699
Views
5
CrossRef citations to date
0
Altmetric
Review

Research Progress on Traceability and Authenticity of Beef

, , , , , , , , & ORCID Icon show all

References

  • Zhao, Y.; Zhang, B.; Chen, G.; Chen, A. L.; Yang, S. M.; Ye, Z. H. Recent Developments in Application of Stable Isotope Analysis on Agro-Product Authenticity and Traceability. Food Chem. 2014, 145, 300–305. DOI: 10.1016/j.foodchem.2013.08.062.
  • Wu, X.; Zhang, X. B.; Zhu, L. L.; Tan, Y. S.; Tang, X. M. Research Progress on Molecular Markers for Meat Products Traceability. Food Sci. 2010, 31(7), 308–311.
  • Danezis, G. P.; Tsagkaris, A. S.; Camin, F.; Brusic, V.; Georgiou, C. A. Food Authentication: Techniques, Trends & Emerging Approaches. TrAC Trends Analytical Chem. 2016, 85, 123–132. DOI: 10.1016/j.trac.2016.02.026.
  • Lytou, A. E.; Panagou, E. Z.; Nychas, G.-J. E. Volatilomics for Food Quality and Authentication. Curr. Opin. Food Sci. 2019, 28, 88–95. DOI: 10.1016/j.cofs.2019.10.003.
  • Adebo, O. A.; Oyeyinka, S. A.; Adebiyi, J. A.; Feng, X.; Wilkin, J. D.; Kewuyemi, Y. O.; Abrahams, A. M.; Tugizimana, F. Application of Gas Chromatography-Mass Spectrometry (Gc-ms)-based Metabolomics for the Study of Fermented Cereal and Legume Foods: A Review. Intl J Food Sci Tech. 2020. DOI: 10.1111/ijfs.14794.
  • Qi, J.; Li, Y. Y.; Zhang, C.; Wang, C.; Wang, J. Q.; Guo, W. P.; Wang, S. W. Geographic Origin Discrimination of Pork from Different Chinese Regions Using Mineral Elements Analysis Assisted by Machine Learning Techniques. Food Chem. 2021, 337. DOI: 10.1016/j.foodchem.2020.127779.
  • Portarena, S.; Leonardi, L.; Scartazza, A.; Lauteri, M.; Baldacchini, C.; Farinelli, D.; Famiani, F.; Ciolfi, M.; Brugnoli, E. Combining Analysis of Fatty Acid Composition and Delta C-13 in Extra-Virgin Olive Oils as Affected by Harvest Period and Cultivar: Possible Use in Traceability Studies. Food Control. 2019, 105, 151–158. DOI: 10.1016/j.foodcont.2019.05.029.
  • Ghidini, S.; Ianieri, A.; Zanardi, E.; Conter, M.; Boschetti, T.; Iacumin, P.; Bracchi, P. G. Stable Isotopes Determination in Food Authentication: A Review. Annali della Facolta di Medicina Veterinaria, Universita di Parma. 2006, 26, 193–204.
  • De Smet, S.; Balcaen, A.; Claeys, E.; Boeckx, P.; Van Cleemput, O. Stable Carbon Isotope Analysis of Different Tissues of Beef Animals in Relation to Their Diet. Rapid Commun. Mass Spectrom. 2004, 18(11), 1227–1232. DOI: 10.1002/rcm.1471.
  • Bahar, B.; Monahan, F. J.; Moloney, A. P.; O’Kiely, P.; Scrimgeour, C. M.; Schmidt, O. Alteration of the Carbon and Nitrogen Stable Isotope Composition of Beef by Substitution of Grass Silage with Maize Silage. Rapid Commun. Mass Spectrom. 2005, 19(14), 1937–1942. DOI: 10.1002/rcm.2007.
  • Schmidt, O.; Quilter, J. M.; Bahar, B.; Moloney, A. P.; Scrimgeour, C. M.; Begley, I. S.; Monahan, F. J. Inferring the Origin and Dietary History of Beef from C, N and S Stable Isotope Ratio Analysis. Food Chem. 2005, 91(3), 545–549. DOI: 10.1016/j.foodchem.2004.08.036.
  • Guo, B. L.; Wei, Y. M.; Pan, J. R.; Li, Y.; Zhang, F. S. Study on the Change of Stable Carbon Isotope Composition in Cattle Tissues. Scientia Agricultura Sinica. 2006, 39(9), 1885–1890.
  • Bahar, B.; Schmidt, O.; Moloney, A. P.; Scrimgeour, C. M.; Begley, I. S.; Monahan, F. J. Seasonal Variation in the C, N and S Stable Isotope Composition of Retail Organic and Conventional Irish Beef. Food Chem. 2008, 106(3), 1299–1305. DOI: 10.1016/j.foodchem.2007.07.053.
  • Sun, F. M.; Yu, H. X.; Shi, G. Y.; Yang, S. M.; Diao, Q. Y.; Yan, G. L. Variational Regularities of Carbon and Nitrogen Stable Isotopes in Cattle Tissues with Feedstuff Composition. J Instrumental Analysis 2009, 28(3), 310–314.
  • Osorio, M. T.; Moloney, A. P.; Schmidt, O.; Monahan, F. J.; Authentication, B. Retrospective Dietary Verification Using Stable Isotope Ratio Analysis of Bovine Muscle and Tail Hair. J. Agr. Food Chem. 2011, 59(7), 3295–3305. DOI: 10.1021/jf1040959.
  • Sun, F. M.; Shi, G. Y.; Wang, H. W.; Yang, S. M.; Liu, X. Z. Relationship of Stable Carbon Isotope Concentration in Diet and Tissues of Beef Cattle. Acta Prataculturae Sinica 2012, 40(7), 275–278.
  • Yanagi, Y.; Hirooka, H.; Oishi, K.; Choumei, Y.; Hata, H.; Arai, M.; Kitagawa, M.; Gotoh, T.; Inada, S. Stable Carbon and Nitrogen Isotope Analysis as a Tool for Inferring Beef Cattle Feeding Systems in Japan. Food Chem. 2012, 134(1), 502–506. DOI: 10.1016/j.foodchem.2012.02.107.
  • Bahar, B.; Harrison, S. M.; Moloney, A. P.; Monahan, F. J.; Schmidt, O. Isotopic Turnover of Carbon and Nitrogen in Bovine Blood Fractions and Inner Organs. Rapid Commun. Mass Spectrom. 2014, 28(9), 1011–1018. DOI: 10.1002/rcm.6872.
  • Guo, B. L.; Wei, Y. M.; Wei, S.; Sun, Q. Q.; Zhang, L.; Shi, Z. Q.; Characters, T. Influence Factors of Stable Isotope Fingerprints in Yak Muscle. Scientia Agricultura Sinica. 2018, 51(12), 2391–2397.
  • Boner, M.; Forstel, H.; Stable Isotope Variation as a Tool to Trace the Authenticity of Beef. Anal Bioanaly Chem. 2004, 3782, 301–310. DOI:10.1007/s00216-003-2347-6.
  • Guo, B. L.; Wei, Y. M.; Pan, J. R.; Li, Y. Application of Carbon and Nitrogen Isotope in Beef Origin Traceability. Scientia Agricultura Sinica. 2007, 1(2), 365–372.
  • Nakashita, R.; Suzuki, Y.; Akamatsu, F.; Iizumi, Y.; Korenaga, T. Stable Carbon, Nitrogen, and Oxygen Isotope Analysis as a Potential Tool for Verifying Geographical Origin of Beef. Anal. Chim. Acta. 2008, 617(1–2), 148–152. DOI: 10.1016/j.aca.2008.03.048.
  • Heaton, K.; Kelly, S. D.; Hoogewerff, J.; Woolfe, M. Verifying the Geographical Origin of Beef: The Application of Multi-Element Isotope and Trace Element Analysis. Food Chem. 2008, 107(1), 506–515. DOI: 10.1016/j.foodchem.2007.08.010.
  • Liu, Z. X.; Guo, B. L.; Pan, J. R.; Wei, Y. M.; Qian, H. The Isotopic Source-Trace Technology for Cattle Geographical Origin in Guanzhong Shaanxi Province. Acta Agriculturae Nucleatae Sinica 2008, 22(6), 834–838.
  • Guo, B. L.; Wei, Y. M.; Simon, K. D.; Pan, J. R.; Wei, S. A. Application of Stable Hydrogen Isotope Analysis in Beef Geographical Origin Traceability. Chin. J. Anal. Chem. 2009, 37(9), 1333–1336.
  • Bong, Y. S.; Shin, W. J.; Lee, A. R.; Kim, Y. S.; Kim, K.; Lee, K. S. Tracing the Geographical Origin of Beefs Being Circulated in Korean Markets Based on Stable Isotopes. Rapid Commun. Mass Spectrom. 2010, 24(1), 155–159. DOI: 10.1002/rcm.4366.
  • Horacek, M.; Min, J. S. Discrimination of Korean Beef from Beef of Other Origin by Stable Isotope Measurements. Food Chem. 2010, 121(2), 517–520. DOI: 10.1016/j.foodchem.2009.12.018.
  • Osorio, M. T.; Moloney, A. P.; Schmidt, O.; Monahan, F. J. Multielement Isotope Analysis of Bovine Muscle for Determination of International Geographical Origin of Meat. J. Agr. Food Chem. 2011, 59(7), 3285–3294. DOI: 10.1021/jf1040433.
  • Bong, Y. S.; Gautam, M. K.; Lee, K. S. Origin Assessment of Domestic and Imported Beef Sold in the Korean Markets Using Stable Carbon and Oxygen Isotopes. Food Sci. Biotechnol. 2012, 21(1), 233–237. DOI: 10.1007/s10068-012-0030-4.
  • Rummel, S. Sr Isotope Measurements in Beef-Analytical Challenge and First Results. Anal Bioanaly Chem. 2012;402(9), 2837–2848, DOI: 10.1007/s00216-012-5759-3.
  • Liu, X. L.; Guo, B. L.; Wei, Y. M.; Shi, J. L.; Sun, S. M. Stable Isotope Analysis of Cattle Tail Hair: A Potential Tool for Verifying the Geographical Origin of Beef. Food Chem. 2013, 140(1–2), 135–140. DOI: 10.1016/j.foodchem.2013.02.020.
  • Zhao, Y.; Zhang, B.; Chen, G.; Chen, A. L.; Yang, S. M.; Ye, Z. H. Tracing the Geographic Origin of Beef in China on the Basis of the Combination of Stable Isotopes and Multielement Analysis. J. Agr. Food Chem. 2013, 61(29), 7055–7060. DOI: 10.1021/jf400947y.
  • Lu, J.; Wang, D. H.; Yang, S. M.; Zhao, Y. Traceability of Beef Origin Using Stable Isotopes. Quality and Safety of Agro-Products. 2015, 3, 32–36.
  • Zhou, J. Q.; Guo, B. L.; Wei, Y. M.; Zhang, G. Q.; Wei, S.; Changes of Stable Carbon and Nitrogen Isotopic Compositions in Beef before and after Processing. Chin inst food sci tech 2013, 2.
  • Zhou, J. Q.; Guo, B. L.; Wei, Y. M.; Zhang, G. Q.; Wei, S.; Zhao, H. Y.; Zhang, L. Effect of Processing on Stable Carbon Isotopic Composition in Beef. Scientia Agricultura Sinica. 2014, 47(5), 977–983.
  • Bao, X. P.; Chen, L.; Wei, Y. M.; Wadood, S. A.; Guo, B. L.; Study on the Change Char Action of Stable Carbon and Nitrogen Isotopes in Boiled Processed Beef. Chine inst food sci tech 2018, 2.
  • Gopi, K.; Mazumder, D.; Sammut, J.; Saintilan, N. Determining the Provenance and Authenticity of Seafood: A Review of Current Methodologies. Trends Food Sci. Tech. 2019, 91, 294–304. DOI: 10.1016/j.tifs.2019.07.010.
  • Kumar, D.; Singh, S. P.; Karabasanavar, N. S.; Singh, R.; Umapathi, V.; Authentication of Beef, Carabeef, Chevon, Mutton and Pork by a Pcr-Rflp Assay of Mitochondrial Cytb Gene. J Food Sci Tech Mys. 2014, 5111, 3458–3463. DOI:10.1007/s13197-012-0864-z.
  • Yang, D. Y.; Yang, X. K.; Li, H.; Yang, Y. C.; Deng, P. J.; Tian, Q. X. Identification of Pig, Horse and Duck Meat Adulterated in Beef by Multiplex Fluorescent Pcr. Chin J Preventive Med 2015, 16(7), 528–533.
  • Qin, P.; Hong, Y.; Kim, H. Y. Multiplex-Pcr Assay for Simultaneous Iidentification of Lamb, Beef and Duck in Raw and Heat-Treated Meat Mixtures. J. Food Saf. 2016, 36(3), 367–374. DOI: 10.1111/jfs.12252.
  • Perestam, A. T.; Fujisaki, I. K.; Nava, O.; Hellberg, R. S. Comparison of Real-Time Pcr and Elisa-Based Methods for the Detection of Beef and Pork in Processed Meat Products. Food Control. 2017, 71, 346–352. DOI: 10.1016/j.foodcont.2016.07.017.
  • Yang, H.; Wang, X. F.; Xiao, Y. P.; Wei, W.; Xu, J. F. Rapid Detection of Chicken,Duck and Pork Blending in Beef Products by Multiple Digital Pcr. Acta Agriculturae Zhejiangensis 2017, 29(6), 994–1000.
  • Hu, Y.; Liu, Y. Y.; Ren, J. R.; Chen, L.; Fan, Y. Y.; Zhang, Q. F.; Chen, X. Y.; Bu, X. Establishment of Multiplex Real-Time Fluorescence Pcr for Detection of Mink (Mustela Lutreola), Pig (Sus Scrofa) and Rat (Mus Musculus) Derived Components in Beef and Mutton. J Agr Biotechnol. 2018, 26(9).
  • Zhu, Y.; Liu, Y. F.; Wei, Y. C.; Shen, Q.; Joykin, W. Qualitative and Quantitative Detection Methods of Pork in Beef and Its Chinese Processing Products. Scientia Agricultura Sinica. 2018, 51(22), 4352–4363.
  • Balakrishna, K.; Sreerohini, S.; Parida, M. Ready-to-Use Single Tube Quadruplex Pcr for Differential Identification of Mutton, Chicken, Pork and Beef in Processed Meat Samples. Food Addit. Contam. A. 2019, 36(10), 1435–1444. DOI: 10.1080/19440049.2019.1633477.
  • Kim, M. J.; Kim, H. Y. A Fast Multiplex Real-Time Pcr Assay for Simultaneous Detection of Pork, Chicken, and Beef in Commercial Processed Meat Products. LWT-Food Sci. Technol. 2019, 114. DOI: 10.1016/j.lwt.2019.108390.
  • Qin, P. Z.; Qu, W.; Xu, J. G.; Qiao, D. Q.; Yao, L.; Xue, F.; Chen, W.; Sensitive Multiplex, A.; Pcr Protocol for Simultaneous Detection of Chicken, Duck, and Pork in Beef Samples. J Food Sci Tech Mys. 2019, 563, 1266–1274. DOI:10.1007/s13197-019-03591-2.
  • Verkaar, E. L. C.; Nijman, I. J.; Boutaga, K.; Lenstra, J. A. Differentiation of Cattle Species in Beef by Pcr-Rflp of Mitochondrial and Satellite DNA. Meat Sci. 2002, 60(4), 365–369. DOI: 10.1016/s0309-1740(01)00144-9.
  • Sasazaki, S.; Itoh, K.; Arimitsu, S.; Imada, T.; Takasuga, A.; Nagaishi, H.; Takano, S.; Mannen, H.; Tsuji, S. Development of Breed Identification Markers Derived from Aflp in Beef Cattle. Meat Sci. 2004, 67(2), 275–280. DOI: 10.1016/j.meatsci.2003.10.016.
  • Sasazaki, S.; Imada, T.; Mutoh, H.; Yoshizawa, K.; Mannen, H.; Breed Discrimination Using DNA Markers Derived from Aflp in Japanese Beef Cattle. Asian-Australasian J Anim Sci. 2006, 198, 1106–1110. DOI:10.5713/ajas.2006.1106.
  • Chen, S. Y.; Liu, Y. P.; Yao, Y. G.; Species Authentication of Commercial Beef Jerky Based on Pcr-Rflp Analysis of the Mitochondrial 12s Rrna Gene. J Genet Genomics. 2010, 3711, 763–769. DOI:10.1016/s1673-8527(09)60093-x.
  • Heo, E. J.; Ko, E. K.; Seo, K. H.; Chon, J. W.; Kim, Y. J.; Park, H. J.; Wee, S. H.; Moon, J. S. Comparison of the Microsatellite and Single Nucleotide Polymorphism Methods for Discriminating among Hanwoo (Korean Native Cattle), Imported, and Crossbred Beef in Korea. Korean J. Food Sci. An. 2014, 34(6), 763–768. DOI: 10.5851/kosfa.2014.34.6.763.
  • Zhao, J.; Zhu, C.; Xu, Z. Z.; Jiang, X. L.; Yang, S. M.; Chen, A. L. Microsatellite Markers for Animal Identification and Meat Traceability of Six Beef Cattle Breeds in the Chinese Market. Food Control. 2017, 78, 469–475. DOI: 10.1016/j.foodcont.2017.03.017.
  • Zhao, J.; Chen, A. L.; You, X. Y.; Xu, Z. Z.; Zhao, Y.; He, W. J.; Zhao, L. Y.; Yang, S. M. A. Panel of Snp Markers for Meat Traceability of Halal Beef in the Chinese Market. Food Control. 2018, 87, 94–99. DOI: 10.1016/j.foodcont.2017.11.039.
  • Negrini, R. Traceability of Four European Protected Geographic Indication (Pgi) Beef Products Using Single Nucleotide Polymorphisms (Snp) and Bayesian Statistics. Meat Sci. 2008, 80(4), 1212–1217. DOI: 10.1016/j.meatsci.2008.05.021.
  • Kim, S.; Jang, H.; Kim, K.; Kim, J.; Jeon, J.; Yoon, D.; Kang, S.; Jung, H.; Cheong, I. Establishment of Genetic Characteristics and Individual Identification System Using Microsatellite Loci in Domestic Beef Cattle. J. Anim. Sci. 2009, 51(4), 273–282.
  • Shim, J. M.; Seo, D. W.; Seo, S.; Kim, J. J.; Min, D. M.; Kim, I. C.; Jeon, J. T.; Lee, J. H. Discrimination of Korean Cattle (Hanwoo) with Imported Beef from USA Based on the Snp Markers. Korean J. Food Sci. An. 2010, 30(6), 918–922. DOI: 10.5851/kosfa.2010.30.6.918.
  • Kamal, M.; Karoui, R. Analytical Methods Coupled with Chemometric Tools for Determining the Authenticity and Detecting the Adulteration of Dairy Products: A Review. Trends Food Sci. Tech. 2015, 46(1), 27–48. DOI: 10.1016/j.tifs.2015.07.007.
  • Cozzolino, D.; Murray, I. Identification of Animal Meat Muscles by Visible and near Infrared Reflectance Spectroscopy. Lebensm-Wiss. Technol. 2004, 37(4), 447–452. DOI: 10.1016/j.lwt.2003.10.013.
  • Alamprese, C.; Casale, M.; Sinelli, N.; Lanteri, S.; Casiraghi, E. Detection of Minced Beef Adulteration with Turkey Meat by Uv-Vis, Nir and Mir Spectroscopy. LWT-Food Sci. Technol. 2013, 53(1), 225–232. DOI: 10.1016/j.lwt.2013.01.027.
  • Morsy, N.; Sun, D. W. Robust Linear and Non-Linear Models of Nir Spectroscopy for Detection and Quantification of Adulterants in Fresh and Frozen-Thawed Minced Beef. Meat Sci. 2013, 93(2), 292–302. DOI: 10.1016/j.meatsci.2012.09.005.
  • Boyaci, I. H.; Temiz, H. T.; Uysal, R. S.; Velioglu, H. M.; Tamer, U.; Yadegari, R. J.; Rishkan, M. M.; Discrimination of Beef and Horsemeat by Taking the Advantage of Raman Spectroscopy. Abstracts of Papers Am 2014, 248.
  • Kamruzzaman, M.; Makino, Y.; Oshita, S.; Hyperspectral Imaging in Tandem with Multivariate Analysis and Image Processing for Non-Invasive Detection and Visualization of Pork Adulteration in Minced Beef. Anal Methods-UK. 2015, 718, 7496–7502. DOI:10.1039/c5ay01617g.
  • Kamruzzaman, M.; Makino, Y.; Oshita, S.; Liu, S. Assessment of Visible near-Infrared Hyperspectral Imaging as a Tool for Detection of Horsemeat Adulteration in Minced Beef. Food Bioprocess. Tech. 2015, 8(5), 1054–1062. DOI: 10.1007/s11947-015-1470-7.
  • Bai, Y. B.; Liu, Y. H.; Ding, C. Y.; Feng, H.; Chen, W.; Feng, Y. Z. Quantitative Detection of Beef-Pork Adulteration by Hyperspectral Imaging. J Normal Univ Nat Sci 2015, 1(3), 270–273.
  • Liu, W. D.; Mao, X. T.; Jin, H. Z.; Jin, S. Z. Application of Visible Hyperspectral Used to Discriminate Beef and Pork. J China Univ Metrology 2015, 26(2), 177–181+193.
  • Zhang, Y. H.; Meng, Y.; Jiang, P. H.; Zhang, Y. L.; Zhang, Y. M. Detection of Adulteration of Animal Meats from Different Sources by near Infrared Technology. Sci Tech Food Industry 2015, 36(3), 316–319+334.
  • Alamprese, C.; Amigo, J. M.; Casiraghi, E.; Engelsen, S. B. Identification and Quantification of Turkey Meat Adulteration in Fresh, Frozen-Thawed and Cooked Minced Beef by Ft-Nir Spectroscopy and Chemometrics. Meat Sci. 2016, 121, 175–181. DOI: 10.1016/j.meatsci.2016.06.018.
  • Kamruzzaman, M.; Makino, Y.; Oshita, S. Rapid and Non-Destructive Detection of Chicken Adulteration in Minced Beef Using Visible near-Infrared Hyperspectral Imaging and Machine Learning. J. Food Eng. 2016, 170, 8–15. DOI: 10.1016/j.jfoodeng.2015.08.023.
  • Yang, D.; Lu, A. X.; Wang, J. H.; Classification of Cooked Beef, Lamb, and Pork Using Hyperspectral Imaging. Int J Robot Autom. 2018, 333, 293–301. DOI:10.2316/Journal.206.2018.3.206-5440.
  • Zhou, Y. L.;. Rapid Discrimination of Minced Beef Adulterated with Chicken Using Raman Spectroscopy. Meat Res. 2018, 32(5), 26–29.
  • Jiang, H. Z.; Wang, W.; Zhuang, H.; Yoon, S. C.; Yang, Y.; Zhao, X. Hyperspectral Imaging for a Rapid Detection and Visualization of Duck Meat Adulteration in Beef. Food Anal. Method. 2019, 12(10), 2205–2215. DOI: 10.1007/s12161-019-01577-6.
  • Lopez Maestresalas, A.; Insausti, K.; Jaren, C.; Perez Roncal, C.; Urrutia, O.; Beriain, M. J.; Arazuri, S. Detection of Minced Lamb and Beef Fraud Using Nir Spectroscopy. Food Control. 2019, 98, 465–473. DOI: 10.1016/j.foodcont.2018.12.003.
  • Bai, J.; Li, J. P.; Zou, H.; Tian, H. Y.; Liu, F.; Li, W. C.; Wang, H.; Zhang, Z. Q.; Wang, S. W. Qualitative and Quantitative Detection of Pork in Adulterated Beef Patties Based on near Infrared Spectroscopy. Food Sci. 2019, 40(8), 287–292.
  • Chen, Y. L.; He, Y.; Gong, H. Q.; Zhao, Y. Z.; Wei, H.; He, Z. Y. Study on Identification of Beef Adulteration by near Infrared Spectroscopy Based on Euclidean Distance Method or Factorization Method. Food Res. Dev. 2019, 40(15), 141–146.
  • Wang, C. X.; Wang, S. L.; He, X. G.; Dong, H. Identification of Beef Breeds Based on the Vis/Nir Hyperspectral Imaging Technique. Sci Tech Food Industry 2019, 40(12), 241–247.
  • Li, Y.; Wei, Y. M.; Pan, J. R.; Guo, B. L. Traceability of Beef Origin Based on Ftir Fingerprint Spectrum. Spectrosc Spec Anal 2009, 29(3), 647–651.
  • Cai, X. F.; Guo, B. L.; Wei, Y. M.; Sun, S. M.; Zhao, D. Y.; Wei, S. Analysis on Characteristics of near Infrared Spectra of Beef according to Regions and Feeding Periods. Scientia Agricultura Sinica. 2011, 44(20), 4272–4278.
  • Liu, H. F.; Gao, H.; Hua, J.; Gao, Y. H.; Zhang, L. H.; Zhao, W. Y.; Application of near Infrared Spectroscopy in Identification of Beef Origin. Animals Breeding Feed 2017, 9, 3–5
  • El Hadi, M. A. M.; Zhang, F. J.; Wu, F. F.; Zhou, C. H.; Tao, J. Advances in Fruit Aroma Volatile Research. Molecules. 2013, 18(7), 8200–8229. DOI: 10.3390/molecules18078200.
  • Di Rosa, A. R.; Leone, F.; Cheli, F.; Chiofalo, V. Fusion of Electronic Nose, Electronic Tongue and Computer Vision for Animal Source Food Authentication and Quality Assessment - a Review. J. Food Eng. 2017, 210, 62–75. DOI: 10.1016/j.jfoodeng.2017.04.024.
  • Pavlidis, D. E.; Mallouchos, A.; Ercolini, D.; Panagou, E. Z.; Nychas, G. J. E.; Volatilomics, A. Approach for Off-Line Discrimination of Minced Beef and Pork Meat and Their Admixture Using Hs-Spme Gc/Ms in Tandem with Multivariate Data Analysis. Meat Sci. 2019, 151, 43–53. DOI: 10.1016/j.meatsci.2019.01.003.
  • Sha, K.; Sun, B. Z.; Zhang, Z. J.; Li, H. P.; Song, H. L.; Lei, Y. H.; Li, H. B. Analysis and Comparison of Volatile Flavour Compounds in Kazakh Dry-Cured Beef from Different Feeding Systems and Muscle Cuts. Food Sci. 2017, 38(18), 48–53.
  • Mei, W. J.; Zhu, L. Y.; Qing, W. J.; Xiong, S. X.; Xiu, L.; Jiang, H.; Ru, C. S.; Bin, L. S. Analysis of Odors from Veal by Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry. Science and Technology Food Industry 2011, 32(9), 73–75.
  • Sha, K.; Guo, J. N.; Lang, Y. M.; Zhang, Z. J.; Li, H. P.; Sun, B. Z. Characteristics and Differences Analyses of Volatile Flavour Compounds in Dry-Cured Yak and Beef. Trans. Chin. Soc. Agric. Mach. 2015, 46(12), 233–239.
  • Li, A.; Ha, Y. M.; Wang, F.; Li, Y. J. Detection of Hydrocarbons in Irradiated Chilled Beef by Hs-Spme-Gc-Ms and Optimization of the Method. J. Am. Oil Chem. Soc. 2010, 87(7), 731–736. DOI: 10.1007/s11746-010-1550-9.
  • Zhang, J.; Zhang, S.; Zhang, L.; Wang, Q.; Ding, W. Recognition of Beef Adulterated with Pork Using Electronic Nose Combined with Statistical Analysis. Food Sci. 2018, 39(4), 296–300.
  • Cornale, P.; Barbera, S. 2009. Discrimination of Beef Samples by Electronic Nose and Pattern Recognition Techniques. Olfaction and Elec. Nose 2009, 1137 :267–270.
  • Soo, N. B.;. Discrimination of Geographical Origin of Beef Using Electronic Nose Based on Mass Spectrometer. Korean J. Food Sci. Tech. 2008, 40(6), 717–720.
  • Esteki, M.; Simal Gandara, J.; Shahsavari, Z.; Zandbaaf, S.; Dashtaki, E.; Heyden, Y. V. A. Review on the Application of Chromatographic Methods, Coupled to Chemometrics, for Food Authentication. Food Control. 2018, 93, 165–182. DOI: 10.1016/j.foodcont.2018.06.015.
  • Xu, Y. Y.; Yao, G. X.; Liu, P. X.; Zhao, J.; Wang, X. L.; Sun, J. M.; Qian, Y. Z. Review on the Application of Metabolomic Approaches to Investigate and Analysis the Nutrition and Quality of Agro-Products. Scientia Agricultura Sinica. 2019, 52(18), 3163–3176.
  • Jakes, W.; Gerdova, A.; Defernez, M.; Watson, A. D.; McCallum, C.; Limer, E.; Colquhoun, I. J.; Williamson, D. C.; Kemsley, E. K. Authentication of Beef versus Horse Meat Using 60 Mhz H-1 Nmr Spectroscopy. Food Chem. 2015, 175, 1–9. DOI: 10.1016/j.foodchem.2014.11.110.
  • Santos, P. M.; Correa, C. C.; Forato, L. A.; Tullio, R. R.; Cruz, G. M.; Colnago, L. A.; Fast, A. Non-Destructive Method to Discriminate Beef Samples Using Td-Nmr. Food Control. 2014, 38, 204–208. DOI: 10.1016/j.foodcont.2013.10.026.
  • Osorio, M. T.; Moloney, A. P.; Brennan, L.; Monahan, F. J. Authentication of Beef Production Systems Using a Metabolomic-Based Approach. Animal. 2012, 6(1), 167–172. DOI: 10.1017/s1751731111001418.
  • Jung, Y.; Lee, J.; Kwon, J.; Lee, K. S.; Ryu, D. H.; Hwang, G. S.; Discrimination of the Geographical Origin of Beef by H-1 Nmr-Based Metabolomics. J Agr Food Chem. 2010, 5819, 10458–10466. DOI:10.1021/jf102194t.
  • Trivedi, D. K.; Hollywood, K. A.; Rattray, N. J. W.; Ward, H.; Trivedi, D. K.; Greenwood, J.; Ellis, D. I.; Goodacre, R. Meat, the Metabolites: An Integrated Metabolite Profiling and Lipidomics Approach for the Detection of the Adulteration of Beef with Pork. Analyst. 2016, 141(7), 2155–2164. DOI: 10.1039/c6an00108d.
  • Ueda, S.; Iwamoto, E.; Kato, Y.; Shinohara, M.; Shirai, Y.; Yamanoue, M.; Comparative Metabolomics of Japanese Black Cattle Beef and Other Meats Using Gas Chromatography-Mass Spectrometry. Biosci Biotechnol Bioch. 2019, 831, 137–147. DOI:10.1080/09168451.2018.1528139.
  • Yang, Y.; Dong, G. Z.; Wang, Z.; Wang, J.; Zhang, Z.; Liu, J. H. Rumen and Plasma Metabolomics Profiling by Uhplc-Qtof/Ms Revealed Metabolic Alterations Associated with a High-Corn Diet in Beef Steers. Plos One. 2018, 13(11), 17. DOI: 10.1371/journal.pone.0208031.
  • Zaima, N.; Goto Inoue, N.; Hayasaka, T.; Enomoto, H.; Setou, M.; Authenticity Assessment of Beef Origin by Principal Component Analysis of Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Data. Anal Bioanaly Chem. 2011, 4001865–1871. DOI:10.1007/s00216-011-4818-5.
  • Chongtham, N.; Bisht, M. S.; Santosh, O.; Bajwa, H. K.; Indira, A. Mineral Elements in Bamboo Shoots and Potential Role in Food Fortification. J. Food Compos. Anal. 2021, 95. DOI: 10.1016/j.jfca.2020.103662.
  • Domaradzki, P.; Florek, M.; Staszowska, A.; Litwinczuk, Z. Evaluation of the Mineral Concentration in Beef from Polish Native Cattle. Biol. Trace Elem. Res. 2016, 171(2), 328–332. DOI: 10.1007/s12011-015-0549-3.
  • Łozicki, A.; Dymnicka, M.; Arkuszewska, E.; Pustkowiak, H. Effect of Pasture or Maize Silage Feeding on the Nutritional Value of Beef. J Annals of Animal Science. 2012, 12, 1.
  • Hao, L. Z., et al. Using Mineral Elements to Authenticate the Geographical Origin of Yak Meat. Kafkas Univ. Vet. Fak. Derg. 2019, 25(1), 93–98. DOI: 10.9775/kvfd.2018.20366.
  • Jain, R.; Bronkema, S. M.; Yakah, W.; Rowntree, J. E.; Bitler, C. A.; Fenton, J. I. Seasonal Differences Exist in the Polyunsaturated Fatty Acid, Mineral and Antioxidant Content of Us Grass-Finished Beef. Plos One. 2020, 15(2). DOI: 10.1371/journal.pone.0229340.
  • Qie, M. J.; Zhang, B.; Li, Z.; Zhao, S. S.; Zhao, Y. Data Fusion by Ratio Modulation of Stable Isotope, Multi-Element, and Fatty Acids to Improve Geographical Traceability of Lamb. Food Control. 2021, 120. DOI: 10.1016/j.foodcont.2020.107549.
  • Liu, T.; Lei, Z. M.; Wu, J. P.; Brown, M. A.; Fatty Acid Composition Differences between Adipose Depot Sites in Dairy and Beef Steer Breeds. J Food Sci Tech Mys. 2015, 523, 1656–1662. DOI:10.1007/s13197-013-1117-5.
  • Soliman, L. C.; Andrucson, E. M.; Donkor, K. K.; Church, J. S.; Cinel, B. Determination of Fatty Acids in Beef by Liquid Chromatography-Electrospray Lonization Tandem Mass Spectrometry. Food Anal. Method. 2016, 9(3), 630–637. DOI: 10.1007/s12161-015-0229-0.
  • Cheng, B. J.; Guo, B. L.; Wei, Y. M.; Wei, S. Analysis of Fatty Acid Composition and Content of Beef from Different Geographical Origins. Acta Agriculturae Nucleatae Sinica 2012, 26(3), 517–522.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.