414
Views
1
CrossRef citations to date
0
Altmetric
Review

Formation and Control of Biogenic Amines in Sufu-A Traditional Chinese Fermented Soybean Product: A Critical Review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Wood, B. J. B.;. Microbiology of Fermented Foods; Springer: USA, 1997; pp 484–504.
  • El Sheikha, A. F.; Hu, D. M. Molecular Techniques Reveal More Secrets of Fermented Foods. Crit. Rev. Food Sci. Nutr. 2020, 60(1), 11–32. DOI: 10.1080/10408398.2018.1506906.
  • Han, B. Z.; Rombouts, F. M.; Nout, M. J. R. A. Chinese Fermented Soybean Food. Int. J. Food Microbiol. 2001, 65(1–2), 1–10. DOI: 10.1016/S0168-1605(00)00523-7.
  • EFSA. Panel on Biological Hazards (BIOHAZ): Scientific Opinion on Risk Based Control of Biogenic Amine Formation in Fermented Foods. EFSA J. 2011, 9(10), 2393. DOI:10.2903/j.efsa.2011.2393.
  • Han, B. Z.; Rombouts, F. M.; Nout, M. J. R. Amino Acid Profiles of Sufu, a Chinese Fermented Soybean Food. J. Food Compost. Anal. 2004, 17(6), 689–698. DOI: 10.1016/j.jfca.2003.09.012.
  • Park, Y. K.; Lee, J. H.; Mah, J.-H. Occurrence and Reduction of Biogenic Amines in Traditional Asian Fermented Soybean Foods: A Review. Food Chem. 2018, 278, 1–9. DOI: 10.1016/j.foodchem.2018.11.045.
  • Świder, O.; Roszko, M. Ł.; Wojcicki, M.; Szymczyk, K. Biogenic Amines and Free Amino Acids in Traditional Fermented Vegetables-dietary Risk Evaluation. J. Agric. Food Chem. 2020, 68(3), 856–868. DOI: 10.1021/acs.jafc.9b05625.
  • Li, X.; Liu, Q.; Zhu, W. S.; Chen, J.; Zhang, P. N. Investigation and Analysis of Biogenic Amines in Different Fermented Bean Products. JFSQ. 2020, 11, 298–305.
  • Li, D.; Li, D.; Liang, J.; Shi, R.; Ma, Y. Determination of Biogenic Amines in Commercially Sufu by High Performance Liquid Chromatography. Food Res. Dev. 2018, 39, 120–124+129.
  • Ahmad, W.; Mohammed, G. I.; Al-Eryani, D. A.; Saigl, Z. M.; Alyoubi, A. O.; Alwael, H.; Bashammakh, A. S.; OSullivan, C. K.; El-Shahawi, M. S. Biogenic Amines Formation Mechanism and Determination Strategies: Future Challenges and Limitations. Crit. Rev. Anal. Chem. 2019, 50(6), 485–500. DOI: 10.1080/10408347.2019.1657793.
  • Simon Sarkadi, L.;. Biogenic Amines in Fermented Foods and Health Implications. In Fermented Foods in Health and Disease Prevention; Juana, F., Cristina, M.V., Elena, P., Eds.; Academic Press: Newyork, American, 2017; pp 625–650.
  • Yang, B.; Tan, Y.; Kan, J. Regulation of Quality and Biogenic Amine Production during Sufu Fermentation by Pure Mucor Strains. LWT-Food Sci. Technol. 2020, 117, 108637. DOI: 10.1016/j.foodchem.2017.07.056.
  • Yin, L. J.; Li, L. T.; Li, Z. G.; Tatsumi, E.; Saito, M. Changes in Isoflavone Contents and Composition of Sufu (Fermented Tofu) during Manufacturing. Food Chem. 2004, 87(4), 587–592. DOI: 10.1016/S0956-7135(03)00066-5.
  • Han, B.; Cao, C.; Rombouts, F. M.; Nout, M. J. R. Microbial Changes during the Production of Sufu––a Chinese Fermented Soybean Food. Food Control. 2004, 15(4), 265–270. DOI: 10.1016/S0956-7135(03)00066-5.
  • Guan, R.; Liu, Z.; Zhang, J.; Wei, Y.; Wahab, S.; Liu, D.; Ye, X. Investigation of Biogenic Amines in Sufu (Furu): A Chinese Traditional Fermented Soybean Food Product. Food Control. 2013, 31(2), 345–352. DOI: 10.1016/j.foodcont.2012.10.033.
  • Wan, H.; Liu, T.; Su, C.; Ji, X.; Wang, L.; Zhao, Y.; Wang, Z. Evaluation of Bacterial and Fungal Communities during the Fermentation of Baixi Sufu, a Traditional Spicy Fermented Bean Curd. J. Sci. Food Agric. 2020, 100(4), 1448–1457. DOI: 10.1002/jsfa.10151.
  • Federica, B.; Chiara, M.; Fausto, G.; Giulia, T. Biogenic Amine Production by Lactic Acid Bacteria: A Review. Foods. 2019, 8(1), 17–27. DOI: 10.3390/foods8010017.
  • Tao, K.; Wu, L.; Jin, X.; Ren, K.; Yu, Z.; Liu, T.; Liu, M.; Wang, S. Microbial Diversity of Sufu Was Analyzed Based on High-throughput Gene Sequencing. Food Sci. 2020. DOI: 10.7506/spkx1002-6630-20191230-362.
  • Huang, X.; Yu, S.; Han, B.; Chen, J. Bacterial Community Succession and Metabolite Changes during Sufu Fermentation. LWT-Food Sci. Technol. 2018, 97, 537–545. DOI: 10.1016/j.lwt.2018.07.041.
  • Wunderlichova, L.; Buňková, L.; Koutny, M.; Jancova, P.; Buňka, F. Formation, Degradation, and Detoxification of Putrescine by Foodborne Bacteria: A Review. Compr. Rev. Food Sci. F. 2014, 13. DOI: 10.1111/1541-4337.12099.
  • Marcobal, A.; De Las Rivas, B.; Landete, J. M.; Tabera, L.; Muñoz, R. Tyramine and Phenylethylamine Biosynthesis by Food Bacteria. Crit. Rev. Food Sci. Nutr. 2012, 52(5), 448–467. DOI: 10.1080/10408398.2010.500545.
  • Kuley, E.; Balikci, E.; Ozogul, I.; Gokdogan, S.; Ozogul, F. Stimulation of Cadaverine Production by Foodborne Pathogens in the Presence of Lactobacillus, Lactococcus and Streptococcus Spp. J. Food Sci. 2012, 77(12), M650–M658. DOI: 10.1111/j.1750-3841.2012.02825.x.
  • Li, N.; Cui, M.; Ma, J.; Yu, H.; Zhang, Z.; Guo, Z.; Zhao, H. Evaluation of Bacterial Diversity in Natural Fermented Sufu. Food Res. Dev. 2019, 40, 165–171. DOI: 10.12161/j.1005-6521.2019.16.029.
  • Glória, M. B. A.; Watson, B. T.; Simonsarkadi, L.; Daeschel, M. A. A Survey of Biogenic Amines in Oregon Pinot Noir and Cabernet Sauvignon Wines. Am. J. Enol. Viticult. 1998, 49, 279–282. DOI: 10.1007/s001220050743.
  • Nakazawa, H.; Sano, K.; Kumagai, H.; Yamada, H. Distribution and Formation of Aromatic L-amino Acid Decarboxylase in Bacteria. Agric. Biol. Chem. 1977, 41, 2241–2247. DOI: 10.1080/00021369.1977.10862842.
  • Liang, J.; Li, D.; Shi, R.; Wang, J.; Xiong, K. Effects of Microbial Community Succession on Volatile Profiles and Biogenic Amine during Sufu Fermentation. LWT-Food Sci. Technol. 2019, 114, 108379. DOI: 10.1016/j.lwt.2019.108379.
  • Bargossi, E.; Tabanelli, G.; Montanari, C.; Lanciotti, R.; Gatto, V.; Gardini, F.; Torriani, S. Tyrosine Decarboxylase Activity of Enterococci Grown in Media with Different Nutritional Potential: Tyramine and 2-phenylethylamine Accumulation and tyrDC Gene Expression. Front. Microbiol. 2015, 6. DOI: 10.3389/fmicb.2015.00259.
  • Iacumin, L.; Manzano, M.; Panseri, S.; Chiesa, L.; Comi, G. A New Cause of Spoilage in Goose Sausages. Food Microbiol. 2016, 58, 56–62. DOI: 10.1016/j.fm.2016.03.007.
  • Xie, C.; Zeng, H.; Wang, C.; Xu, Z.; Qin, L. Volatile Flavor Components, Microbiota and Their Correlations in Different Sufu, a Chinese Fermented Soybean Food. J. Appl. Microbiol. 2018, 125(6), 1761–1773. DOI: 10.1111/jam.14078.
  • Perin, L. M.; Belviso, S.; Bello, B. D.; Nero, L. A.; Cocolin, L. Technological Properties and Biogenic Amines Production by Bacteriocinogenic Lactococci and Enterococci Strains Isolated from Raw Goat’s Milk. J. Food Prot. 2017, 80(1), 151–157. DOI: 10.4315/0362-028x.Jfp-16-267.
  • Romano, A.; Ladero, V.; Alvarez, M.; Lucas, P. Putrescine Production via the Ornithine Decarboxylation Pathway Improves the Acid Stress Survival of Lactobacillus Brevis and Is Part of a Horizontally Transferred Acid Resistance Locus. Int. J. Food Microbiol. 2014, 175, 14–19. DOI: 10.1016/j.ijfoodmicro.2014.01.009.
  • Jeong, D.; Lee, J. Antibiotic Resistance, Hemolysis and Biogenic Amine Production Assessments of Leuconostoc and Weissella Isolates for Kimchi Starter Development. LWT-Food Sci. Technol. 2015, 64(2), 1078–1084. DOI: 10.1016/j.lwt.2015.07.031.
  • Liu, S.; Qiao, J. Bacterial Diversity of Anshun Sufu, a Traditional Fermented Tofu in Guizhou Province of China. Trans. Tianjin Univ. 2019, 25(5), 497–503. DOI: 10.1007/s12209-019-00198-8.
  • Liang, J.; Li, D.; Shi, R.; Wang, J.; Guo, S.; Ma, Y. Screening and Identification of Biogenic Amines Producing Strains from Sufu and Evaluation of Biogenic Amines Production Ability. J. Hebei Agri. Univ. 2019, 42, 88–93. DOI: 10.13320/j.cnki.jauh.2019.0061.
  • Tsai, Y. H.; Kung, H. F.; Chang, S. C.; Lee, T. M.; Wei, C. I. Histamine Formation by Histamine-forming Bacteria in Douchi, a Chinese Traditional Fermented Soybean Product. Food Chem. 2007, 103(4), 1305–1311. DOI: 10.1016/j.foodchem.2006.10.036.
  • Liang, J.; Li, D.; Shi, R.; Wang, J.; Ma, Y.; Xiong, K. Effects of Different Co-cultures on the Amino Acid Availability, Biogenic Amine Concentrations and Protein Metabolism of Fermented Sufu and Their Relationships. LWT-Food Sci. Technol. 2019, 113, 108323. DOI: 10.1016/j.lwt.2019.108323.
  • Qiu, S.; Wang, Y.; Cheng, Y.; Liu, Y.; Yin, L. Reduction of Biogenic Amines in Sufu by Ethanol Addition during Ripening Stage. Food Chem. 2017, 239, 1244. DOI: 10.1016/j.foodchem.2017.07.056.
  • Li, Y. Y.; Yu, R. C.; Chou, C. C. Some Biochemical and Physical Changes during the Preparation of the Enzyme-Ripening Sufu, a Fermented Product of Soybean Curd. J. Agric. Food Chem. 2010, 58(8), 4888–4893. DOI: 10.1021/jf904600a.
  • Ebrahimi, B.; Farshidi, M. Innovative Approaches for the Degradation of Biogenic Amines in Foods. Curr. Nutr. Food Sci. 2019, 15(6), 627–628. DOI: 10.2174/1573401314666180620161417.
  • Bodmer, S.; Imark, C.; Kneubühl, M. Biogenic Amines in Foods: Histamine and Food Processing. Inflamm. Res. 1999, 48(6), 296–300. DOI: 10.1007/s000110050463.
  • Til, H. P.; Falke, H. E.; Prinsen, M. K.; Willems, M. I. Acute and Subacute Toxicity of Tyramine, Spermidine, Spermine, Putrescine and Cadaverine in Rats. Food Chem. Toxicol. 1997, 35(3–4), 337–348. DOI: 10.1016/S0278-6915(97)00121-X.
  • Zhu, L.; Studies on Detections of Histamine. Master thesis, Jiangnan University, Jiangsu, China, 2009.
  • Nebelin, E.; Pillai, S.; Lund, E.; Thomsen, J. On the Formation of N-nitrosopyrrolidine from Potential Precursors and Nitrite. IARC Sci. Publ. 1980, 31, 183–193.
  • Halász, A.; Baráth, Á.; Simon-Sarkadi, L.; Holzapfel, W. Biogenic Amines and Their Production by Microorganisms in Food. Trends Food Sci. Technol. 1994, 5(2), 42–49. DOI: 10.1016/0924-2244(94)90070-1.
  • Ten, B. B.; Damink, C.; Joosten, H. M.; Huis In ‘T Veld, J. H. J. Occurrence and Formation of Biologically Active Amines in Foods. Int. J. Food Microbiol. 1990, 11(1), 73. DOI: 10.1016/0168-1605(90)90040-c.
  • Fish and Fishery Products Hazards and Controls Guidance. Availabe online: https://www.fda.gov/food/seafood-guidance-documents-regulatory-information/fish-and-fishery-products-hazards-and-controls (Accessed July 10, 2020).
  • Nout, M. J. R.;. Fermented Foods and Food Safety. Food Res. Int. 1994, 27(3), 291–298. DOI: 10.1016/0963-9969(94)90097-3.
  • Righetti, L.; Tassoni, A.; Bagni, N. Polyamines Content in Plant Derived Food: A Comparison between Soybean and Jerusalem Artichoke. Food Chem. 2008, 111(4), 852–856. DOI: 10.1016/j.foodchem.2008.04.061.
  • Byun, B. Y.; Bai, X.; Mah, J.-H. Occurrence of Biogenic Amines in Doubanjiang and Tofu. Food Sci. Biotechnol. 2013, 22(1), 55–62. DOI: 10.1007/s10068-013-0008-x.
  • Yang, J.; Ding, X.; Qin, Y.; Zeng, Y. Safety Assessment of the Biogenic Amines in Fermented Soya Beans and Fermented Bean Curd. J. Agric. Food Chem. 2014, 62(31), 7947–7954. DOI: 10.1021/jf501772s.
  • Li, D.; Liang, J.; Shi, R.; Wang, J.; Ma, Y.; Li, X. Occurrence of Biogenic Amines in Sufu Obtained from Chinese Market. Food Sci. Biotechnol. 2019, 28(2), 319–327. DOI: 10.1007/s10068-018-0500-4.
  • Sessa, A.; Desiderio, M. A.; Perin, A. Effect of Acute Ethanol Administration on Diamine Oxidase Activity in the Upper Gastrointestinal Tract of Rat. Alcohol Clin. Exp. Res. 1984, 8(2), 185–190. DOI: 10.1111/j.1530-0277.1984.tb05835.x.
  • Sarkadi, L. S.;. Amino Acids and Biogenic Amines as Food Quality Factors. Pure Appl. Chem. 2019, 91(2), 289–300. DOI: 10.1515/pac-2018-0709.
  • Gardini, F.; Özogul, Y.; Suzzi, G.; Tabanelli, G.; Özogul, F. Technological Factors Affecting Biogenic Amine Content in Foods: A Review. Front. Microbiol. 2016, 7, 12–18. DOI: 10.3389/fmicb.2016.01218.
  • Li, J.; Zhang, L.; Wang, J.; Zhao, Y.; Zhang, C.; Zhang, H. Study on the Quality Differences of Whole Soybean Curd and Traditional Tofu. Food Sci. Technol. 2018, 43, 35–39.
  • Liao, X.; Chen, X.; Liu, D.; Ye, X.; Yin, Y. Isolation and Identification of Dominant Bacteria during the Processing of Sufu. Chin. J. Bioproc. Eng. 2019, 17, 657–661.
  • Liao, X.; Chen, X.; Liu, D.; Ye, X.; Yin, Y.; Zhou, J.; Xie, X.; Ding, T. Isolation and Identification of Dominant Bacteria in Different Types of Sufu Products. J. Food Saf. Qual. 2018, 9, 3755–3759.
  • Qiong, X.; Yang, L.; Qinfeng, Q.; Tonghai, D.; Yufei, C.; Nana, Z.; Lei, Z.; Jiang, Z.; Shiyu, W.; Jielin, Y.;, et al. High-throughput Sequencing Analysis of Bacterial Diversity in Red Sufu from Different Regions. Food Sci. 2020, 41, 110–116. DOI: 10.7506/spkx1002-6630-20190408-087.
  • Feng, Z.; Gao, W.; Ren, D.; Chen, X.; Li, J. J. Evaluation of Bacterial Flora during the Ripening of Kedong Sufu, a Typical Chinese Traditional Bacteria-fermented Soybean Product. J. Sci. Food Agric. 2013, 93(6), 1471–1478. DOI: 10.1002/jsfa.5918.
  • Teodorovic, V.; Buncic, S.; Smiljanic, D. A Study of Factors Influencing Histamine Production in Meat. Fleischwirtschaft. 1994.
  • Del Rio, B.; Alvarez-Sieiro, P.; Redruello, B.; Martin, M. C.; Fernandez, M.; Ladero, V.; Alvarez, M. A. Lactobacillus Rossiae Strain Isolated from Sourdough Produces Putrescine from Arginine. Sci. Rep. 2018, 8(1), 3989. DOI: 10.1038/s41598-018-22309-6.
  • Bover-Cid, S.; Holzapfel, W. H. Improved Screening Procedure for Biogenic Amine Production by Lactic Acid Bacteria. Int. J. Food Microbiol. 1999, 53(1), 33–41. DOI: 10.1016/s0168-1605(99)00152-x.
  • Ko, W. C.; Yang, S. Y.; Chang, C. K.; Hsieh, C. W. Effects of Adjustable Parallel High Voltage Electrostatic Field on the Freshness of Tilapia (Orechromis Niloticus) during Refrigeration. LWT-Food Sci. Technol. 2016, 66, 151–157. DOI: 10.1016/j.lwt.2015.10.019.
  • Kung, H.-F.; Lee, Y.-H.; Hang, S.-C.; Wei, C.-I.; Tsai, Y.-H. Histamine Contents and Histamine-forming Bacteria in Sufu Products in Taiwan. Food Control. 2007, 18(5), 381–386. DOI: 10.1016/j.foodcont.2006.02.012.
  • Tan, Y.; Zhang, R.; Chen, G.; Wang, S.; Li, C.; Xu, Y.; Kan, J. Effect of Different Starter Cultures on the Control of Biogenic Amines and Quality Change of Douchi by Rapid Fermentation. LWT-Food Sci. Technol. 2019, 109, 395–405. DOI: 10.1016/j.lwt.2019.04.041.
  • Takebe, Y.; Takizaki, M.; Tanaka, H.; Ohta, H.; Niidome, T.; Morimura, S. Evaluation of the Biogenic Amine-production Ability of Lactic Acid Bacteria Isolated from Tofu-misozuke. Food Sci. Technol. Res. 2016, 22(5), 673–678. DOI: 10.3136/fstr.22.673.
  • Holzapfel, W.;. Controlling the Formation of Biogenic Amines in Fermented Foods. In Advances in Fermented Foods and Beverages; Mohedano, M.L., López, P., Spano, G., Russo, P., Eds.; Woodhead Publishing: UK, 2015; Vol. 12, pp 273–310.
  • Ozogul, F.;. Effects of Specific Lactic Acid Bacteria Species on Biogenic Amine Production by Foodborne Pathogen. Int. J. Food Sci. Technol. 2013, 22(3), 478–484. DOI: 10.1007/s10068-013-0008-x.
  • Tao, K.; Wu, L.; Jin, X.; Ren, K.; Yu, Z.; Liu, T.; Liu, M.; Wang, S. High-throughput Sequencing Analysis of Bacterial Diversity in Red Sufu from Different Regions. Food Sci. 2020, 41, 110–116. DOI: 10.7506/spkx1002-6630-20190408-087.
  • Lee, Y.; Kung, H.; Huang, C.; Huang, T.; Tsai, Y. Reduction of Histamine and Biogenic Amines during Salted Fish Fermentation by Bacillus Polymyxa as a Starter Culture. J. Food Drug Anal. 2016, 24(1), 157–163. DOI: 10.1016/j.jfda.2015.02.002.
  • Lee, Y.; Kung, H.; Huang, Y.; Wu, C.; Huang, Y.; Tsai, Y. Reduction of Biogenic Amines during Miso Fermentation by Lactobacillus Plantarum as a Starter Culture. J. Food Prot. 2016, 79(9), 1556–1561. DOI: 10.4315/0362-028X.JFP-16-060.
  • Niu, T.; Li, X.; Guo, Y.; Ma, Y. Identification of a Lactic Acid Bacteria to Degrade Biogenic Amines in Chinese Rice Wine and Its Enzymatic Mechanism. Foods. 2019, 8(8), 312. DOI: 10.3390/foods8080312.
  • Cheng, S.; Lan, X.; Xu, Y.; Wang, D.; Ma, R. Biogenic Amine Degrading Bacteria within Soy Sauce Fermentation. Food Ferment. Ind. 2019, 45, 129–134.
  • Herrero-Fresno, A.; Martínez, N.; Sánchez-Llana, E.; Díaz, M.; Fernández, M.; Martin, M. C.; Ladero, V.; Alvarez, M. A. Lactobacillus Casei Strains Isolated from Cheese Reduce Biogenic Amine Accumulation in an Experimental Model. Int. J. Food Microbiol. 2012, 157(2), 297–304. DOI: 10.1016/j.ijfoodmicro.2012.06.002.
  • Butor, I.; Pištěková, H.; Purevdorj, K.; Jancova, P.; Buňka, F.; Buňková, L. Biogenic Amines Degradation by Microorganisms Isolated from Cheese. Potravinarstvo. 2017, 11, 302–308. DOI: 10.5219/736.
  • Tittarelli, F.; Perpetuini, G.; Di Gianvito, P.; Tofalo, R. Biogenic Amines Producing and Degrading Bacteria: A Snapshot from Raw Ewes’ Cheese. LWT-Food Sci. Technol. 2018, 101. DOI: 10.1016/j.lwt.2018.11.030.
  • Pugin, B.; Barcik, W.; Westermann, P.; Heider, A.; Wawrzyniak, M.; Hellings, P.; Akdis, C. A.; O’Mahony, L. A Wide Diversity of Bacteria from the Human Gut Produces and Degrades Biogenic Amines. Microb. Ecol. Health Dis. 2017, 28(1), 1353881. DOI: 10.1080/16512235.2017.1353881.
  • Liu, Z.; Studies on Biogenic Amines in Fermented Soybean Products: Sufu(furu) and Stinky Tofu(chougan). Doctor thesis, Zhejiang University, Zhejiang, China, 2011.
  • Gardini, F.; Martuscelli, M.; Caruso, M. C.; Galgano, F.; Crudele, M. A.; Favati, F.; Guerzoni, M. E.; Suzzi, G. Effects of pH, Temperature and NaCl Concentration on the Growth Kinetics, Proteolytic Activity and Biogenic Amine Production of Enterococcus Faecalis. Int. J. Food Microbiol. 2001, 64(1–2), 105–117. DOI: 10.1016/S0168-1605(00)00445-1.
  • Bover-Cid, S.; Izquierdo-Pulido, M.; Vidal-Carou, M. C. Influence of Hygienic Quality of Raw Materials on Biogenic Amine Production during Ripening and Storage of Dry Fermented Sausages. J. Food Prot. 2000, 63(11), 1544–1550. DOI: 10.4315/0362-028X-63.11.1544.
  • Bargossi, E.; Gardini, F.; Gatto, V.; Montanari, C.; Torriani, S.; Tabanelli, G. The Capability of Tyramine Production and Correlation between Phenotypic and Genetic Characteristics of Enterococcus Faecium and Enterococcus Faecalis Strains. Front. Microbiol. 2015, 6. DOI: 10.3389/fmicb.2015.01371.
  • Liu, F.; Xu, W.; Du, L.; Wang, D.; Zhu, Y.; Geng, Z.; Zhang, M.; Xu, W. Heterologous Expression and Characterization of Tyrosine Decarboxylase from Enterococcus Faecalis R612Z1 and Enterococcus Faecium R615Z1. J. Food Prot. 2014, 77(4), 592–598. DOI: 10.4315/0362-028X.JFP-13-326.
  • Manca, G.; Ru, A.; Siddi, G.; Mocci, A.; Murittu, G.; De Santis, E. Biogenic Amines Content in Fiore Sardo Cheese in Relation to Free Amino Acids and Physicochemical Characteristics. Ital. J. Food Saf. 2020, 9(1), 8457. DOI: 10.4081/ijfs.2020.8457.
  • Gardini, F.; Zaccarelli, A.; Belletti, N.; Faustini, F.; Cavazza, A.; Martuscelli, M.; Mastrocola, D.; Suzzi, G. Factors Influencing Biogenic Amine Production by a Strain of Oenococcus Oeni in a Model System. Food Control. 2005, 16(7), 609–616. DOI: 10.1016/j.foodcont.2004.06.023.
  • Suzzi, G.; Gardini, F. Biogenic Amines in Dry Fermented Sausages: A Review. Int. J. Food Microbiol. 2003, 88(1), 41–54. DOI: 10.1016/S0168-1605(03)00080-1.
  • Hernández-Herrero, M. M.; Roig-Sagués, A. X.; Rodríguez-Jerez, J. J.; Mora-Ventura, M. T. Halotolerant and Halophilic Histamine-forming Bacteria Isolated during the Ripening of Salted Anchovies (Engraulis Encrasicholus). J. Food Prot. 1999, 62(5), 509. DOI: 10.1111/j.1745-4549.1999.tb00370.x.
  • Zhang, Y.; Qin, N.; Luo, Y.; Shen, H. Effects of Different Concentrations of Salt and Sugar on Biogenic Amines and Quality Changes of Carp (Cyprinus Carpio) during Chilled Storage. J. Sci. Food Agric. 2014, 95(6), 1157–1162. DOI: 10.1002/jsfa.6803.
  • Sil, S.; Joseph, J.; Kumar, K. A. Changes in Biogenic Amines during Iced and Ambient Temperature Storage of Tilapia. J. Sci. Food Agric. 2008, 88(12), 2208–2212. DOI: 10.1002/jsfa.3058.
  • Rollan, G. C.; Coton, E.; Lonvaud-Funel, A. Histidine Decarboxylase Activity of Leuconostoc Oenos 9204. Food Microbiol. 1995, 12, 455–461. DOI: 10.1016/S0740-0020(95)80130-8.
  • Liu, Z. F.; Wei, Y. X.; Zhang, J. J.; Liu, D. H.; Hu, Y. Q.; Ye, X. Q. Changes in Biogenic Amines during the Conventional Production of Stinky Tofu. Int. J. Food Sci. Technol. 2011, 46(4), 687–694. DOI: 10.1111/j.1365-2621.2011.02545.x.
  • Gu, J.; Biodiversity of Chinese Traditional Stinky Tofu Microbiota and Its Biogenic Amines Metabolism. Doctor thesis, Zhejiang University, Zhejiang, China, 2018.
  • Naila, A.; Flint, S.; Fletcher, G.; Bremer, P.; Meerdink, G. Control of Biogenic Amines in Food—existing and Emerging Approaches. J. Food Sci. 2010, 75(7), R139–150. DOI: 10.1111/j.1750-3841.2010.01774.x.
  • Hazar, F. Y.; Kaban, G.; Kaya, M. Effects of Different Processing Conditions on Biogenic Amine Formation and Some Qualitative Properties in Pastırma. J. Food Sci. Technol. 2017, 54(12), 3892–3898. DOI: 10.1007/s13197-017-2845-8.
  • Vidal Carou, M. C.; Latorre Moratala, M. L.; Bover Cid, S. Biogenic Amines: Risks and Control; Blackwell Publishing Ltd: UK, 2008. pp 455-468.
  • Kim, J. H.; Ahn, H. J.; Jo, C.; Park, H. J.; Chung, Y. J.; Byun, M. W. Radiolysis of Biogenic Amines in Model System by Gamma Irradiation. Food Control. 2004, 15(5), 405–408. DOI: 10.1016/S0956-7135(03)00102-6.
  • Kim, J. H.; Ahn, H. J.; Kim, D. H.; Jo, C.; Yook, H. S.; Park, H. J.; Byun, M. W. Irradiation Effects on Biogenic Amines in Korean Fermented Soybean Paste during Fermentation. J. Food Sci. 2003, 68(1), 80–84. DOI: 10.1111/j.1365-2621.2003.tb14118.x.
  • Rabie, M. A.; Siliha, H. I.; El-Saidy, S. M.; El-Badawy, A. A.; Malcata, F. X. Effect of γ-irradiation upon Biogenic Amine Formation in Blue Cheese during Storage. Int. Dairy J. 2011, 21(5), 373–376. DOI: 10.1016/j.idairyj.2010.11.009.
  • Rabie, M.; Toliba, A. Effect of Irradiation and Storage on Biogenic Amine Contents in Ripened Egyptian Smoked Cooked Sausage. J. Food Sci. Technol. 2013, 50(6), 1165–1171. DOI: 10.1007/s13197-011-0444-7.
  • Rabie, M.; Siliha, H.; El-Saidy, S.; El-Badawi, A.; Malcata, F. Effects of γ-irradiation upon Biogenic Amine Formation in Egyptian Ripened Sausages during Storage. Innov. Food Sci. Emerg. Technol. 2010, 11(4), 661–665. DOI: 10.1016/j.ifset.2010.08.007.
  • Křížek, M.; Matějková, K.; Vácha, F.; Dadáková, E. Effect of Low-dose Irradiation on Biogenic Amines Formation in Vacuum-packed Trout Flesh (Oncorhynchus Mykiss). Food Chem. 2012, 132(1), 367–372. DOI: 10.1016/j.foodchem.2011.10.094.
  • Buyukdeveci, M. E.; Boga, E. K.; Ozyurt, G. Gamma-irradiation Induced Effects on Biogenic Amine Formation and Quality of Frog Legs (Rana Esculenta) during Storage. LWT-Food Sci. Technol. 2019, 99, 379–386. DOI: 10.1016/j.lwt.2018.10.001.
  • Rowe, L.; Peller, J.; Mammoser, C.; Davidson, K.; Gunter, A.; Brown, B.; Dhar, S. Stability of Non-proteinogenic Amino Acids to UV and Gamma Irradiation. Int. J. Astrobiol. 2018, 18. DOI: 10.1017/S1473550418000381.
  • Wang, Y.; Li, F.; Chen, X.; Li, L.; Zhang, J. Formation Mechanism, Detection and Control of Biogenic Amines in Traditional Fermented Meat Products. Meat Res. 2013, 27, 39–43.
  • Genccelep, H.; Kaban, G.; Aksu, M. I.; Oz, F.; Kaya, M. Determination of Biogenic Amines in Sucuk. Food Control. 2008, 19(9), 0–872. DOI: 10.1016/j.foodcont.2007.08.013.
  • Jastrzebska, A.; Kowalska, S.; Szlyk, E. Studies of Levels of Biogenic Amines in Meat Samples in Relation to the Content of Additives. Food Addit. Contam. 2015, 33, 27–40. DOI: 10.1080/19440049.2015.1111525.
  • Genccelep, H.; Kaban, G.; Kaya, M. Effects of Starter Cultures and Nitrite Levels on Formation of Biogenic Amines in Sucuk. Meat Sci. 2007, 77(3), 424–430. DOI: 10.1016/j.meatsci.2007.04.018.
  • Drabik-Markiewicz, G.; Dejaegher, B.; De Mey, E.; Kowalska, T.; Paelinck, H.; Vander Heyden, Y. Influence of Putrescine, Cadaverine, Spermidine or Spermine on the Formation of N-nitrosamine in Heated Cured Pork Meat. Food Chem. 2011, 126(4), 1539–1545. DOI: 10.1016/j.foodchem.2010.11.149.
  • Wu, C.; Wang, J.; Sun, W.; Cao, W.; Wu, X. Quality and Safety Evaluation of Heilongjiang Gray Sufu. China Brewing. 2008, 71–73+98.
  • Lee, J.; Kim, Y.; Her, J.; Kim, M.; Lee, K. Reduction of Biogenic Amine Contents in Fermented Soybean Paste Using Food Additives. LWT-Food Sci. Technol. 2018, 98, 470–476. DOI: 10.1016/j.lwt.2018.09.015.
  • Zhang, Q.; Jiang, M.; Rui, X.; Li, W.; Chen, X.; Dong, M. Effect of Rose Polyphenols on Oxidation, Biogenic Amines and Microbial Diversity in Naturally Dry Fermented Sausages. Food Control. 2017, 78, 324–330. DOI: 10.1016/j.foodcont.2017.02.054.
  • Cai, L.; Liu, S.; Sun, L.; Wang, Y.; Ji, H.; Li, J. Application of Tea Polyphenols in Combination with 6-gingerol on Shrimp Paste of during Storage: Biogenic Amines Formation and Quality Determination. Front. Microbiol. 2015, 6, 981. DOI: 10.3389/fmicb.2015.00981.
  • Ma, Y.; Xi, X.; Li, D.; Liang, J.; Li, S.; Ding, Y.; Wang, J.; Guo, S. Effects of Storage Temperature on Biogenic Amines and Physicochemical Properties of Grey Sufu. China Brewing. 2020, 39, 87–91. DOI: 10.11882/j.0254-5071.2020.05.017.
  • Zare, D.; Muhammad, K.; Bejo, M. H.; Ghazali, H. M. Changes in Urocanic Acid, Histamine, Putrescine and Cadaverine Levels in Indian Mackerel (Rastrelliger Kanagurta) during Storage at Different Temperatures. Food Chemistry. 2013, 139(1–4), 320–325. DOI: 10.1016/j.foodchem.2012.12.040.
  • Vinci, G.; Antonelli, M. L. Biogenic Amines: Quality Index of Freshness in Red and White Meat. Food Control. 2002, 13(8), 0–524. DOI: 10.1016/s0956-7135(02)00031-2.
  • Stadnik, J.; Dolatowski, Z. Biogenic Amines in Meat and Fermented Meat Products. Acta Sci. Pol., Technol. Aliment. 2010, 9, 251–263.
  • Loret, S.; Deloyer, P.; Dandrifosse, G. Levels of Biogenic Amines as a Measure of the Quality of the Beer Fermentation Process: Data from Belgian Samples. Food Chem. 2005, 89(4), 519–525. DOI: 10.1016/j.foodchem.2004.03.010.
  • Mietz, J.; Karmas, E. Chemical Quality Index of Canned Tuna as Determined by HPLC. J. Food Sci. 2006, 42(1), 155–158. DOI: 10.1111/j.1365-2621.1977.tb01240.x.
  • Hernández-Jover, T.; Izquierdo-Pulido, M.; Veciana-Nogués, M. T.; Vidal-Carou, M. C. Biogenic Amine Sources in Cooked Cured Shoulder Pork. J. Agric. Food Chem. 1996, 44(10), 3097–3101. DOI: 10.1021/jf960250s.
  • Al Bulushi, I.; Poole, S.; Deeth, H. C.; Dykes, G. A. Biogenic Amines in Fish: Roles in Intoxication, Spoilage, and Nitrosamine Formation–a Review. Crit. Rev. Food Sci. Nutr. 2009, 49(4), 369–377. DOI: 10.1080/10408390802067514.
  • Silva, C. M. G.; Gloria, M. B. A. Bioactive Amines in Chicken Breast and Thigh after Slaughter and during Storage at 4±1 °C and in Chicken-based Meat Products. Food Chem. 2002, 78(2), 241–248. DOI: 10.1016/S0308-8146(01)00404-6.
  • Berthier, F.; Ehrlich, S. Genetic Diversity within Lactobacillus Sakei and Lactobacillus Curvatus and Design of PCR Primers for Its Detection Using Randomly Amplified Polymorphic DNA. Int. J. Syst. Bacteriol. 1999, 49(3), 997–1007. DOI: 10.1099/00207713-49-3-997.
  • Cho, K. M.; Math, R. K.; Asraful Islam, S. M.; Lim, W. J.; Hong, S. Y.; Kim, J. M.; Yun, M. G.; Cho, J. J.; Yun, H. D. Novel Multiplex PCR for the Detection of Lactic Acid Bacteria during Kimchi Fermentation. Mol. Cell. Probes. 2009, 23(2), 90–94. DOI: 10.1016/j.mcp.2008.12.006.
  • Ben Amor, K.; Vaughan, E. E.; De Vos, W. M. Advanced Molecular Tools for the Identification of Lactic Acid Bacteria. The Journal of Nutrition. 2007, 137(3), 741s–747s. DOI: 10.1093/jn/137.3.741S.
  • Abriouel, H.; Lucas, R.; Gálvez, A. Culture-independent Study of the Diversity of Microbial Populations in Brines during Fermentation of Naturally-fermented Aloreña Green Table Olives. Int. J. Food Microbiol. 2011, 144, 487–496. DOI: 10.1016/j.ijfoodmicro.2010.11.006.
  • El Sheikha, A.;. Molecular Techniques in Food Biology: Safety, Biotechnology, Authenticity & Traceability; John Wiley & Sons: New Jersey, the US, 2018. pp 269–277.
  • Ong, Y. Y.; Tan, W. S.; Rosfarizan, M.; Chan, E. S.; Tey, B. T. Isolation and Identification of Lactic Acid Bacteria from Fermented Red Dragon Fruit Juices. J. Food Sci. 2012, 77(10), 560–564. DOI: 10.1111/j.1750-3841.2012.02894.x.
  • Tofalo, R.; Perpetuini, G.; Schirone, M.; Suzzi, G. Biogenic Amines: Toxicology and Health Effect; Academic Press: Oxford, UK, 2016; pp 424–429.
  • Gerner, E. W.; Meyskens, F. L. Polyamines and Cancer: Old Molecules, New Understanding. Nat. Rev. Cancer. 2004, 4(10), 781–792. DOI: 10.1038/nrc1454.
  • Pegg, A. E.;. Toxicity of Polyamines and Their Metabolic Products. Chem. Res. Toxicol. 2013, 26(12), 1782–1800. DOI: 10.1021/tx400316s.
  • Liu, J.; Ren, J.; Liu, K. Safety of Biogenic Amines in Foods. Food Sci. 2013, 34, 322–326. DOI: 10.7506/spkx1002-6630-201305067.
  • Önal, A.;. A Review: Current Analytical Methods for the Determination of Biogenic Amines in Foods. Food Chem. 2007, 103(4), 1475–1486. DOI:10.1016/j.foodchem.2006.08.028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.