y.; Yang, Y. Effect of Enzymatic Hydrolysis on Characteristics and Synergistic Efficiency of Pectin on Emulsifying Properties of Egg White Protein. Food Hydrocoll. 2017, 65, 87–95. DOI: 10.1016/j.foodhyd.2016.11.004.
  • Wolz, M.; Kastenhuber, S.; Kulozik, U. High Moisture Extrusion for Microparticulation of Whey Proteins –influence of Process Parameters. J. Food Eng. 2016a, 185, 56–61. DOI: 10.1016/j.jfoodeng.2016.04.002.
  • Liu, R.; Tian, Z.; Song, Y.; Wu, T.; Sui, W.; Zhang, M. Optimization of the Production of Microparticulated Egg White Proteins as Fat Mimetic in Salad Dressings Using Uniform Design. Food Sci. Tech Res. 2018a, 24(5), 817–827. DOI: 10.3136/fstr.24.817.
  • Liu, R.; Wang, L.; Liu, Y.; Wu, T.; Zhang, M. Fabricating Soy Protein Hydrolysate/Xanthan Gum as Fat Replacer in Ice Cream by Combined Enzymatic and Heat-Shearing Treatment. Food Hydrocoll. 2018b, 81, 39–47. DOI: 10.1016/j.foodhyd.2018.01.031.
  • Ciron, C.; Gee, V.; Kelly, A.; Auty, M. Comparison of the Effects of High-Pressure Microfluidization and Conventional Homogenization of Milk on Particle Size, Water Retention and Texture of Non-Fat and Low-Fat Yoghurts. Int Dairy J. 2010, 20(5), 314–320. DOI: 10.1016/j.idairyj.2009.11.018.
  • Paquin, P.; Lebeuf, Y.; Richard, J. P.; Kalab, M. Microparticulation of Milk Proteins by High Pressure Homogenization to Produce a Fat Substitute. Int Dairy Feder Special Iss. 1993, 9303, 389–396.
  • Singer, N. S.; Yamamoto, S.; Latella, J. Protein Product Base. Patent US 4734287, March 29 1988.
  • Spiegel, T.; Kessler, H. G. Continuous Formation of Gel Structures and Stable Foams Based on a Heat Treated and Acidulated Whey Protein Concentrate. In Texture of Fermented Milk Products and Dairy Desserts. Special Issue No. 9802. International Dairy Federation:Brussels, 1998, 106–114
  • Hossain, M. K.; Keidel, J.; Hensel, O.; Diakité, M. The Impact of Extruded Microparticulated Whey Proteins in Reduced-Fat, Plain-Type Stirred Yogurt: Characterization of Physicochemical and Sensory Properties. LWT. 2020, 134, 109976. DOI: 10.1016/j.lwt.2020.109976.
  • Sağlam, D.; Venema, P.; De Vries, R.; Sagis, L.; Van Der Linden, E. Preparation of High Protein Micro-particles Using Two-step Emulsification. Food Hydrocoll. 2011, 25(5), 1139–1148. DOI: 10.1016/j.foodhyd.2010.10.011.
  • Wolz, M.; Mersch, E.; Kulozik, U. Thermal Aggregation of Whey Proteins under Shear Stress. Food Hydrocoll. 2016b, 56, 396–404. DOI: 10.1016/j.foodhyd.2015.12.036.
  • Havea, P.; Grant, J. E.; Hii, M. J. W.; Wiles, P. G. Dairy Product and Process. Patent US 2012/0114795 A1. May 10, 2012.
  • Konrad, G.; Kleinschmidt, T.; Lorenz, C. Microparticulation of Whey Protein by Thermal Precipitation, Comprises Heating Whey Proteins below Their Isoelectric Points for Protein Unfolding, and Carrying Out Whey Protein Precipitation, When pH Is Increased in Isoelectric Region. Patent DE102012216990A1, March 21, 2013.
  • Gamlath, C. J.; Leong, T. S. H.; Ashokkumar, M.; Martin, G. J. O. Incorporating Whey Protein Aggregates Produced with Heat and Ultrasound Treatment into Rennet Gels and Model Non-Fat Cheese Systems. Food Hydrocoll. 2020, 109, 106103. DOI: 10.1016/j.foodhyd.2020.106103.
  • Singer, N.;. Microparticulated Proteins as Fat Mimetics. In Handbook of Fat Replacers; Roller, S., Jones, J.A., Eds.; CRC Press: Boca Raton, 1996; pp 175–190.
  • Wolz, M.; Kulozik, U. Thermal Denaturation Kinetics of Whey Proteins at High Protein Concentrations. Int. Dairy J. 2015, 49, 95–101. DOI: 10.1016/j.idairyj.2015.05.008.
  • Tolkach, A.; Kulozik, U. Reaction Kinetic Pathway of Reversible and Irreversible Thermal Denaturation of β-lactoglobulin. Le Lait. 2007, 87(4–5), 301–315. DOI: 10.1051/lait:2007012.
  • Dannenberg, F.; Kessler, H. G. Reaction Kinetics of the Denaturation of Whey Proteins in Milk. J. Food Sci. 1988, 53(1), 258–263. DOI: 10.1111/j.1365-2621.1988.tb10223.x.
  • Arakawa, T.; Timasheff, S. Stabilization of Protein Structure by Sugars. Biochemistry. 1982, 21(25), 6536–6544. DOI: 10.1021/bi00268a033.
  • Hidalgo, M. E.; Armendariz, M.; Wagner, J. R.; Risso, P. H. Effect of Xanthan Gum on the Rheological Behavior and Microstructure of Sodium Caseinate Acid Gels. Gels. 2016, 2(3), 23. DOI: 10.3390/gels2030023.
  • Chung, C.; Degner, B.; Mcclements, D. Development of Reduced-calorie Foods: Microparticulated Whey Proteins as Fat Mimetics in Semi-Solid Food Emulsions. Food Res. Int. 2014a, 56(C), 136–145. DOI: 10.1016/j.foodres.2013.11.034.
  • Simmons, M.; Jayaraman, P.; Fryer, P. The Effect of Temperature and Shear Rate upon the Aggregation of Whey Protein and Its Implications for Milk Fouling. J. Food Eng. 2007, 79(2), 517–528. DOI: 10.1016/j.jfoodeng.2006.02.013.
  • Gaaloul, S.; Corredig, M.; Turgeon, S. The Effect of Shear Rate on the Molecular Mass Distribution of Heat-Induced Aggregates of Mixtures Containing Whey Proteins and κ-Carrageenan. Food Biophys. 2009, 4(1), 13–22. DOI: 10.1007/s11483-008-9099-y.
  • Damodaran, S.;. Amino Acids, Peptides, and Proteins. In Fennema’s Food Chem, Fourth ed.; Damodaran, S., Parkin, K.L., Fennema, O.R., Eds.; CRC Press: Boca Raton, 2007; pp 217–323.
  • Trivedi, M.; Laurence, J.; Siahaan, T. The Role of Thiols and Disulfides on Protein Stability. Curr. Protein Pept. Sci. 2009, 10(6), 614–625. DOI: 10.2174/138920309789630534.
  • Sun, C.; Wu, T.; Liu, R.; Liang, B.; Tian, Z.; Zhang, E.; Zhang, M. Effects of Superfine Grinding and Microparticulation on the Surface Hydrophobicity of Whey Protein Concentrate and Its Relation to Emulsions Stability. Food Hydrocoll. 2015a, 51, 512–518. DOI: 10.1016/j.foodhyd.2015.05.027.
  • Mitidieri, F.; Wagner, J. Coalescence of O/W Emulsions Stabilized by Whey and Isolate Soybean Proteins. Influence of Thermal Denaturation, Salt Addition and Competitive Interfacial Adsorption. Food Res. Int. 2002, 35(6), 547–557. DOI: 10.1016/s0963-9969(01)00155-7.
  • Genovese, D.; Lozano, J.; Rao, M. The Rheology of Colloidal and Noncolloidal Food Dispersions. J. Food Sci. 2007, 72(2), R11–R20. DOI: 10.1111/j.1750-3841.2006.00253.x.
  • Ju, Z. Y.; Kilara, A. Properties of Gels Induced by Heat, Protease, Calcium Salt, and Acidulant from Calcium Ion-Aggregated Whey Protein Isolate. J. Dairy Sci. 1998, 81(5), 1236–1243. DOI: 10.3168/jds.s0022-0302(98)75684-x.
  • Bouaouina, H.; Desrumaux, A.; Loisel, C.; Legrand, J. Functional Properties of Whey Proteins as Affected by Dynamic High-Pressure Treatment. Int. Dairy J. 2006, 16(4), 275–284. DOI: 10.1016/j.idairyj.2005.05.004.
  • Pearce, K.; Kinsella, J. Emulsifying Properties of Proteins: Evaluation of a Turbidimetric Technique. J. Agri. Food Chem. 1978, 26(3), 716–723. DOI: 10.1021/jf60217a041.
  • Phillips, L.; Schulman, W.; Kinsella, J. pH and Heat Treatment Effects on Foaming of Whey Protein Isolate. J. Food Sci. 1990, 55(4), 1116–1119. DOI: 10.1111/j.1365-2621.1990.tb01612.x.
  • Hunt, J. A.; Dalgleish, D. G. Heat Stability of Oil-In-Water Emulsions Containing Milk Proteins: Effect of Ionic Strength and pH. J. Food Sci. 1995, 60(5), 1120–1123. DOI: 10.1111/j.1365-2621.1995.tb06306.x.
  • Çakır-Fuller, E.;. Enhanced Heat Stability of High Protein Emulsion Systems Provided by Microparticulated Whey Proteins. Food Hydrocoll. 2015, 47, 41–50. DOI: 10.1016/j.foodhyd.2015.01.003.
  • Sağlam, D.; Venema, P.; De Vries, R.; Van Aelst, A.; Van Der Linden, E. Relation between Gelation Conditions and the Physical Properties of Whey Protein Particles. Langmuir. 2012, 28(16), 6551–6560. DOI: 10.1021/la300344g.
  • Renard, D.; Robert, P.; Faucheron, S.; Sanchez, C. Rheological Properties of Mixed Gels Made of Microparticulated Whey Proteins and β-lactoglobulin. Colloids SurfB: Biointerfaces. 1999, 12,113–121. DOI: 10.1016/S0927-7765(98)00068-X.
  • Sağlam, D.; Venema, P.; Van Der Linden, E.; De Vries, R. Design, Properties, and Applications of Protein Micro- and Nanoparticles. Curr. Opin. Colloid Interface Sci. 2014b, 19(5), 428–437. DOI: 10.1016/j.cocis.2014.09.004.
  • Wijmans, M. C.; Dickinson, E. Brownian Dynamics Simulations of Filled Particle Gels. J. Chem. Soc. Faraday Trans. 1998, 94(1), 129–137. DOI: 10.1039/a706632e.
  • Schenkel, P.; Samudrala, R.; Hinrichs, J. The Effect of Adding Whey Protein Particles as Inert Filler on Thermophysical Properties of Fat-Reduced Semihard Cheese Type Gouda. Int J. Dairy Tech. 2013, 66(2), 220–230. DOI: 10.1111/1471-0307.12036.
  • Tamime, A.; Kaláb, M.; Muir, D.; Barrantes, E. The Microstructure of Set-style, Natural Yogurt Made by Substituting Microparticulate Whey Protein for Milk Fat. Int. J. Dairy Technol. 1995, 48(4), 107–111. DOI: 10.1111/j.1471-0307.1995.tb02478.x.
  • Romeih, E.; Michaelidou, A.; Biliaderis, C.; Zerfiridis, G. Low-Fat White-Brined Cheese Made from Bovine Milk and Two Commercial Fat Mimetics: Chemical, Physical and Sensory Attributes. Int. Dairy J. 2002, 12(6), 525–540. DOI: 10.1016/s0958-6946(02)00043-2.
  • Desai, N.; Nolting, J. Microstructure Studies of Reduced-fat Cheeses Containing Fat Substitute. In Chemistry of Structure-Function Relationships in Cheese; Malin, E.L., Tunick, M.H., Eds.; Springer: New York, 1995; pp 295–302.
  • Steffl, A.; Hafenmair, M.; Hechler, J. Influence of Whey Protein Particles on the Renneting Properties of Milk. Milchwissenschaft. 1999, 54(9), 510–513. DOI: 10.1016/s0958-6946(99)00107-7.
  • Koca, N.; Metin, M. Textural, Melting and Sensory Properties of Low-Fat Fresh Kashar Cheeses Produced by Using Fat Replacers. Int. Dairy J. 2004, 14(4), 365–373. DOI: 10.1016/j.idairyj.2003.08.006.
  • Lee, S.; Huss, M.; Klostermeyer, H.; Anema, S. The Effect of Pre-Denatured Whey Proteins on the Textural and Micro-Structural Properties of Model Processed Cheese Spreads. Int. Dairy J. 2013, 32(2), 79–88. DOI: 10.1016/j.idairyj.2013.04.006.
  • Schadle, C. N.; Eisner, P.; Bader-Mittermaier, S. The Combined Effects of Different Fat Replacers and Rennet Casein on the Properties of Reduced-Fat Processed Cheese. J. Dairy Sci. 2020, 103(5), 3980–3993. DOI: 10.3168/jds.2019-17694.
  • Stankey, J. A.; Lu, Y.; Abdalla, A.; Govindasamy-Lucey, S.; Jaeggi, J. J.; Mikkelsen, B.; Pedersen, K. T.; Andersen, C. B. Low‐Fat Cheddar Cheese Made Using Microparticulated Whey Proteins: Effect on Yield and Cheese Quality. Int. J. Dairy Technol. 2017, 70(4), 481–491. DOI: 10.1111/1471-0307.12413.
  • Zhang, D.; Lillevang, S. K.; Shah, N. P. Influence of Pre-Acidification, and Addition of KGM and Whey Protein-Based Fat Replacers CH-4560, and YO-8075 on Texture Characteristics and Pizza Bake Properties of Low-Fat Mozzarella Cheese. LWT. 2021, 137, 110384. DOI: 10.1016/j.lwt.2020.110384.
  • Giroux, H. J.; Veillette, N.; Britten, M. Use of Denatured Whey Protein in the Production of Artisanal Cheeses from Cow, Goat and Sheep Milk. Small Ruminant Res. 2018, 161, 34–42. DOI: 10.1016/j.smallrumres.2018.02.006.
  • Barrantes, E.; Tamime, A. Y.; Muir, D. D.; Sword, A. M. The Effect of Substitution of Fat by Microparticulate Whey-Protein on the Quality of Set-Type, Natural Yoghurt. Int. J. Dairy Technol. 1994, 47(2), 61–68. DOI: 10.1111/j.1471-0307.1994.tb01274.x.
  • Sandoval-Castilla, O.; Lobato-Calleros, C.; Aguirre-Mandujano, E.; Vernon-Carter, E. Microstructure and Texture of Yogurt as Influenced by Fat Replacers. Int. Dairy J. 2004, 14(2), 151–159. DOI: 10.1016/s0958-6946(03)00166-3.
  • Janhøj, T.; Petersen, C.; Frøst, M.; Ipsen, I. R. Sensory and Rheological Characterization of Low-fat Stirred Yogurt. J. Texture Stud. 2006, 37(3), 276–299. DOI: 10.1111/j.1745-4603.2006.00052.x.
  • Torres, I.; Amigo, J.; Knudsen, J.; Tolkach, A.; Mikkelsen, B.; Ipsen, R. Rheology and Microstructure of Low-Fat Yoghurt Produced with Whey Protein Microparticles as Fat Replacer. Int. Dairy J. 2018, 81, 62–71. DOI: 10.1016/j.idairyj.2018.01.004.
  • Rojas, S. A.; Goff, H. D.; Senaratne, V.; Dalgleish, D. G.; Flores, A. Gelation of Commercial Fractions of β-lactoglobulin and α-lactalbumin. Int. Dairy, J. 1997, 7, 79–85. DOI: 10.1016/S0958-6946(96)00045-3.
  • Banks, J. M.;. The Technology of Low-Fat Cheese Manufacture. Int J. Dairy Tech. 2004, 57(4), 199–207. DOI: 10.1111/j.1471-0307.2004.00136.x.
  • Godoi, F. C.; Ningtyas, D. W.; Geoffroy, Z.; Prakash, S. Protein-Based Hydrocolloids: Effect on the Particle Size Distribution, Tribo-Rheological Behaviour and Mouthfeel Characteristics of Low-Fat Chocolate Flavoured Milk. Food Hydrocoll. 2021, 115, 106628. DOI: 10.1016/j.foodhyd.2021.106628.
  • Melnikova, E. I.; Stanislavskaya, E. B.; Korotkov, E. G. Preparation and Use of Whey Protein Microparticulate in Synbiotic Drink Technology. Foods Raw Mater. 2015, 3(2), 96–104. DOI: 10.12737/13125.
  • Melnikova, E. I.; Losev, A. N.; Stanislavskaya, E. B. Microparticulation of Caseic Whey to Use in Fermented Milk Production. Foods Raw Mater. 2017, 5(2), 83–93. DOI: 10.21603/2308-4057-2017-2-83-93.
  • Sun, C.; Liu, R.; Sheng, H.; Wang, R.; Zhang, Z.; Zhao, J.; Zhang, M. Effect of Microparticulation and Xanthan Gum on the Stability and Lipid Digestion of Oil-In-Water Emulsions Stabilized by Whey Protein. Food Funct. 2018b, 9(9), 4683–4694. DOI: 10.1039/c8fo00182k.
  • Yan, L.; Yu, D.; Liu, R.; Jia, Y.; Zhang, M.; Wu, T.; Sui, W. Microstructure and Meltdown Properties of Low-Fat Ice Cream: Effects of Microparticulated Soy Protein Hydrolysate/Xanthan Gum (MSPH/XG) Ratio and Freezing Time. J. Food Eng. 2021, 291, 110291. DOI: 10.1016/j.jfoodeng.2020.110291.
  • Zhang, T.; Guo, J.; Chen, J. F.; Wang, J. M.; Wan, Z. L.; Yang, X. Q. Heat Stability and Rheological Properties of Concentrated Soy Protein/Egg White Protein Composite Microparticle Dispersions. Food Hydrocoll. 2020, 100, 105449. DOI: 10.1016/j.foodhyd.2019.105449.
  • Stark, L. E.; Gross, A. T. Hydrophobic Protein Microparticles and Preparation Thereof. Patent US5145702, September 8 1992.
  • Oliete, B.; Potin, F.; Cases, E.; Saurel, S. Modulation of the Emulsifying Properties of Pea Globulin Soluble Aggregates by Dynamic High Pressure Microfluidization. Innov. Food Sci. Emerg. Technol. 2018, 47, 292–300. DOI: 10.1016/j.ifset.2018.03.015.
  • Mozaffarian, D.;. Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity: A Comprehensive Review. Circulation. 2016, 133(2), 187–225. DOI: 10.1161/circulationaha.115.018585.
  • Young, V. R.; Fukagawa, N. K.; Pellett, P. L. Nutritional Implications of Microparticulated Protein. J. Am. Coll. Nutr. 1990, 9(4), 418–426. DOI: 10.1080/07315724.1990.10720400.
  • Gaull, G.;. Role of Microparticulated Protein Fat Substitutes in Food and Nutrition. Annals of the New York Academy of Sciences. 1991, 623, 350–355. DOI: 10.1111/j.1749-6632.1991.tb43744.x.
  • Zukiewicz-Sobczak, W.; Wróblewska, P.; Adamczuk, P.; Kopczyński, P. Causes, Symptoms and Prevention of Food Allergy. Postepy Dermatol. Alergol. 2013, 30(2), 113–116. DOI: 10.5114/pdia.2013.34162.
  • Caubet, J.; Wang, J. Current Understanding of Egg Allergy. Pediatr. Clin. North Am. 2011, 58(2), 427–443. DOI: 10.1016/j.pcl.2011.02.014.
  • Shoormasti, R. S.; Pourpak, Z.; Yazdanyar, Z.; Lebaschi, Z.; Teymourpour, P.; Barzegar, S.; Tazesh, B.; Fazlollahi, M. R.; Movahedi, M.; Dashti, P.; et al. The Most Common Cow’s Milk Allergenic Proteins regarding to Allergic Symptoms. Clin. Transl. Allergy. 2011, 1(Suppl 1), 62. DOI: 10.1186/2045-7022-1-s1-p62.
  • Verhoeckx, K. C. M.; Vissers, Y. M.; Baumert, J. L.; Faludi, R.; Feys, M.; Flanagan, S.; Herouet-Guicheney, C.; Holzhauser, T.; Shimojo, R.; Van Der Bolt, N.; et al. Food Processing and Allergenicity. Food Chem. Toxicol. 2015, 80, 223–240. DOI: 10.1016/j.fct.2015.03.005.
  • Sampson, H. A.; Cooke, S. The Antigenicity and Allergenicity of Microparticulated Proteins: Simplesse®. Clin. Exp. Allergy. 1992, 22(10), 963–969. DOI: 10.1111/j.1365-2222.1992.tb02071.x.
  • Erdman, J.;. The Quality of Microparticulated Protein. J. Am. Coll. Nutr. 1990, 9(4), 398–409. DOI: 10.1080/07315724.1990.10720398.
  • Samtiya, M.; Aluko, R. E.; Dhewa, T. Plant Food Anti-Nutritional Factors and Their Reduction Strategies: An Overview. Food Prod. Process. Nutr. 2020, 2(1), 1–14. DOI: 10.1186/s43014-020-0020-5.
  • Reddy, I. M.; Kella, N. K. D.; Kinsella, J. E. Structural and Conformational Basis of the Resistance of Beta-Lactoglobulin to Peptic and Chymotryptic Digestion. J. Agri. Food Chem. 1988, 36(4), 737–741. DOI: 10.1021/jf00082a015.
  • Mitchell, C. J.; D’Souza, R. F.; Fanning, A. C.; Poppitt, D.; Cameron-Smith, D. Short Communication: Muscle Protein Synthetic Response to Microparticulated Whey Protein in Middle-Aged Men. J. Dairy Sci. 2017, 100(6), 4230–4234. DOI: 10.3168/jds.2016-12287.
  • Hamarsland, H.; Laahne, J. A. L.; Paulsen, G.; Cotter, M.; Børsheim, E.; Raastad, T. Native Whey Induces Higher and Faster Leucinemia than Other Whey Protein Supplements and Milk: A Randomized Controlled Trial. BMC Nutr. 2017, 3(1), 10. DOI: 10.1186/s40795-017-0131-9.
  • Hamarsland, H.; Aas, S. N.; Nordengen, A. L.; Holte, K.; Garthe, I.; Paulsen, G.; Cotter, M.; Børsheim, E.; Benestad, H. B.; Raastad, T. Native Whey Induces Similar Post Exercise Muscle Anabolic Responses as Regular Whey, despite Greater Leucinemia, in Elderly Individuals. J. Nutr. Health Aging. 2019, 23(1), 42–50. DOI: 10.1007/s12603-018-1105-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.