203
Views
1
CrossRef citations to date
0
Altmetric
Review

Cnidoscolus Aconitifolius (Mill.) I.M. Johnst.: A Food Proposal Against Thromboembolic Diseases

&

  • World Health Organization. Noncommunicable Diseases. Country Profiles 2018; Geneva, 2018. https://www.who.int/nmh/publications/ncd-profiles-2018/en/(accessed April 23, 2020).
  • World Health Organization. About Cardiovascular Diseases. https://www.who.int/cardiovascular_diseases/about_cvd/en/(accessed April 15, 2020).
  • Barquera, S.; Pedroza-Tobias, A.; Medina, C. Cardiovascular Diseases in Mega-Countries: The Challenges of the Nutrition, Physical Activity and Epidemiologic Transitions, and the Double Burden of Disease. Current Opinion in Lipidology. 2016, 27(4), 329–344. DOI: 10.1097/MOL.0000000000000320.
  • Mendoza, W.; Miranda, J. J. Global Shifts in Cardiovascular Disease, the Epidemiologic Transition, and Other Contributing Factors: Toward a New Practice of Global Health Cardiology. Cardiology Clinics. 2017, 35(1), 1–12. DOI: 10.1016/j.ccl.2016.08.004.
  • Van Rooy, M.-J.;. Metabolic Syndrome, Platelet Activation and the Development of Transient Ischemic Attack or Thromboembolic Stroke. Thromb. Res. 2015, 135(3), 434–442. DOI: 10.1016/j.thromres.2014.12.030.
  • Asgary, S.; Nazari, B.; Sarrafzadegan, N.; Parkhideh, S.; Saberi, S.; Esmaillzadeh, A.; Azadbakht, L. Evaluation of Fatty Acid Content of Some Iranian Fast Foods with Emphasis on Trans Fatty Acids. Asia Pac. J. Clin. Nutr. 2009, 18(2), 187–192.
  • World Health Organization. Obesity and Overweight Fact Sheet. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed January 31, 2020).
  • ENSANUT. Encuesta Nacional de Salud y Nutrición de Medio Camino 2016; Secretaría de Salud: Mexico City, MX, 2016. https://www.gob.mx/cms/uploads/attachment/file/209093/ENSANUT.pdf (accessed January 12, 2020).
  • World Health Organization. Noncommunicable Diseases Fact Sheet. https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed February 27, 2020).
  • World Health Organization. Cardiovascular Diseases (Cvds) Fact Sheet. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed March 15, 2020).
  • Maredza, M.; Chola, L. Economic Burden of Stroke in a Rural South African Setting. eNeurologicalSci. 2016, 3, 26–32. DOI: 10.1016/J.ENSCI.2016.01.001.
  • Associarion, A. H.;. Cardiovascular Disease: A Costly Burden For America. Projections Through 2035; Dallas, Texas, USA, 2017. https://healthmetrics.heart.org/wp-content/uploads/2017/10/Cardiovascular-Disease-A-Costly-Burden.pdf (accessed February 12, 2020).
  • Wilkins, E.; Wilson, L.; Wickramasinghe, K.; Bhatnagar, P.; Leal, J.; Luengo-Fernandez, R.; Burns, R.; Rayner, M.; Townsend, N. European Cardiovascular Disease Statistics 2017 Edition; Brussels: Belgium, 2017.
  • The Economist. The Cost of Silence Cardiovascular Disease in Asia; 2018. https://eiuperspectives.economist.com/sites/default/files/The_cost_of_silence.pdf (accessed March 25, 2020).
  • Hira, R. S.; Cowart, J. B.; Akeroyd, J. M.; Ramsey, D. J.; Pokharel, Y.; Nambi, V.; Jneid, H.; Deswal, A.; Denktas, A.; Taylor, A.;, et al. Risk Factor Optimization and Guideline-Directed Medical Therapy in US Veterans with Peripheral Arterial and Ischemic Cerebrovascular Disease Compared to Veterans with Coronary Heart Disease. Am. J. Cardiol. 2016, 118(8), 1144–1149. DOI: 10.1016/j.amjcard.2016.07.027.
  • Hardman, R.;. Management of Chronic Deep Vein Thrombosis in Women. Semin. Intervent. Radiol. 2018, 35(1), 3–8. DOI: 10.1055/s-0038-1636514.
  • Koupenova, M.; Kehrel, B. E.; Corkrey, H. A.; Freedman, J. E. Thrombosis and Platelets: An Update. Eur. Heart J. 2017, 38, 785–791. DOI: 10.1093/eurheartj/ehw550.
  • Crowley, M. P.; Hunt, B. J. Venous Thromboembolism and Thrombophilia Testing. Medicine. 2017, 45(4), 233–238. DOI: 10.1016/J.MPMED.2017.01.006.
  • Gimbrone, M. A.; Endothelial Cell, G.-C. G. Dysfunction and the Pathobiology of Atherosclerosis. Circ. Res. 2016, 118(4), 620–636. DOI: 10.1161/CIRCRESAHA.115.306301.
  • Moss, J. W.; Ramji, D. P. Cytokines: Roles in Atherosclerosis Disease Progression and Potential Therapeutic Targets. Future Med. Chem. 2016, 8(11), 1317–1330. DOI: 10.4155/fmc-2016-0072.
  • Zmysłowski, A.; Szterk, A. Current Knowledge on the Mechanism of Atherosclerosis and Pro-Atherosclerotic Properties of Oxysterols. Lipids Health Dis. 2017, 16(1), 188. DOI: 10.1186/s12944-017-0579-2.
  • Zani, I.; Stephen, S.; Mughal, N.; Russell, D.; Homer-Vanniasinkam, S.; Wheatcroft, S.; Ponnambalam, S.; Zani, I. A.; Stephen, S. L.; Mughal, N. A.;, et al. Scavenger Receptor Structure and Function in Health and Disease. Cells.2015, 4(2), 178–201. DOI: 10.3390/cells4020178.
  • Dubland, J. A.; Francis, G. A. Lysosomal Acid Lipase: At the Crossroads of Normal and Atherogenic Cholesterol Metabolism. Front. Cell Dev. Biol. 2015, 3, 3. DOI: 10.3389/fcell.2015.00003.
  • Macrophage, T. I.;. Apoptosis in Atherosclerosis: Consequences on Plaque Progression and the Role of Endoplasmic Reticulum Stress. Antioxid. Redox Signal. 2009, 11(9), 2333–2339. DOI: 10.1089/ars.2009.2469.
  • Mega, J. L.; Simon, T. Pharmacology of Antithrombotic Drugs: An Assessment of Oral Antiplatelet and Anticoagulant Treatments. Lancet. 2015, 386(9990), 281–291. DOI: 10.1016/S0140-6736(15)60243-4.
  • Katakami, N.;. Mechanism of Development of Atherosclerosis and Cardiovascular Disease in Diabetes Mellitus. J. Atheroscler. Thromb. 2018, 25(1), 27–39. DOI: 10.5551/jat.RV17014.
  • Dydek, E. V.; Chaikof, E. L. Simulated Thrombin Responses in Venous Valves. J. Vasc. Surgery. Venous Lymphat. Disord. 2016, 4(3), 329–335. DOI: 10.1016/j.jvsv.2015.09.005.
  • New, M. N.;. Insights into the Mechanisms of Venous Thrombosis. J. Clin. Invest. 2012, 122(7), 2331–2336. DOI: 10.1172/JCI60229.
  • Bovill, E. G.; Van Der Vliet, A. Venous Valvular Stasis–Associated Hypoxia and Thrombosis: What Is the Link? Annu. Rev. Physiol. 2011, 73(1), 527–545. DOI: 10.1146/annurev-physiol-012110-142305.
  • López, J. A.; Chen, J. Pathophysiology of Venous Thrombosis. Thromb. Res. 2009, 123, S30–S34. DOI: 10.1016/S0049-3848(09)70140-9.
  • Wolberg, A. S.; Rosendaal, F. R.; Weitz, J. I.; Jaffer, I. H.; Agnelli, G.; Baglin, T. Venous Thrombosis. Nat. Rev. Dis. Prim. 2015, 1, 1–17. DOI: 10.1038/nrdp.2015.6.
  • Tabas, I.; García-Cardeña, G.; Owens, G. K. Recent Insights into the Cellular Biology of Atherosclerosis. J. Cell Biol. 2015, 209(1), 13–22. DOI: 10.1083/jcb.201412052.
  • Engelmann, B.; Massberg, S. Thrombosis as an Intravascular Effector of Innate Immunity. Nat. Rev. Immunol. 2013, 13(1), 34–45. DOI: 10.1038/nri3345.
  • Sikka, P.; Bindra, V. K. Newer Antithrombotic Drugs. Indian J. Crit. Care Med. 2010, 14(4), 188–195. DOI: 10.4103/0972-5229.76083.
  • Chaudhari, K.; Hamad, B.; Syed, B. A. Antithrombotic Drugs Market. Nat. Rev. Drug Discov. 2014, 13(8), 571–572. DOI: 10.1038/nrd4365.
  • Furie, B.; Furie, B. C. Mechanisms of Thrombus Formation. N. Engl. J. Med. 2008, 359(9), 938–949. DOI: 10.1056/NEJMra0801082.
  • Tselepis, A. D.; Tsoumani, M. E.; Kalantzi, K. I.; Dimitriou, A. A.; Tellis, C. C.; Goudevenos, I. A. Influence of High-Density Lipoprotein and Paraoxonase-1 on Platelet Reactivity in Patients with Acute Coronary Syndromes Receiving Clopidogrel Therapy. J. Thromb. Haemost. 2011, 9(12), 2371–2378. DOI: 10.1111/j.1538-7836.2011.04541.x.
  • Blair, P.;. Platelet Alpha-Granules: Basic Biology and Clinical Correlates. Blood. Rev. 2009, 23(4), 177–189. DOI: 10.1016/j.blre.2009.04.001.
  • Chen, P.; Gao, H.; Lu, Y.; Nie, H.; Liu, Z.; Zhao, Y.; Fan, N.; Zou, Q.; Dai, Y.; Tang, A.;, et al. Altered Expression of ENOS, Prostacyclin Synthase, Prostaglandin G/H Synthase, and Thromboxane Synthase in Porcine Aortic Endothelial Cells after Exposure to Human Serum-Relevance to Xenotransplantation. Cell Biol. Int. 2017, 41(7), 798–808. DOI: 10.1002/cbin.10782.
  • Iván Flores-Rivera, O.; Karina Ramírez-Morales, D.; Martín Meza-Márquez, J.; Arturo Nava-López, J.; Fisiología, C., Fisiología de la Coagulación. Rev. Mex. Anestesiol. 37(2), S382–S386 (2014).
  • Narayanan, S.;. Evolution of Anticoagulant Therapy : A Focus on Newer Anticoagulants. J. Clin. Lab. Med. 2017, 2(1), 1–4. DOI: 10.16966/2572-9578.110.
  • Lee, K. A.; Kim, M. S. Antiplatelet and Antithrombotic Activities of Methanol Extract of Usnea Longissima. Phyther. Res. 2005, 19(12), 1061–1064. DOI: 10.1002/ptr.1791.
  • McTavish, D.; Faulds, D.; Goa, K. L. Ticlopidine. An Updated Review of Its Pharmacology and Therapeutic Use in Platelet-Dependent Disorders. Drugs. 1990, 40(2), 238–259. DOI: 10.2165/00003495-199040020-00006.
  • Czogalla, K. J.; Biswas, A.; Höning, K.; Hornung, V.; Liphardt, K.; Watzka, M. Warfarin and Vitamin K Compete for Binding to Phe55 in Human VKOR. Nat. Struct. Mol. Biol. 2017, 24(1), 77–85. DOI: 10.1038/nsmb.3338.
  • Eriksson, B. I.; Agnelli, G.; Cohen, A. T.; Dahl, O. E.; Lassen, M. R.; Mouret, P.; Rosencher, N.; Kälebo, P.; Panfilov, S.; Eskilson, C.;, et al. The Direct Thrombin Inhibitor Melagatran Followed by Oral Ximelagatran Compared with Enoxaparin for the Prevention of Venous Thromboembolism after Total Hip or Knee Replacement: The EXPRESS Study. J. Thromb. Haemost. 2003, 1(12), 2490–2496. DOI: 10.1111/j.1538-7836.2003.00494.x.
  • Briongos Figuero, S.; García Santos-Gallego, C.; Badimón, J. J. Improvements in Oral Anticoagulant Therapy for Atrial Fibrillation. Med. Clin. (Barc). 2013, 141(11), 487–493. DOI: 10.1016/j.medcli.2013.02.015.
  • Harrington, A. R.; Armstrong, E. P.; Nolan, P. E.; Malone, D. C. Cost-Effectiveness of Apixaban, Dabigatran, Rivaroxaban, and Warfarin for Stroke Prevention in Atrial Fibrillation. Stroke. 2013, 44(6), 1676–1681. DOI: 10.1161/STROKEAHA.111.000402.
  • Wong, P. C.; Crain, E. J.; Xin, B.; Wexler, R. R.; Lam, P. Y. S.; Pinto, D. J.; Luettgen, J. M.; Knabb, R. M. Apixaban, an Oral, Direct and Highly Selective Factor Xa Inhibitor: In Vitro, Antithrombotic and Antihemostatic Studies. J. Thromb. Haemost. 2008, 6(5), 820–829. DOI: 10.1111/j.1538-7836.2008.02939.x.
  • Chen, C.; Yang, F.-Q.; Zhang, Q.; Wang, F.-Q.; Hu, Y.-J.; Xia, Z.-N. Natural Products for Antithrombosis. Evidence-Based Complement. Altern. Med. 2015, 2015, 1–17. DOI: 10.1155/2015/876426.
  • Arzamendi, D.; Freixa, X.; Puig, M.; Heras, M. Mecanismo de Acción de Los Fármacos Antitrombóticos. Rev. Española Cardiol. 2006, 6(H), 2–10.
  • Hernández, L.; Marrero, M. A. Estreptoquinasa: A Propósito De Un Agente Trombolítico Patentado En Cuba. Biotecnol. Apl. 2005, 22(3), 182–198.
  • James, L.; Zehnder, M. D. Drugs Used in Disorders of Coagulation; McGraw Hill Medical: New York, USA, 2012; pp 601–618.
  • Kirmani, J. F.; Alkawi, A.; Panezai, S.; Gizzi, M. Advances in Thrombolytics for Treatment of Acute Ischemic Stroke. Neurology. 2012, 79(1), S119–S125. DOI: 10.1212/WNL.0b013e3182695882.
  • Hao, Z.; Liu, M.; Counsell, C.; Wardlaw, J. M.; Lin, S.; Zhao, X. Fibrinogen Depleting Agents for Acute Ischaemic Stroke. Cochrane Database Syst. Rev. 2012, 3, CD000091. DOI: 10.1002/14651858.CD000091.pub2.
  • Antiplatelet Therapy, T. J.;. - a Summary for the General Physicians. Clin. Med. (Northfield. Il). 2016, 16(2), 152–160. DOI: 10.7861/clinmedicine.16-2-152.
  • Gasparovic, H.; Petricevic, M.; Biocina, B. Management of Antiplatelet Therapy Resistance in Cardiac Surgery. J. Thorac. Cardiovasc. Surg. 2014, 147(3), 855–862. DOI: 10.1016/j.jtcvs.2013.10.008.
  • Grimaldo-gómez, F. A.; Fisiología, H., Fisiología de la hemostasia. Rev. Mex. Anestesiol. 40(2), 398–400 (2017).
  • Saladin, K.;. El Aparato Circulatorio: Sangre. In Anatomia y Fisiología. La unidad entre forma y función; McGraw Hill Education: New York, USA;2013: pp 678–713.
  • O’Donnell, J. S.; O’Sullivan, J. M.; Preston, R. J. S. Advances in Understanding the Molecular Mechanisms that Maintain Normal Haemostasis. Br. J. Haematol. 2019, 186(1), 24–36. DOI: 10.1111/bjh.15872.
  • Palta, S.; Saroa, R.; Palta, A. Overview of the Coagulation System. Indian J. Anaesth. 2014, 58(5), 515–523. DOI: 10.4103/0019-5049.144643.
  • Caterina, R.; Husted, S.; Wallentin, L.; Andreotti, F.; Arnesen, H.; Bachmann, F.; Baigent, C.; Huber, K.; Jespersen, J.; Kristensen, S.;, et al. Vitamin K Antagonists in Heart Disease: Current Status and Perspectives (Section III). Thromb. Haemost. 2013, 110(12), 1087–1107. DOI: 10.1160/TH13-06-0443.
  • Tomaselli, G. F.; Mahaffey, K. W.; Cuker, A.; Dobesh, P. P.; Doherty, J. U.; Eikelboom, J. W.; Florido, R.; Hucker, W.; Mehran, R.; Messé, S. R.;, et al. ACC Expert Consensus Decision Pathway on Management of Bleeding in Patients on Oral Anticoagulants. J. Am. Coll. Cardiol. 2017.2017, 70(24), 3042–3067. DOI: 10.1016/j.jacc.2017.09.1085.
  • Huisman, M. V.; Rothman, K. J.; Paquette, M.; Teutsch, C.; Diener, H.-C.; Dubner, S. J.; Halperin, J. L.; Ma, C. S.; Zint, K.; Elsaesser, A.;, et al. The Changing Landscape for Stroke Prevention in AF. J. Am. Coll. Cardiol. 2017, 69(7), 777–785. DOI: 10.1016/j.jacc.2016.11.061.
  • Lu, L.; Warner, A.; Ghaznavi, Z.; Chang, D.; Tubert, N.; Jackevicius, C. Bleding Risk of Direct Oral Anticoagulants Compared with Warfarin in Patients with Atrial Fibrillation and Heart Failure. J. Am. Coll. Cardiol. 2017, 69(11), 900. DOI: 10.1016/S0735-1097(17)34289-4.
  • Institute for Safe Medication Practices. Quarter Watch: Monitoring FDA MedWatch Reports. Data From 2015 Quarters 1-2; USA, 2016.
  • Hahn, D.; Bae, J.-S. Recent Progress in the Discovery of Bioactive Components from Edible Natural Sources with Antithrombotic Activity. J. Med. Food. 2019, 22(2), 109–120. DOI: 10.1089/jmf.2018.4268.
  • Hao, P.; Jiang, F.; Cheng, J.; Ma, L.; Zhang, Y.; Zhao, Y. Traditional Chinese Medicine for Cardiovascular Disease: Evidence and Potential Mechanisms. J. Am. Coll. Cardiol. 2017, 69(24), 2952–2966. DOI: 10.1016/j.jacc.2017.04.041.
  • Memariani, Z.; Moeini, R.; Hamedi, S. S.; Gorji, N.; Mozaffarpur, S. A. Medicinal Plants with Antithrombotic Property in Persian Medicine: A Mechanistic Review. J. Thromb. Thrombolysis. 2018, 45(1), 158–179. DOI: 10.1007/s11239-017-1580-3.
  • García-Chávez, J.; Carrillo-Esper, R.; Fisiología Del, M.-C. A. Sistema de Coagulación. Gac Méd Méx. 2007, 143(1), 7–9.
  • Ramírez-Hernández, G. A.;. Fisiología De La Cicatrización Cutánea. Rev. Fac. Salud. 2010, 2(2), 69–78.
  • Tengborn, L.;. Fibrinolytic Inhibitors in the Management of Bleeding Disorders; World Federation of Hemophilia: Montreal, Quebec, CA, 2012. http://www1.wfh.org/publications/files/pdf-1194.pdf (accessed January 17, 2020).
  • Chapin, J. C.; Hajjar, K. A. Fibrinolysis and the Control of Blood Coagulation. Blood. Rev. 2015, 29(1), 17–24. DOI: 10.1016/j.blre.2014.09.003.
  • Fibrinolytic Drug, L. V.;. Therapy in the Management of Intravascular Thrombosis, Especially Acute Myocardial Infarction - A Review. J. Pharmacol. Clin. Res. 2017, 2(4), 555593. DOI: 10.19080/JPCR.2017.02.555593.
  • Aslanabadi, N.; Safaie, N.; Talebi, F.; Dousti, S.; The Streptokinase, E.-M. T. Therapy Complications and Its Associated Risk Factors in Patients with Acute ST Elevation Myocardial Infarction. Iran. J. Pharm. Res. 2018, 17(Suppl), 53–63.
  • Sikri, N.; Bardia, A. A. History of Streptokinase Use in Acute Myocardial Infarction. Texas Hear. Inst. J. 2007, 34(3), 318–327.
  • Ali, M. R.; Salim Hossain, M.; Islam, M. A.; Arman, S. I.; Sarwar Raju, M.; Dasgupta, G.; Noshin, P. Aspect of Thrombolytic Therapy: A Review. Sci. World J. 2014, 2014, 586510. DOI: 10.1155/2014/586510.
  • Bundhun, P. K.; Janoo, G.; Chen, M.-H. Bleeding Events Associated with Fibrinolytic Therapy and Primary Percutaneous Coronary Intervention in Patients with STEMI: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Medicine. 2016, 95(23), e3877. DOI: 10.1097/MD.0000000000003877.
  • Kim, K.; Park, K.-I. A. Review of Antiplatelet Activity of Traditional Medicinal Herbs on Integrative Medicine Studies. Evidence-Based Complement. Altern. Med. 2019, 2019, 1–18. DOI: 10.1155/2019/7125162.
  • Madhu, C. S.; Sharada, A. C. Fibrinogenolytic Activity of Serine Proteases(s) from Cucumis Dipsaceus. Biocatal. Agric. Biotechnol. 2019, 17, 685–689. DOI: 10.1016/J.BCAB.2019.01.041.
  • Amin, S.; Khan, H. Revival of Natural Products: Utilization of Modern Technologies. Curr. Bioact. Compd. 2016, 12(2), 103–106. DOI: 10.2174/1573407212666160314195845.
  • Pizon, J. R. L.; Nuñeza, O. M.; Uy, M. M.; Senarath, W. Ethnobotany of Medicinal Plants Used by the Subanen Tribe of Lapuyan, Zamboanga Del Sur. Bull. Env. Pharmacol. Life Sci. 2016, 5(55), 53–67. DOI: 10.13140/RG.2.1.4828.1121.
  • World Health Organization. Determination of Ash. In Quality Control Methods for Herbal Materials; WHO Library: Geneva, Switzerland, 2011; pp 29–30.
  • Yasuda, T.; Takasawa, A.; Nakazawa, T.; Ueda, J.; Ohsawa, K. Inhibitory Effects of Urinary Metabolites on Platelet Aggregation after Orally Administering Shimotsu-To, a Traditional Chinese Medicine, to Rats. J. Pharm. Pharmacol. 2003, 55(2), 239–244. DOI: 10.1211/002235702531.
  • Muñetón Pérez, P.;. Plantas Medicinales: Un Complemento Vital Para La Salud de Los Mexicanos. Digit. Univ. 2009, 10(9), 1–9.
  • Chávez-Mejía, M. C.; White-Olascoaga, L.; Moctezuma-Pérez, S.; Prácticas, H.-T. F. Curativas y Plantas Medicinales: Un Acercamiento a La Etnomedicina de San Nicolás, México. Cuad. Geográficos. 2017, 56(2), 26–47.
  • Ibarra-Alvarado, C.; Rojas, A.; Mendoza, S.; Bah, M.; Gutiérrez, D. M.; Hernández-Sandoval, L.; Vasoactive, M. M. Antioxidant Activities of Plants Used in Mexican Traditional Medicine for the Treatment of Cardiovascular Diseases. Pharm. Biol. 2010, 48(7), 732–739. DOI: 10.3109/13880200903271280.
  • Hernández-Nicolás, N. Y.; Córdova-Téllez, L.; Romero-Manzanares, A.; Jiménez-Ramírez, J. Traditional Uses and Seed Chemical Composition of Jatropha Spp. (Euphorbiaceae) in Tehuacán-Cuicatlán, México. Rev. Biol. Trop. 2018, 66(1), 266–279. DOI: 10.15517/rbt.v66i1.28081.
  • Ankli, A.; Heilmann, J.; Heinrich, M.; Sticher, O. Cytotoxic Cardenolides and Antibacterial Terpenoids from Crossopetalum Gaumeri. Phytochemistry. 2000, 54(5), 531–537. DOI: 10.1016/S0031-9422(00)00144-8.
  • Ross-Ibarra, J.; The, M.-C. A. Ethnobotany of Chaya (Cnidoscolus Aconitifolius Ssp. Aconitifolius Breckon): A Nutritious Maya Vegetable. Econ. Bot. 2002, 56(4), 350–365. DOI: 10.1663/0013-0001(2002)056[0350:.
  • Martínez-Gordillo, M.; Jiménez-Ramírez, J.; Cruz-Durán, R.; Arriaga, E. J.; García, R.; Cervantes, A.; Hernández, R. M. Los Géneros de La Familia Euphorbiaceae En México. An. Del Inst. Biol. Ser. Botánica. 2002, 73(2), 155–196.
  • Wink, M.;. Modes of Action of Herbal Medicines and Plant Secondary Metabolites. Medicines. 2015, 2(3), 251–286. DOI: 10.3390/medicines2030251.
  • Mazid, M.; Khan, T. A.; Mohammad, F. Role of Secondary Metabolites in Defense Mechanisms of Plants. Biol. Med. 2011, 3(2), 232–249.
  • Gutzeit, H. O.; Ludwig-Muller, J. Biosynthesis and Chemical Properties of Natural Substances in Plants. In Plant Natural Products: Synthesis, Biological Functions and Practical Applications; Wiley-VCH Verlag GmbH & Co. KGA: Weinheim, Germany:, 2014; pp 1–80.
  • Tiwari, R.; Rana, C. S. Plant Secondary Metabolites: A Review. Int. J. Eng. Res. Gen. Sci. 2015, 3(5), 661–670.
  • Awoyinka, O. A.; Balogun, I. O.; Ogunnowo, A. A. Phytochemical Screening and in Vitro Bioactivity of Cnidoscolus Aconitifolius (Euphorbiaceae). J. Med. Plants Res. 2007, 1(3), 63–65.
  • Adaramoye, O. A.; Aluko, A.; Oyagbemi, A. A. Cnidoscolus Aconitifolius Leaf Extract Protects against Hepatic Damage Induced by Chronic Ethanol Administration in Wistar Rats. Alcohol Alcohol. 2011, 46(4), 451–458. DOI: 10.1093/alcalc/agr060.
  • Adeniran, O. I.; Olajide, O. O.; Igwemmar, N. C.; Orishadipe, A. T. Phytochemical Constituents, Antimicrobial and Antioxidant Potentials of Tree Spinach [Cnidoscolus Aconitifolius (Miller) I. M. Johnston]. J. Med. Plants Res. 2013, 7(19), 1310–1316. DOI: 10.5897/jmpr12.899.
  • Otitolaiye, C.; Asokan, C. GC-MS Analysis of Cnidoscolus Aconitifolius Leaf Aqueous Extracts. Int. J. Sci. Res. 2016, 5(8), 471–475. DOI: 10.21275/ART2016727.
  • García-Rodríguez, R. V.; Gutiérrez-Rebolledo, G. A.; Méndez-Bolaina, E.; Sánchez-Medina, A.; Maldonado-Saavedra, O.; Domínguez-Ortiz, M. Á.; Vázquez-Hernández, M.; Muñoz-Muñiz, O. D.; Cruz-Sánchez, J. S. Cnidoscolus Chayamansa Mc Vaugh, an Important Antioxidant, Anti-Inflammatory and Cardioprotective Plant Used in Mexico. J. Ethnopharmacol. 2014, 151(2), 937–943. DOI: 10.1016/j.jep.2013.12.004.
  • Molina-Naranjo, C. A.;. Comparación Entre Diferentes Métodos De Extracción Para La Recuperación De Cocaína Previamente Incorporada A Una Matriz Sólida. Cult. Y Drog. 2007, 12(14), 59–69.
  • Schofield, P.; Mbugua, D.; Pell, A. Analysis of Condensed Tannins: A Review. Anim. Feed Sci. Technol. 2001, 91(1–2), 21–40. DOI: 10.1016/S0377-8401(01)00228-0.
  • Oleszek, W.; Hamed, A. Saponin-Based Surfactants. In Surfactants from Renewable Resources; John Wiley & Sons, Ltd: Chichester, UK, 2010, pp 239–249. DOI: 10.1002/9780470686607.ch12.
  • Bartnik, M.; Facey, P. C. Glycosides. Elsevier: London, United Kingdom, 2017; pp 101–161. DOI: 10.1016/B978-0-12-802104-0.00008-1.
  • Martínez-Flórez, S.; González-Gallego, J.; Culebras, J. M.; Tuñón, M. J. Los Flavonoides: Propiedades y Acciones Antioxidantes. Nutr. Hosp. 2002, 17(6), 271–278. DOI: 10.3305/nutr.
  • Martins, M. A. R.; Silva, L. P.; Ferreira, O.; Schröder, B.; Coutinho, J. A. P.; Pinho, S. P. Terpenes Solubility in Water and Their Environmental Distribution. J. Mol. Liq. 2017, 241, 996–1002. DOI: 10.1016/j.molliq.2017.06.099.
  • Jaramillo-Jaramillo, C.; Jaramillo-Espinoza, A.; D’Armas, H.; Troccoli, L.; Rojas, A.; Jaramillo Jaramillo, L.; Jaramillo-Espinoza, C.; D’Armas, A.; Troccoli, H. Concentraciones de Alcaloides, Glucósidos Cianogénicos, Polifenoles y Saponinas En Plantas Medicinales Seleccionadas En Ecuador y Su Relación Con La Toxicidad Aguda Contra Artemia salina. Rev. Biol. Trop. 2016, 64(3), 1171–1184. DOI: 10.15517/rbt.v64i3.19537.
  • Obichi, E.; Monago, C.; Belonwu, D. C. Effect of Cnidoscolus Aconitifolius (Family Euphorbiaceae) Aqueous Leaf Extract on Some Antioxidant Enzymes and Haematological Parameters of High Fat Diet and Streptozotocin Induced Diabetic Wistar Albino Rats. J. Appl. Sci. Environ. Manage. 2015, 19(1), 201–209. DOI: 10.4314/jasem.v19i2.5.
  • Orji, O. U.; Ibiam, U. A.; Aja, P. M.; Okechukwu, P. C. U.; Uraku, A. J.; Aloke, C.; Obasi, O. D.; Nwali, B. U. Evaluation of the Phytochemical and Nutritional Profiles of Cnidoscolus Aconitifolius Leaf Collected in Abakaliki South East Nigeria. World J. Med. Sci. 2016, 13(3), 213–217. DOI: 10.5829/idosi.wjms.2016.213.217.
  • Yakubu, M. T.; Akanji, M. A.; Oladiji, A. T.; Olatinwo, A. O.; Adesokan, A. A.; Oyenike, M.; Owoyele, B. V.; Sunmonu, T. O.; Ajao, S. Effect of Cnidoscolous Aconitifolius (Miller) I. M. Johnston Leaf Extract on Reproductive Hormones of Female Rats. Iran. J. Reprod. Med. 2008, 6(3), 149–155.
  • Akachukwu, D.; Okafor, P.; Ibegbulem, C. Phytochemical Content of Cnidoscolus Aconitifolius Leaves and Toxicological Effect of Its Aqueous Leaf Extract in Wistar Rats. J. Investig. Biochem. 2014, 3(1), 26. DOI: 10.5455/jib.20140504023102.
  • De Oliveira-júnior, R. G.; Ferraz, C. A. A.; De Oliveira, A. P.; Araújo, C. S.; Oliveira, L. Phytochemical and Pharmacological Aspects of Cnidoscolus Pohl Species: A Systematic Review. Phytomedicine. 2018, 50, 137–147. DOI: 10.1016/j.phymed.2017.08.017.
  • Moura, L. F. W. G.; Da Silva Neto, J. X.; Lopes, T. D. P.; Benjamin, S. R.; Brito, F. C. R.; Magalhães, F. E. A.; Florean, E. O. P. T.; De Sousa, D. Ethnobotanic, Phytochemical Uses and Ethnopharmacological Profile of Genus Cnidoscolus Spp. (Euphorbiaceae): A Comprehensive Overview. Biomed. Pharmacother. 2019, 109, 1670–1679. DOI: 10.1016/J.BIOPHA.2018.10.015.
  • Hamid, A. A.; Oguntoye, S. O.; Negi, A. S.; Ajao, A.; Owolabi, N. O. Chemical Constituents, Antibacterial, Antifungal and Antioxidant Activities of the Aerial Parts of Cnidoscolus Aconitifolius. Ife J. Sci. 2016, 18(2), 561–571.
  • Pérez-González, M. Z.; Gutiérrez-Rebolledo, G. A.; Yépez-Mulia, L.; Rojas-Tomé, I. S.; Luna-Herrera, J.; Jiménez-Arellanes, M. A. Antiprotozoal, Antimycobacterial, and Anti-Inflammatory Evaluation of Cnidoscolus Chayamansa (Mc Vaugh) Extract and the Isolated Compounds. Biomed. Pharmacother. 2017, 89, 89–97. DOI: 10.1016/J.BIOPHA.2017.02.021.
  • Pérez-González, M. Z.; Siordia-Reyes, A. G.; Damián-Nava, P.; Hernández-Ortega, S.; Macías-Rubalcava, M. L.; Jiménez-Arellanes, M. A. Hepatoprotective and Anti-Inflammatory Activities of the Cnidoscolus Chayamansa (Mc Vaugh) Leaf Extract in Chronic Models. Evidence-Based Complement. Altern. Med. 2018, 2018, 1–12. DOI: 10.1155/2018/3896517.
  • Sato, F.;. Plant Secondary Metabolism. Encycl. Life Sci. 2014, 13. DOI: 10.1002/9780470015902.a0001812.pub2.
  • Christianson, D. W.;. Structural and Chemical Biology of Terpenoid Cyclases. Chem. Rev. 2017, 117(17), 11570–11648. DOI: 10.1021/acs.chemrev.7b00287.
  • Aragão, G. F.; Carneiro, L. M. V.; Júnior, A. P. F.; Bandeira, P. N.; Lemos, T. L. G.; Viana, G. Antiplatelet Activity of α and β Amyrin, Isomeric Mixture from Protium Heptaphyllum. Pharm. Biol. 2007, 45(5), 343–349. DOI: 10.1080/13880200701212916.
  • Escalante-Erosa, F.; Ortegón-Campos, I.; Parra-Tabla, V.; Peña-Rodríguez, L. M. Chemical Composition of the Epicuticular Wax of Cnidoscolus Aconitifolius; Sociedad Química de México, 2004, 48(1), 24–25.
  • Li, Y.-H.; Sun, X.-P.; Zhang, Y.-Q.; Wang, N.-S. The Antithrombotic Effect of Borneol Related to Its Anticoagulant Property. Am. J. Chin. Med. 2008, 36(4), 719–727. DOI: 10.1142/S0192415X08006181.
  • Lu, S.-H.; Guan, J.-H.; Huang, Y.-L.; Pan, Y.-W.; Yang, W.; Lan, H.; Huang, S.; Hu, J.; Zhao, G.-P. Experimental Study of Antiatherosclerosis Effects with Hederagenin in Rats. Evidence-based Complement. Altern. Med. 2015, 2015, 456354. DOI: 10.1155/2015/456354.
  • Ramos-Gomez, M.; Figueroa-Pérez, M. G.; Guzman-Maldonado, H.; Loarca-Piña, G.; Mendoza, S.; Quezada-Tristán, T. Phytochemical Profile, Antioxidant Properties and Hypoglycemic Effect of Chaya (Cnidoscolus Chayamansa) in STZ-Induced Diabetic Rats. J. Food Biochem. 2016, 41(1). DOI: 10.1111/jfbc.12281.
  • Jin, J. L.; Lee, Y. Y.; Heo, J. E.; Lee, S.; Kim, J. M.; Yun-Choi, H. S. Anti-Platelet Pentacyclic Triterpenoids from Leaves Ofcampsis Grandiflora. Arch. Pharm. Res. 2004, 27(4), 376–380. DOI: 10.1007/BF02980076.
  • Moschona, A.; Kyriakidis, K. D.; Kleontas, A. D.; Comparative, L.-K. M. Study of Natural Phenolic Acids and Flavonols as Antiplatelet and Anti-Inflammatory Agents. Grant Med. J. 2017, 2(4), 57–66.
  • Choi, J.-H.; Park, J.-K.; Kim, K.-M.; Lee, H.-J.; Kim, S. In Vitro and in Vivo Antithrombotic and Cytotoxicity Effects of Ferulic Acid. J. Biochem. Mol. Toxicol. 2018, 32(1), e22004. DOI: 10.1002/jbt.22004.
  • Wee, -J.-J.; Kim, Y.-S.; Kyung, J.-S.; Song, Y.-B.; Do, J.-H.; Kim, D.-C.; Lee, S.-D. Identification of Anticoagulant Components in Korean Red Ginseng. J. Ginseng Res. 2010, 34(4), 355–362. DOI: 10.5142/jgr.2010.34.4.355.
  • Bijak, M.; Ponczek, M. B.; Nowak, P. Polyphenol Compounds Belonging to Flavonoids Inhibit Activity of Coagulation Factor X. Int. J. Biol. Macromol. 2014, 65, 129–135. DOI: 10.1016/J.IJBIOMAC.2014.01.023.
  • Soto, R. V.; Morales, M.; Verde Star, M. J.; Cárdenas, A. O.; Preciado-Rangel, P.; González, J.; Esparza-Rivera, J. Cnidoscolus chayamansa Hidropónica Orgánica y Su Capacidad Hipoglucemiante, Calidad Nutraceutica y Toxicidad. Rev. Mex. Ciencias Agrícolas. 2015, 6(4), 815–825.
  • Choi, J.-H.; Kim, D.-W.; Park, S.-E.; Lee, H.-J.; Kim, K.-M.; Kim, K.-J.; Kim, M.-K.; Kim, S.-J.; Kim, S. Anti-Thrombotic Effect of Rutin Isolated from Dendropanax Morbifera Leveille. J. Biosci. Bioeng. 2015, 120(2), 181–186. DOI: 10.1016/J.JBIOSC.2014.12.012.
  • Ryu, R.; Jung, U. J.; Seo, Y.-R.; Kim, H.-J.; Moon, B. S.; Bae, J.-S.; Lee, D. G.; Choi, M.-S. Beneficial Effect of Persimmon Leaves and Bioactive Compounds on Thrombosis. Food Sci. Biotechnol. 2015, 24(1), 233–240. DOI: 10.1007/s10068-015-0031-1.
  • Yu, H.; Park, S.; Chung, I.; Anti-Platelet, J. Y. Effects of Yuzu Extract and Its Component. Food Chem. Toxicol. 2011, 49(12), 3018–3024. DOI: 10.1016/j.fct.2011.09.038.
  • Kuti, J. O.; Konuru, H. B. Antioxidant Capacity and Phenolic Content in Leaf Extracts of Tree Spinach (Cnidoscolus Spp.). J. Agric. Food Chem. 2004, 52(1), 117–121. DOI: 10.1021/jf030246y.
  • Choi, J.-H.; Park, S.-E.; Kim, S.-J.; Kim, S. Kaempferol Inhibits Thrombosis and Platelet Activation. Biochimie. 2015, 115, 177–186. DOI: 10.1016/J.BIOCHI.2015.06.001.
  • Theoduloz, C.; Alzate-Morales, J.; Jiménez-Aspee, F.; Isla, M. I.; Alberto, M. R.; Pertino, M. W.; Schmeda-Hirschmann, G. Inhibition of Key Enzymes in the Inflammatory Pathway by Hybrid Molecules of Terpenes and Synthetic Drugs: In Vitro and in Silico Studies. Chem. Biol. Drug Des. 2019, 93(3), 290–299. DOI: 10.1111/cbdd.13415.
  • Rauf, A.; Maione, F.; Uddin, G.; Raza, M.; Siddiqui, B. S.; Muhammad, N.; Shah, S. U. A.; Khan, H.; De Feo, V.; Biological Evaluation, M. N. Docking Analysis of Daturaolone as Potential Cyclooxygenase Inhibitor. Evidence-Based Complement. Altern. Med. 2016, 2016, 1–7. DOI: 10.1155/2016/4098686.
  • Rehman, U. U.; Shah, J.; Khan, M. A.; Shah, M. R.; Ishtiaq, K. I. Molecular Docking of Taraxerol Acetate as a New COX Inhibitor. Bangladesh J. Pharmacol. 2013, 8(2), 194–197. DOI: 10.3329/bjp.v8i2.14167.
  • Kontogianni, V. G.; Tsoumani, M. E.; Kellici, T. F.; Mavromoustakos, T.; Gerothanassis, I. P.; Tselepis, A. D.; Tzakos, A. G. Deconvoluting the Dual Antiplatelet Activity of a Plant Extract. J. Agric. Food Chem. 2016, 64(22), 4511–4521. DOI: 10.1021/acs.jafc.6b00544.
  • Lee, -J.-J.; Jin, Y.-R.; Lim, Y.; Yu, J.-Y.; Kim, T.-J.; Yoo, H.-S.; Shin, H.-S.; Yun, Y.-P.; Acid, O. A Pentacyclic Triterpenoid, Induces Rabbit Platelet Aggregation through a Phospholipase C-Calcium Dependent Signaling Pathway. Arch. Pharm. Res. 2007, 30(2), 210–214. DOI: 10.1007/BF02977696.
  • Kim, M.; Han, C.; Lee, M.-Y. Enhancement of Platelet Aggregation by Ursolic Acid and Oleanolic Acid. Biomol. Ther. (Seoul). 2014, 22(3), 254–259. DOI: 10.4062/biomolther.2014.008.
  • Ahn, Y. M.; Choi, Y. H.; Yoon, J. J.; Lee, Y. J.; Cho, K. W.; Kang, D. G.; Lee, H. S. Oleanolic Acid Modulates the Renin-Angiotensin System and Cardiac Natriuretic Hormone Concomitantly with Volume and Pressure Balance in Rats. Eur. J. Pharmacol. 2017, 809, 231–241. DOI: 10.1016/j.ejphar.2017.05.030.
  • Bachhav, S.; Bhutada, M.; Patil, S.; Sharma, K.; Patil, S. Oleanolic Acid Prevents Increase in Blood Pressure and Nephrotoxicity in Nitric Oxide Dependent Type of Hypertension in Rats. Pharmacogn. Res. 2015, 7(4), 385. DOI: 10.4103/0974-8490.159575.
  • Madlala, H. P.; Van Heerden, F. R.; Mubagwa, K.; Musabayane, C. T. Changes in Renal Function and Oxidative Status Associated with the Hypotensive Effects of Oleanolic Acid and Related Synthetic Derivatives in Experimental Animals. PLoS One. 2015, 10(6), e0128192. DOI: 10.1371/journal.pone.0128192.
  • Sun, N.; Li, D.; Chen, X.; Wu, P.; Lu, Y.-J.; Hou, N.; Chen, W.-H.; Wong, W.-L. New Applications of Oleanolic Acid and Its Derivatives as Cardioprotective Agents: A Review of Their Therapeutic Perspectives. Curr. Pharm. Des. 2019, 25(35), 3740–3750. DOI: 10.2174/1381612825666191105112802.
  • Xiong, L.; Qi, Z.; Zheng, B.; Li, Z.; Wang, F.; Liu, J.; Li, P. Inhibitory Effect of Triterpenoids from Panax Ginseng on Coagulation Factor X. Molecules. 2017, 22(4), 649. DOI: 10.3390/molecules22040649.
  • Moses, T.; Papadopoulou, K. K.; Metabolic, O. A. And Functional Diversity of Saponins, Biosynthetic Intermediates and Semi-Synthetic Derivatives. Crit. Rev. Biochem. Mol. Biol. 2014, 49(6), 439–462. DOI: 10.3109/10409238.2014.953628.
  • Yu, K.; Chen, F.; Li, C. Absorption, Disposition, and Pharmacokinetics of Saponins from Chinese Medicinal Herbs: What Do We Know and What Do We Need to Know More? Curr. Drug Metab. 2012, 13(5), 577–598. DOI: 10.2174/1389200211209050577.
  • Xu, T.; Zhang, S.; Zheng, L.; Yin, L.; Xu, L.; Peng, J. A 90-Day Subchronic Toxicological Assessment of Dioscin, A Natural Steroid Saponin, in Sprague–Dawley Rats. Food Chem. Toxicol. 2012, 50(5), 1279–1287. DOI: 10.1016/j.fct.2012.02.027.
  • Evans, C. S.;. 1. Plant Phenolics. In Methods in Plant Biochemistry; Academic Press: New York: London, 1991; Vol. 2. pp 48. DOI: 10.1002/pca.2800020110.
  • Saltveit, M. E.;. Synthesis and Metabolism of Phenolic Compounds. In Fruit and Vegetavle Phytochemicals; De La Rosa, L., Alvarez-Parrilla, E., González-Aguilar, G., Eds.; Wiley-Blackwell: New Jersey, 2010; pp 89–100.
  • Li, G.; Lou, H.-X. Strategies to Diversify Natural Products for Drug Discovery. Med. Res. Rev. 2018, 38(4), 1255–1294. DOI: 10.1002/med.21474.
  • Ekowati, J.; Diyah, N. W.; Nofianti, K. A.; Hamid, I. S.; Siswandono, S. Molecular Docking of Ferulic Acid Derivatives on P2Y12 Receptor and Their ADMET Prediction. J. Math. Fundam. Sci. 2018, 50(2), 203–219. DOI: 10.5614/j.math.fund.sci.2018.50.2.8.
  • Bumrungpert, A.; Lilitchan, S.; Tuntipopipat, S.; Tirawanchai, N.; Komindr, S. Ferulic Acid Supplementation Improves Lipid Profiles, Oxidative Stress, and Inflammatory Status in Hyperlipidemic Subjects: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients. 2018, 10(6), 713. DOI: 10.3390/nu10060713.
  • Fuentes, E.; Caballero, J.; Alarcón, M.; Rojas, A.; Palomo, I. Chlorogenic Acid Inhibits Human Platelet Activation and Thrombus Formation. PLoS One. 2014, 9(3), e90699. DOI: 10.1371/journal.pone.0090699.
  • Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A. A.; Khan, G. J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; FangFang, X.; Modarresi-Ghazani, F.;, et al. Chlorogenic Acid (CGA): A Pharmacological Review and Call for Further Research. Biomed. Pharmacother. 2018, 97, 67–74. DOI: 10.1016/j.biopha.2017.10.064.
  • Amano, Y.; Honda, H.; Nukada, Y.; Ikeda, N.; Yamane, M.; Nakano, K.; Kameyama, A.; Morita, O. Safety Pharmacological Evaluation of the Coffee Component, Caffeoylquinic Acid, and Its Metabolites, Using Ex Vivo and in Vitro Profiling Assays. Pharmaceuticals. 2019, 12(3), 110. DOI: 10.3390/ph12030110.
  • Liu, B.; Cao, L.; Zhang, L.; Yuan, X.; Zhao, B. Preparation, Phytochemical Investigation, and Safety Evaluation of Chlorogenic Acid Products from Eupatorium Adenophorum. Molecules. 2016, 22(1), 67. DOI: 10.3390/molecules22010067.
  • Watanabe, T.; Arai, Y.; Mitsui, Y.; Kusaura, T.; Okawa, W.; Kajihara, Y.; Saito, I. The Blood Pressure-Lowering Effect and Safety of Chlorogenic Acid from Green Coffee Bean Extract in Essential Hypertension. Clin. Exp. Hypertens. 2006, 28(5), 439–449. DOI: 10.1080/10641960600798655.
  • Zou, J.; Chen, Y.; Hoi, M. P. M.; Li, J.; Wang, T.; Zhang, Y.; Feng, Y.; Gao, J.; Lee, S. M. Y.; Cui, G. Discovery of a Novel ERp57 Inhibitor as Antiplatelet Agent from Danshen (Salvia Miltiorrhiza). Evidence-based Complement. Altern. Med. 2018, 2018, 9387568. DOI: 10.1155/2018/9387568.
  • Reis, F.; Madureira, A. R.; Nunes, S.; Campos, D.; Fernandes, J.; Marques, C.; Zuzarte, M.; Gullón, B.; Rodríguez-Alcalá, L. M.; Calhau, C.;, et al. Safety Profile of Solid Lipid Nanoparticles Loaded with Rosmarinic Acid for Oral Use: In Vitro and Animal Approaches. Int. J. Nanomed. 2016, 11, 3621–3640. DOI: 10.2147/IJN.S104623.
  • Panche, A. N.; Diwan, A. D.; Chandra, S. R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 5, e47. DOI: 10.1017/jns.2016.41.
  • Khan, H.; Jawad, M.; Kamal, M. A.; Baldi, A.; Xiao, J.; Nabavi, S. M.; Daglia, M. Evidence and Prospective of Plant Derived Flavonoids as Antiplatelet Agents: Strong Candidates to Be Drugs of Future. Food Chem. Toxicol. 2018. DOI: 10.1016/J.FCT.2018.02.014.
  • Hubbard, G. P.; Stevens, J. M.; Cicmil, M.; Sage, T.; Jordan, P. A.; Williams, C. M.; Lovegrove, J. A.; Gibbins, J. M. Quercetin Inhibits Collagen-Stimulated Platelet Activation through Inhibition of Multiple Components of the Glycoprotein VI Signaling Pathway. J. Thromb. Haemost. 2003, 1(5), 1079–1088. DOI: 10.1046/j.1538-7836.2003.00212.x.
  • Levita, J.; Rositama, M.; Alias, N.; Khalida, N.; Saptarini, N.; Megantara, S. Discovering COX-2 Inhibitors from Flavonoids and Diterpenoids. J. Appl. Pharm. Sci. 2017, 7(7), 103–110. DOI: 10.7324/JAPS.2017.70716.
  • Kaulich, M.; Streicher, F.; Mayer, R.; Müller, I.; Müller, C. E. Flavonoids - Novel Lead Compounds for the Development of P2Y2 Receptor Antagonists. Drug Dev. Res. 2003, 59(1), 72–81. DOI: 10.1002/ddr.10203.
  • Liu, L.; Ma, H.; Yang, N.; Tang, Y.; Guo, J.; Tao, W.; Duan, J. A. Series of Natural Flavonoids as Thrombin Inhibitors: Structure-Activity Relationships. Thromb. Res. 2010, 126(5), e365–e378. DOI: 10.1016/j.thromres.2010.08.006.
  • Vogiatzoglou, A.; Mulligan, A. A.; Lentjes, M. A. H.; Luben, R. N.; Spencer, J. P. E.; Schroeter, H.; Khaw, K.-T.; Kuhnle, G. G. C. Flavonoid Intake in European Adults (18 to 64 Years). PLoS One. 2015, 10(5), e0128132. DOI: 10.1371/journal.pone.0128132.
  • Wu, X.; Beecher, G. R.; Holden, J. M.; Haytowitz, D. B.; Gebhardt, S. E.; Prior, R. L. Concentrations of Anthocyanins in Common Foods in the United States and Estimation of Normal Consumption. J. Agric. Food Chem. 2006, 54(11), 4069–4075. DOI: 10.1021/jf060300l.
  • Hooper, L.; Kroon, P. A.; Rimm, E. B.; Cohn, J. S.; Harvey, I.; Le Cornu, K. A.; Ryder, J. J.; Hall, W. L.; Flavonoids, C. A.; Foods, F.-R. Cardiovascular Risk: A Meta-Analysis of Randomized Controlled Trials. Am. J. Clin. Nutr. 2008, 88(1), 38–50. DOI: 10.1093/ajcn/88.1.38.
  • Dewick, P. M.;. The Shikimic Pathway: Aromatic Aminoacids and Phenylpropanoids. In Medicinal Natural Products : A Biosynthetic Approach;  John Wiley & Sons: West Sussex, England, 2012; pp 137–186.
  • Jain, P. K.; Coumarin:, J. H. Chemical and Pharmacological Profile. J. Appl. Pharm. Sci. 2012, 2(6), 236–240. DOI: 10.7324/JAPS.2012.2643.
  • Zaragozá, C.; Monserrat, J.; Mantecón, C.; Villaescusa, L.; Zaragozá, F.; Antiplatelet, Á. M. Activity of Flavonoid and Coumarin Drugs. Vascul. Pharmacol. 2016, 87, 139–149. DOI: 10.1016/J.VPH.2016.09.002.
  • Abraham, K.; Wöhrlin, F.; Lindtner, O.; Heinemeyer, G.; Toxicology, L. A. Risk Assessment of Coumarin: Focus on Human Data. Mol. Nutr. Food Res. 2010, 54(2), 228–239. DOI: 10.1002/mnfr.200900281.
  • Croteau, R.; Kutchan, T. M.; Lewis, N. G. Secondary Metabolites. Biochem. Mol. Biol. Plants. 2000, 7(7), 1250–1318. DOI: 10.1016/j.phytochem.2011.10.011.
  • Ziegler, J.; Facchini, P. J. Alkaloid Biosynthesis: Metabolism and Trafficking. Annu. Rev. Plant Biol. 2008, 59(1), 735–769. DOI: 10.1146/annurev.arplant.59.032607.092730.
  • Matsuura, H. N.; Fett-Neto, A. G. Plant Alkaloids: Main Features, Toxicity, and Mechanisms of Action. In Plant Toxins; Dordrecht: Springer Netherlands, 2015, pp 1–15. DOI: 10.1007/978-94-007-6728-7_2-1.
  • Zhang, Q.; Chen, C.; Wang, F.-Q.; Li, C.-H.; Zhang, Q.-H.; Hu, Y.-J.; Xia, Z.-N.; Yang, F.-Q. Simultaneous Screening and Analysis of Antiplatelet Aggregation Active Alkaloids from Rhizoma Corydalis. Pharm. Biol. 2016, 54(12), 3113–3120. DOI: 10.1080/13880209.2016.1211714.
  • Yi, J.; Ye, X.; Wang, D.; He, K.; Yang, Y.; Liu, X.; Li, X. Safety Evaluation of Main Alkaloids from Rhizoma Coptidis. J. Ethnopharmacol. 2013, 145(1), 303–310. DOI: 10.1016/j.jep.2012.10.062.
  • Rebholz, C. M.; Friedman, E. E.; Powers, L. J.; Arroyave, W. D.; He, J.; Kelly, T. N. Dietary Protein Intake and Blood Pressure: A Meta-Analysis of Randomized Controlled Trials. Am. J. Epidemiol. 2012, 176(Suppl 7), S27–S43. DOI: 10.1093/aje/kws245.
  • Stamler, J.; Elliott, P.; Kesteloot, H.; Nichols, R.; Claeys, G.; Dyer, A. R.; Stamler, R. Inverse Relation of Dietary Protein Markers with Blood Pressure. Findings for 10,020 Men and Women in the INTERSALT Study. INTERSALT Cooperative Research Group. INTERnational Study of SALT and Blood Pressure. Circulation. 1996, 94(7), 1629–1634. DOI: 10.1161/01.cir.94.7.1629.
  • El-Hafidi, M.; Perez, I.; Banos, G. Is Glycine Effective against Elevated Blood Pressure? Curr. Opin. Clin. Nutr. Metab. Care. 2006, 9, 26–31. DOI: 10.1097/01.mco.0000196143.72985.9a.
  • Prasad, S.; Kashyap, R. S.; Deopujari, J. Y.; Purohit, H. J.; Taori, G. M.; Daginawala, H. F. Development of an in Vitro Model to Study Clot Lysis Activity of Thrombolytic Drugs. Thromb. J. 2006, 4, 9–12. DOI: 10.1186/1477-9560-4-14.
  • Vasdev, S.; Singal, P.; Gill, V. The Antihypertensive Effect of Cysteine. Int. J. Angiol. 2009, 18(1), 7–21. DOI: 10.1055/s-0031-1278316.
  • Obichi, E. A.; Monago, C. C.; Belonwu, D. C. Effect of Cnidoscolus Aconitifolius (Family Euphorbiaceae) Aqueous Leaf Extract on Some Antioxidant Enzymes and Haematological Parameters of High Fat Diet and Streptozotocin Induced Diabetic Wistar Albino Rats. J. Appl. Sci. Environ. Manage. 2015, 19(1), 201–209. DOI: 10.4314/jasem.v19i2.5.
  • James, M.; Ascorbic Acid, Z.-C. Q. Prevents Increased Endothelial Permeability Caused by Oxidized Low Density Lipoprotein. Free Radic. Res. 2010, 44(11), 1359–1368. DOI: 10.3109/10715762.2010.508496.Ascorbic.
  • May, J.; Harrison, F. Role of Vitamin C in the Function of the Vascular Endothelium. Antioxid. Redox Signal. 2013, 19(17), 2068–2083. DOI: 10.1089/ars.2013.5205.
  • Kalra, P. R.; Greenlaw, N.; Ferrari, R.; Ford, I.; Tardif, J.-C.; Tendera, M.; Reid, C. M.; Danchin, N.; Stepinska, J.; Steg, P. G.;, et al. Hemoglobin and Change in Hemoglobin Status Predict Mortality, Cardiovascular Events, and Bleeding in Stable Coronary Artery Disease. Am. J. Med. 2017, 130(6), 720–730. DOI: 10.1016/j.amjmed.2017.01.002.
  • Sabatine, M. S.; Morrow, D. A.; Giugliano, R. P.; Burton, P. B. J.; Murphy, S. A.; McCabe, C. H.; Gibson, C. M.; Braunwald, E. Association of Hemoglobin Levels with Clinical Outcomes in Acute Coronary Syndromes. Circulation. 2005, 111(16), 2042–2049. DOI: 10.1161/01.CIR.0000162477.70955.5F.
  • Thygesen, K.; Alpert, J. S.; Jaffe, A. S.; Simoons, M. L.; Chaitman, B. R.; White, H. D.; Thygesen, K.; Alpert, J. S.; White, H. D.; Jaffe, A. S.;, et al. Third Universal Definition of Myocardial Infarction. J. Am. Coll. Cardiol. 2012, 60(16), 1581–1598. DOI: 10.1016/j.jacc.2012.08.001.
  • Azeez, O. I.; Oyagbemi, A. A.; Oyeyemi, M. O.; Odetola, A. A. Ameliorative Effects of Cnidoscolus Aconitifolius on Alloxan Toxicity in Wistar Rats. Afr. Health Sci. 2010, 10(3), 283–291.
  • Ogunmefun, O. T.; Fasola, T. R.; Saba, A. B.; Oridupa, O. A.; Adarabioyo, M. I. Haematology and Serum Biochemistry of Alloxan-Induced Diabetic Rats Administered with Extracts of Phragmanthera Incana (Schum.) Balle. Afr J. Pharm. Pharmacol. 2017, 11(43), 545–553. DOI: 10.5897/AJPP2016.4563.
  • Ogunmefun, O. T.; Fasola, T. R.; Saba, A. B.; Akinyemi, A. J. Inhibitory Effect of Phragmanthera Incana (Schum.) Harvested from Cocoa (Theobroma Cacao) and Kolanut (Cola Nitida) Trees on Fe(2+) Induced Lipid Oxidative Stress in Some Rat Tissues - in Vitro. Int. J. Biomed. Sci. 2015, 11(1), 16–22
  • Ogunmefun, O. T.; Fasola, T. R.; Saba, A. B.; Oridupa, O. A. The Toxicity Evaluation of Phragmanthera Incana (Klotzsch) Growing on Two Plant Hosts and Its Effect on Wistar Rats Haematology and Serum Biochemistry. Acad. J. Plant Sci. 2013, 6(2), 92–98. DOI: 10.5829/idosi.ajps.2013.6.2.335.
  • Ogunmefun, O. T.; Fasola, T. R.; Saba, A. B.; Oridupa, O. A. The Ethnobotanical, Phytochemical and Mineral Analyses of Phragmanthera Incana (Klotzsch), a Species of Mistletoe Growing on Three Plant Hosts in South-Western Nigeria. Int. J. Biomed. Sci. 2013, 9(1), 33–40.
  • Onuoha, N.; Okafor, A.; Paul, E.; Odo, E. Haematinic Effect of Raw and Boiled Leaf Juice of Cnidoscolus Aconitifolius Using CyclophosphamideTreated Adult Male Albino Rat. EC Nutr. 2017, 2017, 187–194.
  • Koury, M. J.;. Red Blood Cell Production and Kinetics. In Rossi’s Principles of Transfusion Medicine; John Wiley & Sons, Ltd.: Chichester, WestSussex, 2016, pp 85–96. DOI: 10.1002/9781119013020.ch08.
  • Pillai, K.; Chidambaranathan, N.; Halith, M.; Jayaprakash, S.; Narayanan, N. Hypolipidemic Activity of Ethanolic Extract of Leaves of Cnidoscolus Chayamansa in Hyperlipidemic Models of Wistar Albino Rats. Acta Chim. Pharm. Indica. 2016, 2(1), 24–31.
  • Aladaileh, S.; Saghir, S.; Murugesu, K.; Sadikun, A.; Ahmad, A.; Kaur, G.; Mahmoud, A. Antihyperlipidemic and Antioxidant Effects of Averrhoa Carambola Extract in High-Fat Diet-Fed Rats. Biomedicines. 2019, 7(3), 72. DOI: 10.3390/biomedicines7030072.
  • Saghir, A. M.; Sadikun, S. Antihyperlipidemic, Antioxidant and Cytotoxic Activities of Methanolic and Aqueous Extracts of Different Parts of Star Fruit. Curr. Pharm. Biotechnol. 2016, 17(10), 915–925. DOI: 10.2174/1389201017666160603013434.
  • Zhang, K.; Song, W.; Li, D.; Jin, X. Apigenin in the Regulation of Cholesterol Metabolism and Protection of Blood Vessels. Exp. Ther. Med. 2017, 13(5), 1719–1724. DOI: 10.3892/etm.2017.4165.
  • Yasawardene, P.; Jayarajah, U.; De Zoysa, I.; Seneviratne, S. L. Mechanisms of Star Fruit (Averrhoa Carambola) Toxicity: A Mini-Review. Toxicon. 2020, 187, 198–202. DOI: 10.1016/j.toxicon.2020.09.010.
  • Humane Endpoints. Parámetros Fisiológicos Y Valores Normales En Ratas https://www.humane-endpoints.info/es/rata/parametros-fisiologicos. (accessed January 05, 2021).
  • Sharma, I.; Aaradhya, M.; Kodikonda, M.; Naik, P. R. Antihyperglycemic, Antihyperlipidemic and Antioxidant Activity of Phenolic Rich Extract of Brassica Oleraceae Var Gongylodes on Streptozotocin Induced Wistar Rats. Springerplus. 2015, 4(1), 212. DOI: 10.1186/s40064-015-0948-0.
  • Cartea, M. E.; Francisco, M.; Soengas, P.; Velasco, P. Phenolic Compounds in Brassica Vegetables. Molecules. 2010, 16(1), 251–280. DOI: 10.3390/molecules16010251.
  • Alaofi, A. L.;. Sinapic Acid Ameliorates the Progression of Streptozotocin (Stz)-induced Diabetic Nephropathy in Rats via NRF2/HO-1 Mediated Pathways. Front. Pharmacol. 2020, 11, 1119. DOI: 10.3389/fphar.2020.01119.
  • Zych, M.; Kaczmarczyk-Sedlak, I.; Wojnar, W.; Folwarczna, J. The Effects of Sinapic Acid on the Development of Metabolic Disorders Induced by Estrogen Deficiency in Rats. Oxid. Med. Cell. Longev. 2018, 2018, 1–11. DOI: 10.1155/2018/9274246.
  • Fazil-Ahmed, M.; Srinivasa-Rao, A.; Rasheed-Ahemad, S.; Ibrahim, M. Protective Effect of Brassica Oleracea L. Var. Capitata against Simvastatin Induced Hepatotoxicity in Rats. Int. Res. J. Pharm. 2012, 2(4), 91–97.
  • Leamsamrong, K.; Tongjaroenbuangam, W.; Maneetong, S.; Chantiratikul, A.; Chinrasri, O. Physicochemical Contents, Antioxidant Activities, and Acute Toxicity Assessment of Selenium-Enriched Chinese Kale (Brassica Oleracea Var. Alboglabra L.) Seedlings. J. Chem. 2019, 2019, 1–12. DOI: 10.1155/2019/7983038.
  • Thounaojam, M. C.; Jadeja, R. N.; Sankhari, J. M.; Devkar, R. V.; Ramachandran, A. V. Safety Evaluations on Ethanolic Extract of Red Cabbage (Brassica Oleracea L.) In Mice. J. Food Sci. 2011, 76(1), T35–T39. DOI: 10.1111/j.1750-3841.2010.01962.x.
  • Chia, C. W.; Egan, J. M.; Age-Related, F. L. Changes in Glucose Metabolism, Hyperglycemia, and Cardiovascular Risk. Circ. Res. 2018, 123(7), 886–904. DOI: 10.1161/CIRCRESAHA.118.312806.
  • Ormazabal, V.; Nair, S.; Elfeky, O.; Aguayo, C.; Salomon, C.; Zuñiga, F. A. Association between Insulin Resistance and the Development of Cardiovascular Disease. Cardiovasc. Diabetol. 2018, 17(1), 122. DOI: 10.1186/s12933-018-0762-4.
  • Achi, N. K.; Ohaeri, O. C.; Ijeh, I. I.; Eleazu, C. Modulation of the Lipid Profile and Insulin Levels of Streptozotocin Induced Diabetic Rats by Ethanol Extract of Cnidoscolus Aconitifolius Leaves and Some Fractions: Effect on the Oral Glucose Tolerance of Normoglycemic Rats. Biomed. Pharmacother. 2017, 86, 562–569. DOI: 10.1016/j.biopha.2016.11.133.
  • Kalu, W. O.; Okafor, P. N.; Ijeh, I. I.; Eleazu, C. Effect of Kolaviron, a Biflavanoid Complex from Garcinia Kola on Some Biochemical Parameters in Experimentally Induced Benign Prostatic Hyperplasic Rats. Biomed. Pharmacother. 2016, 83, 1436–1443. DOI: 10.1016/j.biopha.2016.08.064.
  • Ozsoy-Sacan, O.; Karabulut-Bulan, O.; Bolkent, S.; Yanardag, R.; Ozgey, Y. Effects of Chard (Beta Vulgaris L. Var Cicla) on the Liver of the Diabetic Rats: A Morphological and Biochemical Study. Biosci. Biotechnol. Biochem. 2004, 68(8), 1640–1648. DOI: 10.1271/bbb.68.1640.
  • Gamba, M.; Raguindin, P. F.; Asllanaj, E.; Merlo, F.; Glisic, M.; Minder, B.; Bussler, W.; Metzger, B.; Kern, H. Bioactive Compounds and Nutritional Composition of Swiss Chard (Beta Vulgaris L. Var. Cicla and Flavescens): A Systematic Review. Crit. Rev. Food Sci. Nutr. 2020, 4, 1–16. DOI: 10.1080/10408398.2020.1799326.
  • Song, J.; Kwon, O.; Chen, S.; Daruwala, R.; Eck, P.; Park, J. B.; Levine, M. Flavonoid Inhibition of Sodium-Dependent Vitamin C Transporter 1 (SVCT1) and Glucose Transporter Isoform 2 (GLUT2), Intestinal Transporters for Vitamin C and Glucose. J. Biol. Chem. 2002, 277(18), 15252–15260. DOI: 10.1074/jbc.M110496200.
  • Mohammed, H. S.; Abdel-Aziz, M. M.; Abu-Baker, M. S.; Saad, A. M.; Mohamed, M. A.; Ghareeb, M. A. Antibacterial and Potential Antidiabetic Activities of Flavone C-Glycosides Isolated from Beta Vulgaris Subspecies Cicla L. Var. Flavescens (Amaranthaceae) Cultivated in Egypt. Curr. Pharm. Biotechnol. 2019, 20(7), 595–604. DOI: 10.2174/1389201020666190613161212.
  • Chai, W.; Liebman, M. Effect of Different Cooking Methods on Vegetable Oxalate Content. J. Agric. Food Chem. 2005, 53(8), 3027–3030. DOI: 10.1021/jf048128d.
  • Bavec, M.; Turinek, M.; Grobelnik-Mlakar, S.; Slatnar, A.; Bavec, F. Influence of Industrial and Alternative Farming Systems on Contents of Sugars, Organic Acids, Total Phenolic Content, and the Antioxidant Activity of Red Beet (Beta Vulgaris L. Ssp. Vulgaris Rote Kugel). J. Agric. Food Chem. 2010, 58(22), 11825–11831. DOI: 10.1021/jf103085p.
  • De Almeida, P. D. O.; Boleti, A. Anti-Inflammatory Activity of Triterpenes Isolated from Protium Paniculatum Oil-Resins. Evidence-Based Complement. Altern. Med. 2015, 2015, 1–10. DOI: 10.1155/2015/293768.
  • Romero-Estrada, A.; Maldonado-Magaña, A.; González-Christen, J.; Bahena, S. M.; Garduño-Ramírez, M. L.; Rodríguez-López, V. Anti-Inflammatory and Antioxidative Effects of Six Pentacyclic Triterpenes Isolated from the Mexican Copal Resin of Bursera Copallifera. BMC Complement. Altern. Med. 2016, 16(1), 422. DOI: 10.1186/s12906-016-1397-1.
  • Ou, Z.; Zhao, J.; Zhu, L.; Huang, L.; Ma, Y.; Ma, C.; Luo, C.; Zhu, Z.; Yuan, Z.; Wu, J.;, et al. Anti-Inflammatory Effect and Potential Mechanism of Betulinic Acid on λ-Carrageenan-Induced Paw Edema in Mice. Biomed. Pharmacother. 2019, 118, 109347. DOI: 10.1016/j.biopha.2019.109347.
  • Basu, A.; Das, A. S.; Sharma, M.; Pathak, M. P.; Chattopadhyay, P.; Biswas, K.; Mukhopadhyay, R. STAT3 and NF-ΚB are Common Targets for Kaempferol-Mediated Attenuation of COX-2 Expression in IL-6-Induced Macrophages and Carrageenan-Induced Mouse Paw Edema. Biochem. Biophys. Rep. 2017, 12, 54–61. DOI: 10.1016/j.bbrep.2017.08.005.
  • Moraes, A. D.;. Synthesis, in Vitro and in Vivo Biological Evaluation, COX-1/2 Inhibition and Molecular Docking Study of Indole-N-Acylhydrazone Derivatives. Bioorg. Med. Chem. 2018, 26(20), 5388–5396. DOI: 10.1016/j.bmc.2018.07.024.
  • Mujumdar, A.; Misar, A. Anti-Inflammatory Activity of Jatropha Curcas Roots in Mice and Rats. J. Ethnopharmacol. 2004, 90(1), 11–15. DOI: 10.1016/j.jep.2003.09.019.
  • Abdelgadir, H. A.; Van Staden, J. Ethnobotany, Ethnopharmacology and Toxicity of Jatropha Curcas L. (Euphorbiaceae): A Review. South Afr. J. Bot. 2013, 88, 204–218. DOI: 10.1016/j.sajb.2013.07.021.
  • Shahzad, S.; Mateen, S.; Mubeena Mariyath, P. M.; Naeem, S. S.; Akhtar, K.; Rizvi, W.; Moin, S. Protective Effect of Syringaldehyde on Biomolecular Oxidation, Inflammation and Histopathological Alterations in Isoproterenol Induced Cardiotoxicity in Rats. Biomed. Pharmacother. 2018, 108, 625–633. DOI: 10.1016/j.biopha.2018.09.055.
  • Devappa, R. K.; Makkar, H. P. S.; Becker, K. Jatropha Toxicity—A Review. J. Toxicol. Environ. Heal. Part B. 2010, 13(6), 476–507. DOI: 10.1080/10937404.2010.499736.
  • Achi, N.; Ohaeri, C.; Ijeh, I.; Eleazu, C.; Igwe, K.; Onyeabo, C. Ameliorative Potentials of Methanol Fractions of Cnidoscolus Aconitifolius on Some Hematological and Biochemical Parameters in Streptozotocin Diabetic Rats. Endocrine, Metab. Immune Disord. - Drug Targets. 2018, 18(6), 637–645. DOI: 10.2174/1871530318666180328112904.
  • Ayodele, O. O.; Onajobi, F. D.; Osoniyi, O. R. Modulation of Blood Coagulation and Hematological Parameters by Crassocephalum Crepidioides Leaf Methanol Extract and Fractions in STZ-Induced Diabetes in the Rat. Sci. World J. 2020, 2020, 1–11. DOI: 10.1155/2020/1036364.
  • Ma, N.; Yang, G.-Z.; Liu, X.-W.; Yang, Y.-J.; Mohamed, I.; Liu, G.-R.; Li, J.-Y. Impact of Aspirin Eugenol Ester on Cyclooxygenase-1, Cyclooxygenase-2, C-Reactive Protein, Prothrombin and Arachidonate 5-Lipoxygenase in Healthy Rats. Iran. J. Pharm. Res. 2017, 16(4), 1443–1451.
  • Adjatin, A.; Dansi, A.; Badoussi, E.; Loko, Y. L.; Dansi, M.; Azokpota, P.; Gbaguidi, F.; Ahissou, H.; Akoègninou, A.; Akpagana, K.;; et al. Phytochemical Screening and Toxicity Studies of Crassocephalum Rubens (JusS. Ex Jacq.) S. Moore and Crassocephalum Crepidioides (Benth.) S. Moore Consumed as Vegetable in Benin. Int. J. Curr. Microbiol. Appl. Sci. 2013, 2(8), 1–13.
  • Ebenezer, O. A.; Kenneth, E.; Monday, B. B.; Hilda, M. O. Fibrinolytic Activity of Some Nigerian Medicinal Plants. J. Pharm. Pharmacol. 2014, 2(February 2014), 177–184.
  • Mahmud, S.; Akhter, S.; Rahman, M. A.; Aklima, J.; Akhter, S.; Merry, S. R.; Jubair, S. M. R.; Dash, R.; Emran, T. B. Antithrombotic Effects of Five Organic Extracts of Bangladeshi Plants in Vitro and Mechanisms in In Silico Models. Evidence-based Complement. Altern. Med. 2015, 2015, 782742. DOI: 10.1155/2015/782742.
  • Joshi, A.; Prasad, S. K.; Joshi, V. K. Phytochemical Standardization, Antioxidant, and Antibacterial Evaluations of Leea Macrophylla: A Wild Edible Plant. J. Food Drug Anal. 2016, 24(2), 324–331. DOI: 10.1016/j.jfda.2015.10.010.
  • Akhter, S.; Rahman, M. A.; Aklima, J.; Hasan, M. R.; Hasan Chowdhury, J. M. K. Antioxidative Role of Hatikana (Leea Macrophylla Roxb.) Partially Improves the Hepatic Damage Induced by CCl4 in Wistar Albino Rats. BioMed. Res. Int. 2015, 2015, 1–12. DOI: 10.1155/2015/356729.
  • Joshi, A.; Joshi, V. K.; Pandey, D.; Hemalatha, S. Systematic Investigation of Ethanolic Extract from Leea Macrophylla: Implications in Wound Healing. J. Ethnopharmacol. 2016, 191, 95–106. DOI: 10.1016/j.jep.2016.06.034.
  • Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K. M.; Yoga Latha, L.; Extraction, I. Characterization of Bioactive Compounds from Plants Extracts. Afr. J. Tradit. Complement. Altern. Med. 2011, 8(1), 1–10.
  • Pérez-González, M. Z.; Gutiérrez-Rebolledo, G. A.; Jiménez-Arellanes, M. A.; Nutricional, I. Farmacológica y Química de La Chaya (Cnidoscolus chayamansa). Revisión Bibliográfica. Temas Cienc. y Tecnol. 2016, 20(60), 43–56.
  • Guillermo-Moreno, R.; Durán-Mendoza, T.; González-Cortés, N. Calidad Sensorial de Totopos de Pozol Adicionados Con Chaya (Cnidoscolus aconitifolius) y Hierba Mora (Solanum Nigrum). Eur. Sci. J. 2019, 15(3), 15–27. DOI: 10.19044/esj.2019.v15n3p15.
  • Pola, G. P.; Roque, A. C.; Gordillo, P. I. M.; Ramos, P. A.; Mondragón, M. P. R. Evaluación de Galletas Con Base En Chaya (Cnidoscolus aconitifolius (Miller) I.M. Johnst., Euphorbiaceae) y Chipilín (Crotalaria 1 Longirostrata Hook. & Arn., Fabaceae). Lacandonia. 2017, 10(2), 47–52.
  • Nothias, L.-F.; Nothias-Esposito, M.; Da Silva, R.; Wang, M.; Protsyuk, I.; Zhang, Z.; Sarvepalli, A.; Leyssen, P.; Touboul, D.; Costa, J.;, et al. Bioactivity-Based Molecular Networking for the Discovery of Drug Leads in Natural Product Bioassay-Guided Fractionation. J. Nat. Prod. 2018, 81(4), 758–767. DOI: 10.1021/acs.jnatprod.7b00737.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.