2,433
Views
28
CrossRef citations to date
0
Altmetric
Review

Detection of Heavy Metals in Food and Agricultural Products by Surface-enhanced Raman Spectroscopy

ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon & show all

References

  • Tang, H. B.; Zhu, C. H.; Meng, G. W.; Wu, N. Q. Review-Surface-Enhanced Raman Scattering Sensors for Food Safety and Environmental Monitoring. J. Electrochem. Soc. 2018, 165(8), B3098–B3118. DOI: 10.1149/2.0161808jes.
  • Al-Musharafi, S. K.; Mahmoud, I. Y.; Al-Bahry, S. N. Heavy Metal Pollution from Treated Sewage Effluent. APCBEE Procedia. 2013, 5, 344–348. DOI: 10.1016/j.apcbee.2013.05.059.
  • Vennam, S.; Georgoulas, S.; Khawaja, A.; Chua, S.; Strouthidis, N. G.; Foster, P. J. Heavy Metal Toxicity and the Aetiology of Glaucoma. Eye (Lond). 2020, 34(1), 129–137. DOI: 10.1038/s41433-019-0672-z.
  • Wang, E. E.; Mahajan, N.; Wills, B.; Leikin, J. Successful Treatment of Potentially Fatal Heavy Metal Poisonings. J. Emergency Med. 2007, 32(3), 289–294. DOI: 10.1016/j.jemermed.2006.12.013.
  • Zhao, Y.; Xu, M.; Liu, Q.; Wang, Z.; Zhao, L.; Chen, Y. Study of Heavy Metal Pollution, Ecological Risk and Source Apportionment in the Surface Water and Sediments of the Jiangsu Coastal Region, China: A Case Study of the Sheyang Estuary. Mar. Pollut. Bull. 2018, 137, 601–609. DOI: 10.1016/j.marpolbul.2018.10.044.
  • Halder, D.; Saha, J. K.; Biswas, A. Accumulation of Essential and Non-essential Trace Elements in Rice Grain: Possible Health Impacts on Rice Consumers in West Bengal. India. Sci Total Environ. 2020, 706, 135944. DOI: 10.1016/j.scitotenv.2019.135944.
  • Eskandari, E.; Kosari, M.; Davood Abadi Farahani, M. H.; Khiavi, N. D.; Saeedikhani, M.; Katal, R.; Zarinejad, M. A Review on Polyaniline-based Materials Applications in Heavy Metals Removal and Catalytic Processes. Sep. Purif. Technol. 2020, 231, 27. DOI: 10.1016/j.seppur.2019.115901.
  • Gajdos, P.;. Globalization Context of Urban Development and Its Socio-Spatial Particularities. Sociologia. 2009, 41(4), 304–328.
  • Vardhan, K. H.; Kumar, P. S.; Panda, R. C. A Review on Heavy Metal Pollution, Toxicity and Remedial Measures: Current Trends and Future Perspectives. J. Mol. Liq. 2019, 290, 111197. DOI: 10.1016/j.molliq.2019.111197.
  • Afonne, O. J.; Ifediba, E. C. Heavy Metals Risks in Plant Foods – Need to Step up Precautionary Measures. Curr. Opin. Toxicol. 2020, 22, 1–6. DOI: 10.1016/j.cotox.2019.12.006.
  • Joseph, L.; Jun, B. M.; Flora, J. R. V.; Park, C. M.; Yoon, Y. Removal of Heavy Metals from Water Sources in the Developing World Using Low-cost Materials: A Review. Chemosphere. 2019, 229, 142–159. DOI: 10.1016/j.chemosphere.2019.04.198.
  • Li, C.; Zhou, K.; Qin, W.; Tian, C.; Qi, M.; Yan, X.; Han, W. A. A Review on Heavy Metals Contamination in Soil: Effects, Sources, and Remediation Techniques. Soil Sediment Contam. 2019, 28(4), 380–394. DOI: 10.1080/15320383.2019.1592108.
  • Wei, J.; Gao, J.; Cen, K. Levels of Eight Heavy Metals and Health Risk Assessment considering Food Consumption by China’s Residents Based on the 5th China Total Diet Study. Sci. Total Environ. 2019, 689, 1141–1148. DOI: 10.1016/j.scitotenv.2019.06.502.
  • Rai, P. K.; Lee, S. S.; Zhang, M.; Tsang, Y. F.; Kim, K. H. Heavy Metals in Food Crops: Health Risks, Fate, Mechanisms, and Management. Environ. Int. 2019, 125, 365–385. DOI: 10.1016/j.envint.2019.01.067.
  • Zhao, Q.; Wang, Y.; Cao, Y.; Chen, A.; Ren, M.; Ge, Y.; Yu, Z.; Wan, S.; Hu, A.; Bo, Q.; et al. Potential Health Risks of Heavy Metals in Cultivated Topsoil and Grain, Including Correlations with Human Primary Liver, Lung and Gastric Cancer, in Anhui Province, Eastern China. Sci. Total Environ. 2014, 470–471, 340–347. DOI: 10.1016/j.scitotenv.2013.09.086.
  • Lin, Z.; He, L. Recent Advance in SERS Techniques for Food Safety and Quality Analysis: A Brief Review. Curr. Opin. Food Sci. 2019, 28, 82–87. DOI: 10.1016/j.cofs.2019.10.001.
  • Yaseen, T.; Sun, D.-W.; Cheng, J.-H. Raman Imaging for Food Quality and Safety Evaluation: Fundamentals and Applications. Trends Food Sci. Technol. 2017, 62, 177–189. DOI: 10.1016/j.tifs.2017.01.012.
  • Shi, R.; Liu, X.; Ying, Y. Facing Challenges in Real-Life Application of Surface-Enhanced Raman Scattering: Design and Nanofabrication of Surface-Enhanced Raman Scattering Substrates for Rapid Field Test of Food Contaminants. J. Agric. Food Chem. 2018, 66(26), 6525–6543. DOI: 10.1021/acs.jafc.7b03075.
  • Wang, L.; Peng, X.; Fu, H.; Huang, C.; Li, Y.; Liu, Z. Recent Advances in the Development of Electrochemical Aptasensors for Detection of Heavy Metals in Food. Biosens. Bioelectron. 2020, 147, 111777. DOI: 10.1016/j.bios.2019.111777.
  • Wang, S.; Chen, H.; Sun, B. Recent Progress in Food Flavor Analysis Using Gas Chromatography-ion Mobility Spectrometry (GC-IMS). Food Chem. 2020, 315, 126158. DOI: 10.1016/j.foodchem.2019.126158.
  • Yaseen, T.; Pu, H.; Sun, D.-W. Functionalization Techniques for Improving SERS Substrates and Their Applications in Food Safety Evaluation: A Review of Recent Research Trends. Trends Food Sci. Technol. 2018, 72, 162–174. DOI: 10.1016/j.tifs.2017.12.012.
  • Kazlagić, A.; Omanović-Mikličanin, E. Application of Raman Spectroscopy in Food Forensics: A Review. In Cmbebih 2019, IFMBE Proceedings; Badnjevic, A., Skrbic, R., Pokvic, L.G., Eds.; Springer: New York, 2020; pp 257–263.
  • Jiang, Y.; Sun, D.; Pu, H.; Wei, Q. Surface Enhanced Raman Spectroscopy (SERS): A Novel Reliable Technique for Rapid Detection of Common Harmful Chemical Residues. Trends Food Sci. Technol. 2018, 75, 10–22. DOI: 10.1016/j.tifs.2018.02.020.
  • Huang, Y.; Wang, X.; Lai, K.; Fan, Y.; Rasco, B. Trace Analysis of Organic Compounds in Foods with Surface‐enhanced Raman Spectroscopy: Methodology, Progress, and Challenges. Compr. Rev. Food Sci. Food Saf. 2020, 19(2), 622–642. DOI: 10.1111/1541-4337.12531.
  • Wu, Y.; Jiang, T.; Wu, Z.; Yu, R. Novel Ratiometric Surface-enhanced Raman Spectroscopy Aptasensor for Sensitive and Reproducible Sensing of Hg(2). Biosens. Bioelectron. 2018, 99, 646–652. DOI: 10.1016/j.bios.2017.08.041.
  • Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman Spectra of Pyridine Adsorbed at a Silver Electrode. Chem. Phys. Lett. 1974, 26(2), 163–166. DOI: 10.1016/0009-2614(74)85388-1.
  • Singh, R.; Rai, S. K.; Tiwari, M. K.; Mishra, A.; Tewari, A. K.; Mishra, P. C.; Singh, R. K. An Excellent Stable Fluorescent Probe: Selective and Sensitive Detection of Trace Amounts of Hg +2 Ions in Natural Source of Water. Chem. Phys. Lett. 2017, 676, 39–45. DOI: 10.1016/j.cplett.2017.03.046.
  • Ray, P.;. INOR 404-Selective Detection of Mercury (II) Ion Using Nonlinear Optical Properties of Gold Nanoparticles. Abstracts of Papers of the American Chemical Society. 2008, 236.
  • Awual, M. R.; Hasan, M. M.; Eldesoky, G. E.; Khaleque, M. A.; Rahman, M. M.; Naushad, M. Facile Mercury Detection and Removal from Aqueous Media Involving Ligand Impregnated Conjugate Nanomaterials. Chem. Eng. J. 2016, 290, 243–251. DOI: 10.1016/j.cej.2016.01.038.
  • Gu, Z.; Zhao, M.; Sheng, Y.; Bentolila, L. A.; Tang, Y. Detection of Mercury Ion by Infrared Fluorescent Protein and Its Hydrogel-based Paper Assay. Anal. Chem. 2011, 83(6), 2324–2329. DOI: 10.1021/ac103236g.
  • Fan, M.; Andrade, G. F. S.; Brolo, A. G. A Review on Recent Advances in the Applications of Surface-enhanced Raman Scattering in Analytical Chemistry. Anal. Chim. Acta. 2020, 1097, 1–29. DOI: 10.1016/j.aca.2019.11.049.
  • Song, D.; Yang, R.; Long, F.; Zhu, A. Applications of Magnetic Nanoparticles in Surface-enhanced Raman Scattering (SERS) Detection of Environmental Pollutants. J. Environ. Sci. 2019, 80, 14–34. DOI: 10.1016/j.jes.2018.07.004.
  • Sacco, A.; Mangino, S.; Portesi, C.; Vittone, E.; Rossi, A. M. Novel Approaches in Tip-Enhanced Raman Spectroscopy: Accurate Measurement of Enhancement Factors and Pesticide Detection in Tip Dimer Configuration. J. Phys. Chem. C. 2019, 123(40), 24723–24730. DOI: 10.1021/acs.jpcc.9b07016.
  • Li, L.; Deng, S.; Wang, H.; Zhang, R.; Zhu, K.; Lu, Y.; Wang, Z.; Zong, S.; Wang, Z.; Cui, Y. A SERS Fiber Probe Fabricated by Layer-by-layer Assembly of Silver Sphere Nanoparticles and Nanorods with A Greatly Enhanced Sensitivity for Remote Sensing. Nanotechnology. 2019, 30(25), 255503. DOI: 10.1088/1361-6528/ab0d2b.
  • Gao, M. M.; Lin, X.; Li, Z. H.; Wang, X. X.; Qiao, Y. B.; Zhao, H. Y.; Zhang, J.; Wang, L. Fabrication of Highly Sensitive and Reproducible 3D Surface-enhanced Raman Spectroscopy Substrates through in Situ Cleaning and Layer-by-layer Assembly of Au@Ag Nanocube Monolayer Film. Nanotechnology. 2019, 30(34), 345604. DOI: 10.1088/1361-6528/ab1ff2.
  • Lee, T.; Jung, S.; Kwon, S.; Kim, W.; Park, J.; Lim, H.; Lee, J. Formation of Interstitial Hot-Spots Using the Reduced Gap-Size between Plasmonic Microbeads Pattern for Surface-Enhanced Raman Scattering Analysis. Sensors. 2019, 19(5).
  • Alyami, A.; Quinn, A. J.; Iacopino, D. Flexible and Transparent Surface Enhanced Raman Scattering (Sers)-active Ag NPs/PDMS Composites for In-situ Detection of Food Contaminants. Talanta. 2019, 201, 58–64. DOI: 10.1016/j.talanta.2019.03.115.
  • Kumar, A.; Santhanam, V. Paper Swab Based SERS Detection of Non-permitted Colourants from Dals and Vegetables Using a Portable Spectrometer. Anal. Chim. Acta. 2019, 1090, 106–113. DOI: 10.1016/j.aca.2019.08.073.
  • Yuan, Y.; Panwar, N.; Yap, S. H. K.; Wu, Q.; Zeng, S.; Xu, J.; Tjin, S. C.; Song, J.; Qu, J.; Yong, K.-T. SERS-based Ultrasensitive Sensing Platform: An Insight into Design and Practical Applications. Coord. Chem. Rev. 2017, 337, 1–33. DOI: 10.1016/j.ccr.2017.02.006.
  • George, J. E.; Unnikrishnan, V. K.; Mathur, D.; Chidangil, S.; George, S. D. Flexible Superhydrophobic SERS Substrates Fabricated by in Situ Reduction of Ag on Femtosecond Laser-written Hierarchical Surfaces. Sensors Actuators B-Chem. 2018, 272, 485–493. DOI: 10.1016/j.snb.2018.05.155.
  • Ma, X.; Turasan, H.; Jia, F.; Seo, S.; Wang, Z.; Liu, G. L.; Kokini, J. L. A Novel Biodegradable ESERS (Enhanced SERS) Platform with Deposition of Au, Ag and Au/Ag Nanoparticles on Gold Coated Zein Nanophotonic Structures for the Detection of Food Analytes. Vib. Spectrosc. 2020, 106, 103013. DOI: 10.1016/j.vibspec.2019.103013.
  • Liu, X.; Liu, M.; Lu, Y.; Wu, C.; Xu, Y.; Lin, D.; Lu, D.; Zhou, T.; Feng, S. Facile Ag-Film Based Surface Enhanced Raman Spectroscopy Using DNA Molecular Switch for Ultra-Sensitive Mercury Ions Detection. Nanomater. (Basel). 2018, 8(8), 596. DOI: 10.3390/nano8080596.
  • Zhang, R.; Lv, S.; Gong, Y.; Li, Y.; Ding, C. Sensitive Determination of Hg(II) Based on a Hybridization Chain Recycling Amplification Reaction and Surface-enhanced Raman Scattering on Gold Nanoparticles. Mikrochim. Acta. 2018, 185(8), 363. DOI: 10.1007/s00604-018-2907-2.
  • Yang, H.; Ye, S. B.; Fu, Y.; Zhang, W.; Xie, F.; Gong, L.; Fang, P. P.; Chen, J.; Tong, Y. A Simple and Highly Sensitive Thymine Sensor for Mercury Ion Detection Based on Surface Enhanced Raman Spectroscopy and the Mechanism Study. Nanomater. (Basel). 2017, 7(7), 192. DOI: 10.3390/nano7070192.
  • Yuan, A.; Wu, X.; Li, X.; Hao, C.; Xu, C.; Kuang, K. H. Au@gap@AuAg Nanorod Side-by-Side Assemblies for Ultrasensitive SERS Detection of Mercury and Its Transformation. Small. 2019, 15(27), e1901958. DOI: 10.1002/smll.201901958.
  • He, Q. Z.; Zhang, Q.; Cao, W. W.; Yin, T.; Zhao, S. W.; Yin, X. Q.; Zhao, H.; Tao, W. Detecting Trace of Mercury Ions in Water Using Photoacoustic Method Enhanced by Gold Nanospheres. Microchem. J. 2019, 150.
  • Makam, P.; Shilpa, R.; Kandjani, A. E.; Periasamy, S. R.; Sabri, Y. M.; Madhu, C.; Bhargava, S. K.; Govindaraju, T. SERS and Fluorescence-based Ultrasensitive Detection of Mercury in Water. Biosens. Bioelectron. 2018, 100, 556–564. DOI: 10.1016/j.bios.2017.09.051.
  • Yan, S.; Chu, F.; Zhang, H.; Yuan, Y.; Huang, Y.; Liu, A.; Wang, S.; Li, W.; Li, S.; Wen, W. Rapid, One-step Preparation of SERS Substrate in Microfluidic Channel for Detection of Molecules and Heavy Metal Ions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 220, 117113. DOI: 10.1016/j.saa.2019.05.018.
  • Qi, Y.; Zhao, J.; Weng, G. J.; Li, J. J.; Li, X.; Zhu, J.; Zhao, J. W. A colorimetric/SERS Dual-mode Sensing Method for the Detection of mercury(II) Based on Rhodanine-stabilized Gold Nanobipyramids. J. Mater. Chem. C. 2018, 6(45), 12283–12293. DOI: 10.1039/C8TC03980A.
  • Ouyang, H.; Li, C.; Liu, Q.; Wen, G.; Liang, A.; Jiang, Z. Resonance Rayleigh Scattering and SERS Spectral Detection of Trace Hg(II) Based on the Gold Nanocatalysis. Nanomater. (Basel). 2017, 7(5), 5. DOI: 10.3390/nano7050114.
  • Song, D.; Yang, R.; Wang, H. Y.; Li, W.; Wang, H. C.; Long, H.; Long, F. A Label-free SERRS-based Nanosensor for Ultrasensitive Detection of Mercury Ions in Drinking Water and Wastewater Effluent. Anal. Methods. 2017, 9(1), 154–162. DOI: 10.1039/C6AY02361D.
  • Zuo, F. T.; Xu, W.; Zhao, A. W. A SERS Approach for Rapid Detection of Hg2+ Based on Functionalized Fe3O4@Ag Nanoparticles. Acta Chim. Sinica. 2019, 77(4), 379–386. DOI: 10.6023/A18110475.
  • Ly, N. H.; Joo, S. W. Raman Spectroscopy of Di-(2-picolyl)amine on Gold Nanoparticles for Hg (II) Detection. Bull. Korean Chem. Soc. 2015, 36(1), 226–229. DOI: 10.1002/bkcs.10054.
  • Kumar, S.; Bhanjana, G.; Dilbaghi, N.; Kumar, R.; Umar, A. Fabrication and Characterization of Highly Sensitive and Selective Arsenic Sensor Based on Ultra-thin Graphene Oxide Nanosheets. Sens. Actuators B Chem. 2016, 227, 29–34. DOI: 10.1016/j.snb.2015.11.101.
  • Song, L.; Mao, K.; Zhou, X.; Hu, J. A Novel Biosensor Based on Au@Ag Core-shell Nanoparticles for SERS Detection of Arsenic (III). Talanta. 2016, 146, 285–290. DOI: 10.1016/j.talanta.2015.08.052.
  • Banerjee, S.; Kumar, N. P.; Srinivas, A.; Roy, S. Core-shell Fe3O4@Au Nanocomposite as Dual-functional Optical Probe and Potential Removal System for Arsenic (III) from Water. J. Hazard. Mater. 2019, 375, 216–223. DOI: 10.1016/j.jhazmat.2019.04.085.
  • Dasary, S. S.; Zones, Y. K.; Barnes, S. L.; Ray, P. C.; Singh, A. K. Alizarin Dye Based Ultrasensitive Plasmonic SERS Probe for Trace Level Cadmium Detection in Drinking Water. Sens. Actuators B Chem. 2016, 224, 65–72. DOI: 10.1016/j.snb.2015.10.003.
  • Zuo, Q.; Chen, Y.; Chen, Z. P.; Yu, R. Q. Quantification of Cadmium in Rice by Surface-enhanced Raman Spectroscopy Based on a Ratiometric Indicator and Conical Holed Enhancing Substrates. Anal. Sci. 2018, 34(12), 1405–1410. DOI: 10.2116/analsci.18P342.
  • Cheng, F. S.; Xu, H. B.; Wang, C.; Gong, Z. J.; Tang, C. Y.; Fan, M. K. Surface Enhanced Raman Scattering Fiber Optic Sensor as an Ion Selective Optrode: The Example of Cd2+ Detection. RSC Adv. 2014, 4(110), 64683–64687.
  • Annavaram, V.; Kutsanedzie, Y. H. F.; Agyekum, A. A.; Shah, S. A.; Zareef, M.; Hassan, M. M.; Waqas, A.; Ouyang, Q.; Chen, Q. NaYF4@Yb,Ho,Au/GO-nanohybrid Materials for SERS applications-Pb(II) Detection and Prediction. Colloids Surf. B Biointerfaces. 2019, 174, 598–606. DOI: 10.1016/j.colsurfb.2018.11.039.
  • Sarfo, D. K.; Izake, E. L.; O’Mullane, A. P.; Ayoko, G. A. Molecular Recognition and Detection of Pb(II) Ions in Water by Aminobenzo-18-crown-6 Immobilised onto a Nanostructured SERS Substrate. Sensors Actuators B-Chel. 2018, 255, 1945–1952. DOI: 10.1016/j.snb.2017.08.223.
  • Li, C. N.; Fan, P. D.; Liang, A. H.; Liu, Q. Y.; Jiang, Z. L. Aptamer Based Determination of Pb(II) by SERS and by Exploiting the Reduction of HAuCl4 by H2O2 as Catalyzed by Graphene Oxide Nanoribbons. Microchim. Acta. 2018, 185, 177.
  • Wang, H.; Huang, X.; Wen, G.; Jiang, Z. A Dual-model SERS and RRS Analytical Platform for Pb(II) Based on Ag-doped Carbon Dot Catalytic Amplification and Aptamer Regulation. Sci. Rep. 2019, 9(1), 9991. DOI: 10.1038/s41598-019-46426-y.
  • Ji, W.; Wang, Y.; Tanabe, I.; Han, X.; Zhao, B.; Ozaki, Y. Semiconductor-driven “Turn-off” Surface-enhanced Raman Scattering Spectroscopy: Application in Selective Determination of Chromium(vi) in Water. Chem. Sci. 2015, 6(1), 342–348. DOI: 10.1039/c4sc02618g.
  • Bu, X. F.; Zhang, Z. Y.; Zhang, L. X.; Li, P.; Wu, J. W.; Zhang, H. Q.; Tian, Y. Highly Sensitive SERS Determination of chromium(VI) in Water Based on Carbimazole Functionalized Alginate-protected Silver Nanoparticles. Sensors Actuators B-Chem. 2018, 273, 1519–1524. DOI: 10.1016/j.snb.2018.07.058.
  • Lv, B.; Sun, Z.; Zhang, J.; Jing, C. Multifunctional Satellite Fe3O4-Au@TiO2 Nano-structure for SERS Detection and Photo-reduction of Cr(VI). Colloids Surf. A. 2017, 513, 234–240. DOI: 10.1016/j.colsurfa.2016.10.048.
  • Liang, J.; Liu, H.; Lan, C.; Fu, Q.; Huang, C.; Luo, Z.; Jiang, T.; Tang, Y. Silver Nanoparticle Enhanced Raman Scattering-based Lateral Flow Immunoassays for Ultra-sensitive Detection of the Heavy Metal Chromium. Nanotechnology. 2014, 25(49), 495501. DOI: 10.1088/0957-4484/25/49/495501.
  • Lee, N.; Ly, N. H.; Kim, J. S.; Jung, H. S.; Joo, S. W. A Selective Triarylmethine-based Spectroscopic Probe for Zn2+ Ion Monitoring. Dyes Pigm. 2019, 171.
  • Dugandžić, V.; Kupfer, S.; Jahn, M.; Henkel, T.; Weber, K.; Cialla-May, D.; Popp, J. A SERS-based Molecular Sensor for Selective Detection and Quantification of copper(II) Ions. Sens. Actuators B Chem. 2019, 279, 230–237. DOI: 10.1016/j.snb.2018.09.098.
  • Li, D.; Li, C.; Liang, A.; Jiang, Z. A Silver Nanosol SERS Quantitative Method for Trace F− Detection Using the Oxidized Tetramethylbenzidine as Molecular Probes. Microchem. J. 2020, 152, 104439. DOI: 10.1016/j.microc.2019.104439.
  • Krupp, E. M.; Gajdosechova, Z.; Schwerdtle, T.; Lohren, H. Mercury Toxicity and Speciation Analysis. Metallomics. 2016, 285–304.
  • Fields, C. A.; Borak, J.; Louis, E. D. Mercury-induced Motor and Sensory Neurotoxicity: Systematic Review of Workers Currently Exposed to Mercury Vapor. Crit. Rev. Toxicol. 2017, 47(10), 811–844. DOI: 10.1080/10408444.2017.1342598.
  • Kang, T.; Yoo, S. M.; Yoon, I.; Lee, S.; Choo, J.; Lee, S. Y.; Kim, B. Au Nanowire-on-film SERRS Sensor for Ultrasensitive Hg2+ Detection. Chemistry. 2011, 17(7), 2211–2214. DOI: 10.1002/chem.201001663.
  • Li, H.; Huang, X.; Mehedi Hassan, M.; Zuo, M.; Wu, X.; Chen, Y.; Chen, Q. Dual-channel Biosensor for Hg2+ Sensing in Food Using Au@Ag/graphene-upconversion Nanohybrids as Metal-enhanced Fluorescence and SERS Indicators. Microchem. J. 2020, 154, 104563. DOI: 10.1016/j.microc.2019.104563.
  • Pu, H.; Xiao, W.; Sun, D.-W. SERS-microfluidic Systems: A Potential Platform for Rapid Analysis of Food Contaminants. Trends Food Sci. Technol. 2017, 70, 114–126. DOI: 10.1016/j.tifs.2017.10.001.
  • Lin, Y.; Gritsenko, D.; Feng, S.; Teh, Y. C.; Lu, X.; Xu, J. Detection of Heavy Metal by Paper-based Microfluidics. Biosens. Bioelectron. 2016, 83, 256–266. DOI: 10.1016/j.bios.2016.04.061.
  • Kung, C.-T.; Hou, C.-Y.; Wang, Y.-N.; Fu, L.-M. Microfluidic Paper-based Analytical Devices for Environmental Analysis of Soil, Air, Ecology and River Water. Sens. Actuators B Chem. 2019, 301. DOI: 10.1016/j.snb.2019.126855.
  • Guo, J.; Zeng, F.; Guo, J.; Ma, X. Preparation and Application of Microfluidic SERS Substrate: Challenges and Future Perspectives. J. Mater. Sci. Technol. 2020, 37, 96–103. DOI: 10.1016/j.jmst.2019.06.018.
  • Paul, T.; Saha, N. C. Environmental Arsenic and Selenium Contamination and Approaches Towards Its Bioremediation through the Exploration of Microbial Adaptations: A Review. Pedosphere. 2019, 29(5), 554–568. DOI: 10.1016/S1002-0160(19)60829-5.
  • Caussy, D.;. Case Studies of the Impact of Understanding Bioavailability: Arsenic. Ecotoxicol. Environ. Saf. 2003, 56(1), 164–173. DOI: 10.1016/s0147-6513(03)00059-9.
  • Chou, W. C.; Hawkins, A. L.; Barrett, J. F.; Griffin, C. A.; Dang, C. V. Arsenic Inhibition of Telomerase Transcription Leads to Genetic Instability. J. Clin. Invest. 2001, 108(10), 1541–1547. DOI: 10.1172/JCI14064.
  • Yang, M.; Liamtsau, V.; Fan, C.; Sylvers, K. L.; McGoron, A. J.; Liu, G.; Fu, F.; Cai, Y. Arsenic Speciation on Silver Nanofilms by Surface-Enhanced Raman Spectroscopy. Anal. Chem. 2019, 91(13), 8280–8288. DOI: 10.1021/acs.analchem.9b00999.
  • Xu, S.; Sabino, F. P.; Janotti, A.; Chase, D. B.; Sparks, D. L.; Rabolt, J. F. Unique Surface Enhanced Raman Scattering Substrate for the Study of Arsenic Speciation and Detection. J. Phys. Chem. A. 2018, 122(49), 9474–9482. DOI: 10.1021/acs.jpca.8b09104.
  • Schwarz, M. A.; Lindtner, O.; Blume, K.; Heinemeyer, G.; Schneider, K. Cadmium Exposure from Food: The German LExUKon Project. Food Addit. Contam Part A Chem. Anal. Control Expo. Risk Assess. 2014, 31(6), 1038–1051. DOI: 10.1080/19440049.2014.905711.
  • Tinkov, A. A.; Gritsenko, V. A.; Skalnaya, M. G.; Cherkasov, S. V.; Aaseth, J.; Skalny, A. V. Gut as a Target for Cadmium Toxicity. Environ. Pollut. 2018, 235, 429–434. DOI: 10.1016/j.envpol.2017.12.114.
  • Landrigan, P. J.; Fuller, R.; Acosta, N. J. R.; Adeyi, O.; Arnold, R.; Basu, N.; Balde, A. B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J. I.; et al. The Lancet Commission on Pollution and Health. Lancet. 2018, 391(10119), 462–512.
  • Ouyang, H.; Ling, S.; Liang, A.; Jiang, Z. A Facile Aptamer-regulating Gold Nanoplasmonic SERS Detection Strategy for Trace Lead Ions. Sens. Actuators B Chem. 2018, 258, 739–744. DOI: 10.1016/j.snb.2017.12.009.
  • Khoshbin, Z.; Housaindokht, M. R.; Izadyar, M.; Bozorgmehr, M. R.; Verdian, A. Theoretical Design and Experimental Study of New Aptamers with the Improved Target-affinity: New Insights into the Pb2+-specific Aptamers as a Case Study. J. Mol. Liq. 2019, 289, 12. DOI: 10.1016/j.molliq.2019.111159.
  • Pellerin, C.; Booker, S. M. Reflections on Hexavalent Chromium: Health Hazards of an Industrial Heavyweight. Environ. Health Perspect. 2000, 108(9), A402–7. DOI: 10.1289/ehp.108-a402.
  • Biswas, P.; Karn, A. K.; Balasubramanian, P.; Kale, P. G. Biosensor for Detection of Dissolved Chromium in Potable Water: A Review. Biosens. Bioelectron. 2017, 94, 589–604. DOI: 10.1016/j.bios.2017.03.043.
  • Katz, S. A.; Salem, H. The Toxicology of Chromium with respect to Its Chemical Speciation: A Review. J. Appl. Toxicol. 1993, 13(3), 217–224. DOI: 10.1002/jat.2550130314.
  • Ye, Y. J.; Liu, H. L.; Yang, L. B.; Liu, J. H. Sensitive and Selective SERS Probe for Trivalent Chromium Detection Using Citrate Attached Gold Nanoparticles. Nanoscale. 2012, 4(20), 6442–6448. DOI: 10.1039/c2nr31985c.
  • Zhou, W.; Yin, B. C.; Ye, B. C. Highly Sensitive Surface-enhanced Raman Scattering Detection of Hexavalent Chromium Based on Hollow Sea Urchin-like TiO2@Ag Nanoparticle Substrate. Biosens. Bioelectron. 2017, 87, 187–194. DOI: 10.1016/j.bios.2016.08.036.
  • Nriagu, J.;. “Zinc Toxicity in Humans,” Encyclopedia of Environmental Health. J. Nriagu. 2019, 500–508.
  • Qiu, S.; Wei, Y.; Tu, T.; Xiang, J.; Zhang, D.; Chen, Q.; Luo, L.; Lin, Z. Triazole-stabilized Fluorescence Sensor for Highly Selective Detection of Copper in Tea and Animal Feed. Food Chem. 2020, 317, 126434. DOI: 10.1016/j.foodchem.2020.126434.
  • Mehrani, Z.; Ebrahimzadeh, H.; Asgharinezhad, A. A.; Moradi, E. Determination of Copper in Food and Water Sources Using Poly m-phenylenediamine/CNT Electrospun Nanofiber. Microchem. J. 2019, 149, 103975. DOI: 10.1016/j.microc.2019.103975.
  • Li, X.; Zhang, M.; Wang, Y.; Wang, X.; Ma, H.; Li, P.; Song, W.; Xia Han, X.; Zhao, B. Direct Detection of Fluoride Ions in Aquatic Samples by Surface-enhanced Raman Scattering. Talanta. 2018, 178, 9–14. DOI: 10.1016/j.talanta.2017.08.101.
  • Hassan, M. M.; Chen, Q.; Kutsanedzie, F. Y. H.; Li, H.; Zareef, M.; Xu, Y.; Yang, M.; Agyekum, A. A. rGO-NS SERS-based Coupled Chemometric Prediction of Acetamiprid Residue in Green Tea. J. Food Drug Anal. 2019, 27(1), 145–153. DOI: 10.1016/j.jfda.2018.06.004.
  • Lussier, F.; Thibault, V.; Charron, B.; Wallace, G. Q.; Masson, J.-F. Deep Learning and Artificial Intelligence Methods for Raman and Surface-enhanced Raman Scattering. TrAC Trends Anal. Chem. 2020, 124, 115796. DOI: 10.1016/j.trac.2019.115796.
  • Medina, S.; Perestrelo, R.; Silva, P.; Pereira, J. A. M.; Câmara, J. S. Current Trends and Recent Advances on Food Authenticity Technologies and Chemometric Approaches. Trends Food Sci. Technol. 2019, 85, 163–176. DOI: 10.1016/j.tifs.2019.01.017.
  • Guo, Z.; Wang, M.; Wu, J.; Tao, F.; Chen, Q.; Wang, Q.; Ouyang, Q.; Shi, J.; Zou, X. Quantitative Assessment of Zearalenone in Maize Using Multivariate Algorithms Coupled to Raman Spectroscopy. Food Chem. 2019, 286, 282–288. DOI: 10.1016/j.foodchem.2019.02.020.
  • Zhao, M.; Nian, Y.; Allen, P.; Downey, G.; Kerry, J. P.; O’Donnell, C. P. Application of Raman Spectroscopy and Chemometric Techniques to Assess Sensory Characteristics of Young Dairy Bull Beef. Food Res. Int. 2018, 107, 27–40. DOI: 10.1016/j.foodres.2018.02.007.
  • Nian, Y.; Zhao, M.; O’Donnell, C. P.; Downey, G.; Kerry, J. P.; Allen, P. Assessment of Physico-chemical Traits Related to Eating Quality of Young Dairy Bull Beef at Different Ageing Times Using Raman Spectroscopy and Chemometrics. Food Res. Int. 2017, 99, 778–789. DOI: 10.1016/j.foodres.2017.06.056.
  • Yan, X.; Zhang, S.; Fu, H.; Qu, H. Combining Convolutional Neural Networks and On-line Raman Spectroscopy for Monitoring the Cornu Caprae Hircus Hydrolysis Process. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 226, 117589. DOI: 10.1016/j.saa.2019.117589.
  • Liu, H.; Wang, Y.; Wang, N.; Liu, M.; Liu, S. The Determination of Plasma Voriconazole Concentration by Surface-enhanced Raman Spectroscopy Combining Chemometrics. Chemom. Intell. Lab. Syst. 2019, 193, 103833. DOI: 10.1016/j.chemolab.2019.103833.
  • Richardson, P. I. C.; Muhamadali, H.; Ellis, D. I.; Goodacre, R. Rapid Quantification of the Adulteration of Fresh Coconut Water by Dilution and Sugars Using Raman Spectroscopy and Chemometrics. Food Chem. 2019, 272, 157–164. DOI: 10.1016/j.foodchem.2018.08.038.
  • Chen, X.; Wang, D.; Li, J.; Xu, T.; Lai, K.; Ding, Q.; Lin, H.; Sun, L.; Lin, M. A Spectroscopic Approach to Detect and Quantify Phosmet Residues in Oolong Tea by Surface-enhanced Raman Scattering and Silver Nanoparticle Substrate. Food Chem. 2020, 312, 126016. DOI: 10.1016/j.foodchem.2019.126016.
  • Ahmad, W.; Hassan, M. M.; Wang, J.; Zareef, M.; Annavaram, V.; Chen, Q. An Octahedral Cu2O@AgNCs Substrate in Liquid-microextraction Coupled Chemometric Algorithms for SERS Sensing of Chromium(iii & Vi) Species. Anal. Methods. 2019, 11(47), 6004–6012. DOI: 10.1039/c9ay01584a.
  • Li, H.; Liu, S.; Hassan, M. M.; Ali, S.; Ouyang, Q.; Chen, Q.; Wu, X.; Xu, Z. Rapid Quantitative Analysis of Hg(2+) Residue in Dairy Products Using SERS Coupled with ACO-BP-AdaBoost Algorithm. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 223, 117281. DOI: 10.1016/j.saa.2019.117281.
  • Nie, X.-M.; Wang, J.; Wang, X.; Tian, Y.-P.; Chen, S.; Long, Z.-Y.; Zong, C.-H. Highly Effective Detection of Amitraz in Honey by Using Surface-enhanced Raman Scattering Spectroscopy Coupled with Chemometric Methods. Chin. J. Chem. Phys. 2019, 32(4), 444–450. DOI: 10.1063/1674-0068/cjcp1808193.
  • Huff, G. S.; Gallaher, J. K.; Hodgkiss, J. M.; Gordon, K. C. No Single DFT Method Can Predict Raman Cross-sections, Frequencies and Electronic Absorption Maxima of Oligothiophenes. Synth. Met. 2017, 231, 1–6. DOI: 10.1016/j.synthmet.2017.06.009.
  • Abdulazeez, I.; Popoola, S. A.; Saleh, T. A.; Al-Saadi, A. A. Spectroscopic, DFT and Trace Detection Study of Procaine Using Surface-enhanced Raman Scattering Technique. Chem. Phys. Lett. 2019, 730, 617–622. DOI: 10.1016/j.cplett.2019.06.067.
  • Botta, R.; Chindaudon, P.; Eiamchai, P.; Horprathum, M.; Limwichean, S.; Chananonnawathorn, C.; Patthanasettakul, V.; Jomphoak, A.; Nuntawong, N. Detection and Classification of Volatile Fatty Acids Using Surface‐enhanced Raman Scattering and Density Functional Theory Calculations. J. Raman Spectrosc. 2019, 50(12), 1817–1828. DOI: 10.1002/jrs.5737.
  • Balan, C.; Pop, L. C.; Ir, B. M. Raman and SERS Analysis of Amikacin Combined with DFT-based Calculations. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 214, 79–85. DOI: 10.1016/j.saa.2019.02.012.
  • Hassan, M. M.; Li, H.; Ahmad, W.; Zareef, M.; Wang, J.; Xie, S.; Wang, P.; Ouyang, Q.; Wang, S.; Chen, Q. Au@Ag Nanostructure Based SERS Substrate for Simultaneous Determination of Pesticides Residue in Tea via Solid Phase Extraction Coupled Multivariate Calibration. LWT. 2019, 105, 290–297. DOI: 10.1016/j.lwt.2019.02.016.
  • Xu, Y.; Kutsanedzie, F. Y. H.; Hassan, M.; Zhu, J.; Ahmad, W.; Li, H.; Chen, Q. Mesoporous Silica Supported Orderly-spaced Gold Nanoparticles SERS-based Sensor for Pesticides Detection in Food. Food Chem. 2020, 315, 126300. DOI: 10.1016/j.foodchem.2020.126300.
  • Haldavnekar, R.; Venkatakrishnan, K.; Tan, B. Next Generation SERS- Atomic Scale Platform for Molecular Level Detection. Appl. Mater. Today. 2020, 18, 100529. DOI: 10.1016/j.apmt.2019.100529.
  • Nemciauskas, K.; Traksele, L.; Salaseviciene, A.; Snitka, V. A Silicon Membrane-silver Nanoparticles SERS Chip for Trace Molecules Detection. Microelectron. Eng. 2020, 225, 111282. DOI: 10.1016/j.mee.2020.111282.
  • Fu, P.; Shi, X.; Jiang, F.; Xu, X. Superhydrophobic Nanostructured Copper Substrate as Sensitive SERS Platform Prepared by Femtosecond Laser Pulses. Appl. Surf. Sci. 2020, 501, 144269. DOI: 10.1016/j.apsusc.2019.144269.
  • He, X.; Yang, S.; Xu, T.; Song, Y.; Zhang, X. Microdroplet-captured Tapes for Rapid Sampling and SERS Detection of Food Contaminants. Biosens. Bioelectron. 2020, 152, 112013. DOI: 10.1016/j.bios.2020.112013.
  • Mekonnen, M. L.; Chen, C. H.; Osada, M.; Su, W. N.; Hwang, B. J. Dielectric Nanosheet Modified Plasmonic-paper as Highly Sensitive and Stable SERS Substrate and Its Application for Pesticides Detection. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 225, 117484. DOI: 10.1016/j.saa.2019.117484.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.