384
Views
5
CrossRef citations to date
0
Altmetric
Review

Calibration Maintenance Application of Near-infrared Spectrometric Model in Food Analysis

, , &

References

  • Herrero, A. N.;. Raman Spectroscopy a Promising Technique for Quality Assessment of Meat and Fish: A Review. Food Chem. 2008, 107(4), 1642–1651. DOI: 10.1016/j.foodchem.2007.10.014.
  • Bremner, H. A.; Sakaguchi, M. A Critical Look at whether ‘Freshness’ Can Be Determined. J Aquat Food Prod Technol. 2000, 9(3), 5–25. DOI: 10.1300/J030v09n03_02.
  • ElMasry, G.; Sun, D. W.; Allen, P. Near-infrared Hyperspectral Imaging for Predicting Colour, pH and Tenderness of Fresh Beef. J. Food Eng. 2012, 110(1), 127–140. DOI: 10.1016/j.jfoodeng.2011.11.028.
  • Wang, H. L.; Peng, J. Y.; Xie, C. Q.; Bao, Y. D.; He, Y. Fruit Quality Evaluation Using Spectroscopy Technology: A Review. Sensors. 2015, 15(5), 11889–11927. DOI: 10.3390/s150511889.
  • Burns, D. A.; Ciurczak, E. W. Handbook of near Infrared Analysis, Revised and Expanded; Marcel Dekker: New York, 2001.
  • Peinado, A.; Hammond, J.; Scott, A. Development, Validation and Transfer of a near Infrared Method to Determine In-line the End Point of a Fluidised Drying Process for Commercial Production Batches of an Approved Oral Solid Dose Pharmaceutical Product. J. Pharmaceut. Biomed. 2011, 54(1), 13–20. DOI: 10.1016/j.jpba.2010.07.036.
  • de Noord, O. E.;. Multivariate Calibration Standardization. Chemom. Intell. Lab. Syst. 1994, 25(2), 85–97. DOI: 10.1016/0169-7439(94)85037-2.
  • Bouveresse, E.; Massart, D. L. Standardisation of Near-infrared Spectrometric Instruments: A Review. Vib. Spectrosc. 1996, 11(1), 3–15. DOI: 10.1016/0924-2031(95)00055-0.
  • Feudale, R. N.; Woody, N. A.; Tan, H. W.; Myles, A. J.; Brown, S. D.; Ferre, J. Transfer of Multivariate Calibration Models: A Review. Chemom. Intell. Lab. Syst. 2002, 64(2), 181–192. DOI: 10.1016/S0169-7439(02)00085-0.
  • Brouckaert, D.; Uyttersprot, J. S.; Broeckx, W.; De Beer, T. Calibration Transfer of a Raman Spectroscopic Quantification Method for the Assessment of Liquid Detergent Compositions from At-line Laboratory to Inline Industrial Scale. Talanta. 2018, 179, 386–392. DOI: 10.1016/j.talanta.2017.11.025.
  • Fearn, T.;. Standardisation and Calibration Transfer for near Infrared Instruments: A Review. J. Near Infrared Spectrosc. 2001, 9(4), 229–244. DOI: 10.1255/jnirs.309.
  • Sulub, Y.; LoBrutto, R.; Vivilecchia, R.; Wabuyele, B. W. Content Uniformity Determination of Pharmaceutical Tablets Using Five Near-Infrared Reflectance Spectrometers: A Process Analytical Technology (PAT) Approach Using Robust Multivariate Calibration Transfer Algorithms. Anal. Chim. Acta. 2008, 611(2), 143–150. DOI: 10.1016/j.aca.2008.02.016.
  • Shahbazikhah, P.; Kalivas, J. H. A Consensus Modeling Approach to Update A Spectroscopic Calibration. Chemom. Intell. Lab. Syst. 2013, 120, 142–153. DOI: 10.1016/j.chemolab.2012.06.006.
  • Galvao, R. K. H.; Soares, S. F. C.; Martins, M. N.; Pimentel, M. F.; Araujo, M. C. U. Calibration Transfer Employing Univariate Correction and Robust Regression. Anal. Chim. Acta. 2015, 864, 1–8. DOI: 10.1016/j.aca.2014.10.001.
  • Workman, J.; Mark, H. Calibration Transfer Chemometrics, Part I: Review of the Subject. Spectroscopy. 2017, 32(10), 18–25.
  • Workman, J.; Mark, H. Calibration Transfer, Part II: The Instrumentation Aspects. Spectroscopy. 2013, 28(5), 12–27.
  • Workman, J.; Mark, H. Chemometrics in Spectroscopy Calibration Transfer, Part III: The Mathematical Aspects. Spectroscopy. 2013, 28(6), 28–35.
  • Workman, J.; Mark, H. Calibration Transfer, Part IV: Measuring the Agreement between Instruments following Calibration Transfer. Spectroscopy. 2013, 28(10), 24–30.
  • Workman, J.; Mark, H. Calibration Transfer, Part V: The Mathematics of Wavelength Standards Used for Spectroscopy. Spectroscopy. 2014, 29(6), 18–24.
  • Wise, B. M.; Roginski, R. T.; A Calibration Model Maintenance Roadmap. IFAC-Pap OnLine. 2015, 48(8), 260–265. DOI:10.1016/j.ifacol.2015.08.191.
  • de Groot, P. J.; Swierenga, H.; Postma, G. J.; Melssen, W. J.; Buydens, L. M. C. Effect on the Partial Least-Squares Prediction of Yarn Properties Combining Raman and Infrared Measurements and Applying Wavelength Selection. Appl. Spectrosc. 2003, 57(6), 642–648. DOI: 10.1366/000370203322005328.
  • Iversen, A. J.; Palm, T. Multiplicative Scatter Correction of Visible Reflectance Spectra in Color Determination of Meat Surfaces. Appl. Spectrosc. 1985, 39(4), 641–646. DOI: 10.1366/0003702854250149.
  • Geladi, P.; MacDougall, D.; Martens, H. Linearization and Scatter-Correction for Near-Infrared Reflectance Spectra of Meat. Appl. Spectrosc. 1985, 39(3), 491–500. DOI: 10.1366/0003702854248656.
  • Blank, T. B.; Sum, S. T.; Brown, S. D.; Monfre, S. L. Transfer of Near-Infrared Multivariate Calibrations without Standards. Anal. Chem. 1996, 68(17), 2987–2995. DOI: 10.1021/ac960388.
  • Isaksson, T.; Kowalski, B. Piece-Wise Multiplicative Scatter Correction Applied to Near-Infrared Diffuse Transmittance Data from Meat Products. Appl. Spectrosc. 1993, 47(6), 702–709. DOI: 10.1366/0003702934066839.
  • Sum, S. T.; Brown, S. D. Standardization of Fiber-Optic Probes for Near-Infrared Multivariate Calibrations. Appl. Spectrosc. 1998, 52(6), 869–877. DOI: 10.1366/0003702981944418.
  • Geladi, P.; Bärring, H.; Dåbakk, E.; Trygg, J.; Antti, H.; Wold, S.; Karlberg, B. Calibration Transfer for Predicting Lake-water pH from near Infrared Spectra of Lake Sediments. J. Near Infrared Spectrosc. 1999, 7(4), 251–264. DOI: 10.1255/jnirs.256.
  • Sjöblom, J.; Svensson, O.; Josefson, M.; Kullberg, H.; Wold, S. An Evaluation of Orthogonal Signal Correction Applied to Calibration Transfer of near Infrared Spectra. Chemom. Intell. Lab. Syst. 1998, 44(1–2), 229–244. DOI: 10.1016/S0169-7439(98)00112-9.
  • Wold, S.; Antti, H.; Lindgren, F.; Ohman, J. Orthogonal Signal Correction of Near-infrared Spectra. Chemom. Intell. Lab. Syst. 1998, 44(1–2), 175–185. DOI: 10.1016/S0169-7439(98)00109-9.
  • Kalivas, J. H.; Siano, G. G.; Andries, E.; Goicoechea, H. C. Calibration Maintenance and Transfer Using Tikhonov Regularization Approaches. Appl. Spectrosc. 2009, 63(7), 800–809. DOI: 10.1366/000370209788701206.
  • Yu, B. F.; Ji, H. B.; Near-infrared Calibration Transfer via Support Vector Machine and Transfer Learning. Anal Methods-UK. 2015, 7(6), 2714–2725. DOI:10.1039/c4ay02462a.
  • Greensill, C. V.; Wolfs, P. J.; Spiegelman, C. H.; Walsh, K. B. Calibration Transfer between PDA-based NIR Spectrometers in the NIR Assessment of Melon Soluble Solids Content. Appl. Spectrosc. 2001, 55(5), 647–653. DOI: 10.1366/0003702011952280.
  • Stork, C. L.; Kowalski, B. R. Weighting Schemes for Updating Regression Models—a Theoretical Approach. Chemom. Intell. Lab. Syst. 1999, 48(2), 151–166. DOI: 10.1016/S0169-7439(99)00016-7.
  • Ottaway, J.; Kalivas, J. H. Feasibility Study for Transforming Spectral and Instrumental Artifacts for Multivariate Calibration Maintenance. Appl. Spectrosc. 2015, 69(3), 407–416. DOI: 10.1366/14-07651.
  • Bouveresse, E.; Massart, D. L.; Dardenne, P. Calibration Transfer across Near-infrared Spectrometric Instruments Using Shenk’s Algorithm: Effects of Different Standardization Samples. Anal. Chim. Acta. 1994, 297(3), 405–416. DOI: 10.1016/0003-2670(94)00237-1.
  • Lorber, A.; Faber, K.; Kowalski, B. R. Local Centering in Multivariate Calibration. J Chemom. 1996, 10(3), 215–220. DOI: 10.1002/(SICI)1099-128X(199605)10:3<215::AID-CEM411>3.0.CO;2-V.
  • Leion, H.; Folestad, H.; Josefson, M.; Sparen, A. Evaluation of Basic Algorithms for Transferring Quantitative Multivariate Calibrations between Scanning Grating and FT NIR Spectrometers. J. Pharmaceut. Biomed. 2005, 37(1), 47–55. DOI: 10.1016/j.jpba.2004.09.046.
  • Brito, R. S.; Pinheiro, H. M.; Ferreira, F.; Matos, J. S.; Pinheiro, A.; Lourenco, N. D. Calibration Transfer between a Bench Scanning and a Submersible Diode Array Spectrophotometer for in Situ Wastewater Quality Monitoring in Sewer Systems. Appl. Spectrosc. 2016, 70(3), 443–454. DOI: 10.1177/0003702815626668.
  • Wang, Y. D.; Kowalski, B. R. Standardization of Second-order Instruments. Anal. Chem. 1993, 65(9), 1174–1180. DOI: 10.1021/ac00057a012.
  • Wang, Y. D.; Veltkamp, D. J.; Kowalski, B. R. Multivariate Instrument Standardization. Anal. Chem. 1991, 63(23), 2750–2756. DOI: 10.1021/ac00023a016.
  • Larrechi, M. S.; Callao, M. P. Strategy for Introducing NIR Spectroscopy and Multivariate Calibration Techniques in Industry. TrAC-Trend Anal. Chem. 2003, 22(9), 634–640. DOI: 10.1016/S0165-9936(03)01005-7.
  • Bouveresse, E.; Massart, D. L. Improvement of the Piecewise Direct Standardisation Procedure for the Transfer of NIR Spectra for Multivariate Calibration. Chemom. Intell. Lab. Syst. 1996, 32(2), 201–213. DOI: 10.1016/0169-7439(95)00074-7.
  • Brouckaert, D.; Uyttersprot, J.-S.; Broeckx, W.; De Beer, T. Calibration Transfer of a Raman Spectroscopic Quantification Method from At-line to In-line Assessment of Liquid Detergent Compositions. Anal. Chim. Acta. 2017, 971, 14–25. DOI: 10.1016/j.aca.2017.03.049.
  • Brouckaert, D.; Uyttersprot, J. S.; Broeckx, W.; De Beer, T. Calibration Transfer of a Raman Spectroscopic Quantification Method for the Assessment of Liquid Detergent Compositions between Two Atline Instruments Installed at Two Liquid Detergent Production Plants. Anal. Chim. Acta. 2017, 984, 1–18. DOI: 10.1016/j.aca.2017.07.044.
  • Fan, W.; Liang, Y. Z.; Yuan, D. L.; Wang, J. J. Calibration Model Transfer for Near-Infrared Spectra Based on Canonical Correlation Analysis. Anal Chim Acta. 2008, 623(1), 22–29. DOI: 10.1016/j.aca.2008.05.072.
  • Bin, J.; Li, X.; Fan, W.; Zhou, J. H.; Wang, C. W. Calibration Transfer of Near-Infrared Spectroscopy by Canonical Correlation Analysis Coupled with Wavelet Transform. Analyst. 2017, 142(12), 2229–2238. DOI: 10.1039/c7an00280g.
  • Forina, M.; Drava, G.; Armanino, C.; Boggia, R.; Lanteri, S.; Leardi, R.; Corti, P.; Conti, P.; Giangiacomo, R.; Galliena, C.; et al. Transfer of Calibration Function in Near-Infrared Spectroscopy. Chemom. Intell. Lab. Syst. 1995, 27(2), 189–203. DOI: 10.1016/0169-7439(95)80023-3.
  • Peng, J. T.; Peng, S. L.; Jiang, A.; Tan, J. Near-infrared Calibration Transfer Based on Spectral Regression. Spectrochim. Acta A. 2011, 78(4), 1315–1320. DOI: 10.1016/j.saa.2011.01.004.
  • Sun, X. D.; Subedi, P.; Walker, R.; Walsh, K. B. NIRS Prediction of Dry Matter Content of Single Olive Fruit with Consideration of Variable Sorting for Normalisation Pre-treatment. Postharvest Biol. Tec. 2020, 163, 111140. DOI: 10.1016/j.postharvbio.2020.111140.
  • Mishra, P.; Woltering, E.; Brouwer, B.; Echtelt, E. H. V. Improving Moisture and Soluble Solids Content Prediction in Pear Fruit Using Near-infrared Spectroscopy with Variable Selection and Model Updating Approach. Postharvest Biol. Tec. 2021, 171, 111348. DOI: 10.1016/j.postharvbio.2020.111348.
  • Brito, A. L. B.; Santos, A. V. P.; Milanez, K. D. T. M.; Pontes, M. J. C.; Pontes, L. F. B. L. Calibration Transfer of Flour NIR Spectra between Benchtop and Portable Instruments. Anal. Methods. 2017, 9(21), 3184–3190. DOI: 10.1039/c7ay00391a.
  • Huang, H.; Liu, S.; Ullah, J.; Sun, Z.; Liu, C.; Zhang, Z.; Wang, H. Model Maintenance of RC-PLSR for Moisture Content Measurement of Dried Scallop. Trans. ASABE. 2020, 63(4), 891–899. DOI: 10.13031/trans.13728.
  • Alamar, M. C.; Bobelyn, E.; Lammertyn, J.; Nicolai, B. M.; Molto, E. Calibration Transfer between NIR Diode Array and FT-NIR Spectrophotometers for Measuring the Soluble Solids Contents of Apple. Postharvest Biol. Tec. 2007, 45(1), 38–45. DOI: 10.1016/j.postharvbio.2007.01.008.
  • Sohn, M.; Himmelsbach, D. S.; Barton, F. E.; de Haseth, J. A. Transfer of Calibrations for Barley Quality from Dispersive Instrument to Fourier Transform Near-Infrared Instrument. Appl. Spectrosc. 2009, 63(10), 1190–1196. DOI: 10.1366/000370209789553165.
  • Pu, -Y.-Y.; Sun, D.-W.; Riccioli, C.; Buccheri, M.; Grassi, M.; Cattaneo, T. M. P.; Gowen, A. Calibration Transfer from Micro NIR Spectrometer to Hyperspectral Imaging: A Case Study on Predicting Soluble Solids Content of Bananito Fruit (Musa Acuminata). Food Anal. Methods. 2018, 11(4), 1021–1033. DOI: 10.1007/s12161-017-1055-3.
  • Tiplady, K. M.; Sherlock, R. G.; Littlejohn, M. D.; Pryce, J. E.; Davis, S. R.; Garrick, D. J.; Spelman, R. J.; Harris, B. L. Strategies for Noise Reduction and Standardization of Milk Mid-infrared Spectra from Dairy Cattle. J. Dairy Sci. 2019, 102(7), 6357–6372. DOI: 10.3168/jds.2018-16144.
  • Fan, S. X.; Li, J. B.; Xia, Y.; Tian, X.; Guo, Z. M.; Huang, W. Q. Long-term Evaluation of Soluble Solids Content of Apples with Biological Variability by Using Near-infrared Spectroscopy and Calibration Transfer Method. Postharvest Biol. Tec. 2019, 151, 79–87. DOI: 10.1016/j.postharvbio.2019.02.001.
  • Dong, X. G.; Dong, J.; Li, Y. L.; Xu, X. B.; Tang, X. Y. Maintaining the Predictive Abilities of Egg Freshness Models on New Variety Based on VIS-NIR Spectroscopy Technique. Comput. Electron. Agr. 2019, 156, 669–676. DOI: 10.1016/j.compag.2018.12.012.
  • Fan, X. Q.; Lu, H. M.; Zhang, Z. M. Direct Calibration Transfer to Principal Components via Canonical Correlation Analysis. Chemom. Intell. Lab. Syst. 2018, 181, 21–28. DOI: 10.1016/j.chemolab.2018.08.006.
  • Williams, P. C.; Sobering, D. C. Comparison of Commercial near Infrared Transmittance and Reflectance Instruments for Analysis of Whole Grains and Seeds. J. Near Infrared Spectrosc. 1993, 1(1), 25–32. DOI: 10.1255/jnirs.3.
  • Schimleck, L. R.; Mora, C.; Daniels, R. F.; Estimation of the Physical Wood Properties of Green Pinus Taeda Radial Samples by near Infrared Spectroscopy. Can. J. For. Res. 2003, 33(12), 2297–2305. DOI:10.1139/X03-173.
  • Liu, X.; Han, L. J.; Yang, Z. L. Transfer of near Infrared Spectrometric Models for Silage Crude Protein Detection between Different Instruments. J. Dairy Sci. 2011, 94(11), 5599–5610. DOI: 10.3168/jds.2011-4375.
  • Smith, M. R.; Jee, R. D.; Moffat, A. C. The Transfer between Instruments of a Reflectance Near-infrared Assay for Paracetamol in Intact Tablets. Anal. 2002, 127(12), 1682–1692. DOI: 10.1039/B209269G.
  • Smith, M. R.; Jee, R. D.; Moffat, A. C.; Rees, D. R.; Broad, N. W. A Procedure for Calibration Transfer between Near-infrared Instruments-A Worked Example Using A Transmittance Single Tablet Assay for Piroxicam in Intact Tablets. Analyst. 2004, 129(9), 806–816. DOI: 10.1039/b401267d.
  • Andrew, A.; Fearn, T. Transfer by Orthogonal Projection: Making Near-infrared Calibrations Robust to Between-instrument Variation. Chemom. Intell. Lab. Syst. 2004, 72(1), 51–56. DOI: 10.1016/j.chemolab.2004.02.004.
  • Chen, W. R.; Bin, J.; Lu, H. M.; Zhang, Z. M.; Liang, Y. Z. Calibration Transfer via an Extreme Learning Machine Auto-encoder. Analyst. 2016, 141(6), 1973–1980. DOI: 10.1039/c5an02243f.
  • Liu, Y.; Cai, W. S.; Shao, X. G. Linear Model Correction: A Method for Transferring A Near-infrared Multivariate Calibration Model without Standard Samples. Spectrochim. Acta A. 2016, 169, 197–201. DOI: 10.1016/j.saa.2016.06.041.
  • Eskildsen, C. E.; Hansen, P. W.; Skov, T.; Marinic, F.; Norgaard, L. Evaluation of Multivariate Calibration Models Transferred between Spectroscopic Instruments: Applied to near Infrared Measurements of Flour Samples. J. Near Infrared Spectrosc. 2016, 24(2), 151–156. DOI: 10.1255/jnirs.1210.
  • Liu, D.; Zeng, X.-A.; Sun, D.-W. Recent Developments and Applications of Hyperspectral Imaging for Quality Evaluation of Agricultural Products: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55(12), 1744–1757. DOI: 10.1080/10408398.2013.777020.
  • Greensill, C. V.; Walsh, K. B. Calibration Transfer between Miniature Photodiode Array-based Spectrometers in the near Infrared Assessment of Mandarin Soluble Solids Content. J. Near Infrared Spectrosc. 2002, 10(1), 27–35. DOI: 10.1255/jnirs.318.
  • Salguero-Chaparro, L.; Palagos, B.; Pena-Rodriguez, F.; Roger, J. M. Calibration Transfer of Intact Olive NIR Spectra between a Pre-dispersive Instrument and a Portable Spectrometer. Comput. Electron. Agr. 2013, 96, 202–208. DOI: 10.1016/j.compag.2013.05.007.
  • Oliveri, P.; Casolino, M. C.; Casale, M.; Medini, L.; Mare, F.; Lanteri, S. A Spectral Transfer Procedure for Application of A Single Class-model to Spectra Recorded by Different Near-infrared Spectrometers for Authentication of Olives in Brine. Anal. Chim. Acta. 2013, 761, 46–52. DOI: 10.1016/j.aca.2012.11.020.
  • Xiao, H.; Sun, K.; Sun, Y.; Wei, K. L.; Tu, K.; Pan, L. Q. Comparison of Benchtop Fourier-Transform (FT) and Portable Grating Scanning Spectrometers for Determination of Total Soluble Solid Contents in Single Grape Berry (Vitis Vinifera L.) And Calibration Transfer. Sensors. 2017, 17(11), 2693. DOI: 10.3390/s17112693.
  • Zamora-Rojas, E.; Pérez-Marín, D.; de Pedro-Sanz, E.; Guerrero-Ginel, J. E.; Garrido-Varo, A. Handheld NIRS Analysis for Routine Meat Quality Control: Database Transfer from At-line Instruments. Chemom. Intell. Lab. Syst. 2012, 114, 30–35. DOI: 10.1016/j.chemolab.2012.02.001.
  • Wen, D. D.; Li, X. Y.; Zhao, Z.; Liu, J.; Zhong, X. B. Maintenance Methods of Freshness Detection Model for Beef of Different Species Based on Spectrum. J. Food Saf. Qual. 2012, 3(6), 621–626.
  • Zhao, Z.; Li, X. Y.; Liu, J.; Wen, D. D.; Liu, J. Correction Methods of Pork Total Volatile Basic Nitrogen Content Detection Model Based on Hyperspectral Imaging Technology. J. Food Saf. Qual. 2013, 4(3), 883–889.
  • Liu, S. M.; Li, X. Y.; Zhong, X. B. Hyperspectral Signal Correction Algorithm for Water Content of Cold Fresh Pork with considering Difference between Varieties. Trans. Chin. Soc. Agric. Eng. 2014, 30(4), 272–278. DOI: 10.3969/j.1002-6819.2014.04.033.
  • Liu, J.; Li, X. Y.; Jin, R.; Xu, S. M.; Ku, J.; Extending Hyperspectral Detecting Model of pH in Fresh Pork to New Breeds. Spectrosc. Spect. Anal. 2015, 35(7), 1973–1979. DOI:10.3964/j.1000-0593(2015)07-1973-07.
  • Qiao, L.; Lu, B.; Dong, J.; Li, B. Q.; Zhao, B. H.; Tang, X. Y. Total Volatile Basic Nitrogen Content in Duck Meat of Different Varieties Based on Calibration Maintenance and Transfer by Use of a Near-infrared Spectrometric Model. Spectrosc. Lett. 2020, 53(1), 44–54. DOI: 10.1080/00387010.2019.1690523.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.