721
Views
4
CrossRef citations to date
0
Altmetric
Review

Advanced Glycation End Products in Meat during Processing and Storage: A Review

, &

References

  • Nowotny, K.; Schröter, D.; Schreiner, M.; Grune, T. Dietary Advanced Glycation End Products and Their Relevance for Human Health. Ageing Res. Rev. 2018, 47, 55–66. DOI: 10.1016/j.arr.2018.06.005.
  • Sun, X.; Tang, J.; Wang, J.; Rasco, B. A.; Lai, K.; Huang, Y. Formation of Advanced Glycation Endproducts in Ground Beef under Pasteurisation Conditions. Food Chem. 2015, 172, 802–807. DOI: 10.1016/j.foodchem.2014.09.129.
  • Nooshkam, M.; Varidi, M.; Bashash, M. The Maillard Reaction Products as Food-born Antioxidant and Antibrowning Agents in Model and Real Food Systems. Food Chem. 2018, 275, S0308814618316546. DOI: 10.1016/j.foodchem.2018.09.083.
  • Poulsen, M. W.; Hedegaard, R. V.; Andersen, J. M.; De Courten, B.; Bügel, S.; Nielsen, J.; Skibsted., L. H.; Dragsted, L. O. Advanced Glycation Endproducts in Food and Their Effects on Health. Food Chem. Toxicol. 2013, 60, 10–37.
  • Nguyen, H. T.; van der Fels-Klerx, H. J.; van Boekel, M. A. J. S. Kinetics of Nε-(carboxymethyl)lysine Formation in Aqueous Model Systems of Sugars and Casein. Food Chem. 2016, 192, 125–133. DOI: 10.1016/j.foodchem.2015.06.110.
  • Luévano-Contreras, C.; Gómez-Ojeda, A.; Macías-Cervantes, M. H.; Garay-Sevilla, M. E. Dietary Advanced Glycation End Products and Cardiometabolic Risk. Curr Diabetes Rep. 2017, 17(8), 8. DOI: 10.1007/s11892-017-0891-2.
  • Nelson, M. B.; Swensen, A. C.; Winden, D. R.; Bodine, J. S.; Bikman, B. T.; Reynolds, P. R. Cardiomyocyte Mitochondrial Respiration Is Reduced by Receptor for Advanced Glycation End-product Signaling in a Ceramide-dependent Manner. Am. J. Physiol. Heart Circulatory Physiol. 2015, 309(1), H63–H69. DOI: 10.1152/ajpheart.00043.2015.
  • Wang, Z.; Jiang, Y.; Liu, N.; Ren, L.; Zhu, Y.; An, Y.; Chen, D. Advanced Glycation End-product Nɛ-carboxymethyl-Lysine Accelerates Progression of Atherosclerotic Calcification in Diabetes. Atherosclerosis. 2012, 221(2), 387–396. DOI: 10.1016/j.atherosclerosis.2012.01.019.
  • Chao, P.; Huang, C.; Hsu, C.; Yin, M.; Guo, Y. Association of Dietary AGEs with Circulating AGEs, Glycated LDL, IL-1ɑ and MCP-1 Levels in Type 2 Diabetic Patients. Eur. J. Nutr. 2010, 49(7), 429–434. DOI: 10.1007/s00394-010-0101-3.
  • Vlassara, H.; Uribarri, J. Advanced Glycation End Products (AGE) and Diabetes: Cause, Effector Both? Curr. Diabetes Rep. 2013, 14, 1.
  • Perrone, L.; Grant, W. B. Observational and Ecological Studies of Dietary Advanced Glycation End Products in National Diets and Alzheimer’s Disease Incidence and Prevalence. J. Alzheimers Dis. 2015, 45(3), 965–979. DOI: 10.3233/JAD-140720.
  • Sharma, A.; Weber, D.; Raupbach, J.; Dakal, T. C.; Fließbach, K.; Ramirez, A.; Grune, T.; Wüllner, U. Advanced Glycation End Products and Protein Carbonyl Levels in Plasma Reveal Sex-specific Differences in Parkinson’s and Alzheimer’s Disease. Redox Biol. 2020, 34, 101546. DOI: 10.1016/j.redox.2020.101546.
  • Delgado-Andrade, C.;. Carboxymethyl-lysine: Thirty Years of Investigation in the Field of AGE Formation. Food Funct. 2016, 7(1), 46–57. DOI: 10.1039/C5FO00918A.
  • Chen, G.; Scott Smith, J. Determination of Advanced Glycation Endproducts in Cooked Meat Products. Food Chem. 2015, 168, 190–195. DOI: 10.1016/j.foodchem.2014.06.081.
  • Zhu, Z.; Huang, S.; Khan, I. A.; Cheng, Y.; Yu, Y.; Zhang, C.; Huang, J.; Huang, M.; Zhou, X. The Effect of Oxidation and Maillard Reaction on Formation of Nɛ-carboxymethyllysine and Nɛ-carboxyethyllysine in Prepared Chicken Breast. CyTA - J. Food. 2019, 17(1), 685–694. DOI: 10.1080/19476337.2019.1636139.
  • Sun, X.; Tang, J.; Wang, J.; Rasco, B. A.; Lai, K.; Huang, Y. Formation of Free and Protein-bound Carboxymethyllysine and Carboxyethyllysine in Meats during Commercial Sterilization. Meat Sci. 2016, 116, 1–7. DOI: 10.1016/j.meatsci.2016.01.009.
  • Wei, Q.; Liu, T.; Sun, D. Advanced Glycation End-products (Ages) in Foods and Their Detecting Techniques and Methods: A Review. Trends Food Sci. Technol. 2018, 82, 32–45. DOI: 10.1016/j.tifs.2018.09.020.
  • Zhu, Z.; Huang, M.; Cheng, Y.; Khan, I. A.; Huang, J. A Comprehensive Review of Nɛ-carboxymethyllysine and Nɛ-carboxyethyllysine in Thermal Processed Meat Products. Trends Food Sci. Technol. 2020, 98, 30–40. DOI: 10.1016/j.tifs.2020.01.021.
  • Inan-Eroglu, E.; Ayaz, A.; Buyuktuncer, Z. Formation of Advanced Glycation Endproducts in Foods during Cooking Process and Underlying Mechanisms: A Comprehensive Review of Experimental Studies. Nutr. Res. Rev. 2019, 30(1), 1-13. DOI:10.1017/S0954422419000209.
  • Peng, X.; Ma, J.; Chen, F.; Wang, M. Naturally Occurring Inhibitors against the Formation of Advanced Glycation End-products. Food Funct. 2011, 2(6), 289. DOI: 10.1039/c1fo10034c.
  • Zhao, D.; Sheng, B.; Wu, Y.; Li, H.; Xu, D.; Nian, Y.; Miao, S.; Li, C.; Xu, X.; Zhou, G. Comparison of Free and Bound Advanced Glycation End Products in Food: A Review on the Possible Influence on Human Health. J. Agric. Food Chem. 2019, 67(51), 14007–14018. DOI: 10.1021/acs.jafc.9b05891.
  • Ahmed, N.; Argirov, O. K.; Minhas, H. S.; Cordeiro, C. A. A.; Thornalley, P. J. Assay of Advanced Glycation Endproducts (Ages): Surveying AGEs by Chromatographic Assay with Derivatization by 6-aminoquinolyl-N-hydroxysuccinimidyl-carbamate and Application to N-epsilon-carboxymethyl-lysine- and N-epsilon-(1-carboxyethyl)lysine-modified Albumin. Biochem. J. 2002, 364, 1–14. DOI: 10.1042/bj3640001.
  • Monnier, V. M.; Wu, X. Enzymatic Deglycation with Amadoriase Enzymes from Aspergillus Sp. As a Potential Strategy against the Complications of Diabetes and Aging. Biochem. Soc. Trans. 2003, 31(6), 1349–1353. DOI: 10.1042/bst0311349.
  • Reihl, O.; Biemel, K. M.; Eipper, W.; Lederer, M. O.; Schwack, W. Spiro Cross-links:? Representatives of a New Class of Glycoxidation Products. J. Agric Food Chemi. 2003, 51(16), 4810–4818.
  • Hofmann, T.; Bors, W.; Stettmaier, K.; Radical, C. R. O. S. S. P. Y. :. A. Intermediate of Melanoidin Formation in Roasted Coffee. Free Rad. Food. 2002, 807, 49-68. Doi: 10.1021/bk-2002-0807.ch004.
  • Cerami, A.; Vlassara, H.; Brownlee, M. Role of Advanced Glycosylation Products in Complications of Diabetes. Diabetes Care. 1988, 1(11), 73–79.
  • Zeng, J.; Davies, M. J. Evidence for the Formation of Adducts and S-(Carboxymethyl)cysteine on Reaction of ɑ-dicarbonyl Compounds with Thiol Groups on Amino Acids, Peptides, and Proteins. Chem. Res. Toxicol. 2005, 18(8), 1232–1241. DOI: 10.1021/tx050074u.
  • Forster, A.; Henle, T. Glycation in Food and Metabolic Transit of Dietary AGEs (Advanced Glycation End-products): Studies on the Urinary Excretion of Pyrraline. Biochem. Soc. Trans. 2003, 31(6), 1383–1385. DOI: 10.1042/bst0311383.
  • Uribarri, J.; Woodruff, S.; Goodman, S.; Cai, W.; Chen, X.; Pyzik, R.; Yong, A.; Striker, G.; Vlassara, H. Advanced Glycation End Products in Foods and a Practical Guide to Their Reduction in the Diet. J. Am. Diet. Assoc. 2010, 110(6), 911–916. DOI: 10.1016/j.jada.2010.03.018.
  • Assar, S. H.; Moloney, C.; Lima, M.; Magee, R.; Ames, J. M. Determination of Nɛ-(carboxymethyl)lysine in Food Systems by Ultra Performance Liquid Chromatographymass Spectrometry. Amino Acids. 2009, 36(2), 317–326. DOI: 10.1007/s00726-008-0071-4.
  • Yu, L.; He, Z.; Zeng, M.; Zheng, Z.; Chen, J. Effect of Irradiation on Nε-carboxymethyl-lysine and Nε-carboxyethyl-lysine Formation in Cooked Meat Products during Storage. Radiat. Phys. Chem. 2016, 120, 73–80. DOI: 10.1016/j.radphyschem.2015.11.020.
  • Gómez-Ojeda, A.; Jaramillo-Ortíz, S.; Wrobel, K.; Wrobel, K.; Barbosa-Sabanero, G.; Luevano-Contreras, C.; de la Maza, M. P.; Uribarri, J.; Del Castillo, M.; Garay-Sevilla, M. Comparative Evaluation of Three Different ELISA Assays and HPLC-ESI-ITMS/MS for the Analysis of Nɛ-carboxymethyl Lysine in Food Samples. Food Chem. 2018, 243, 11–18. DOI: 10.1016/j.foodchem.2017.09.098.
  • Yu, L.; Gao, C.; Zeng, M.; He, Z.; Wang, L.; Zhang, S.; Chen, J. Effects of Raw Meat and Process Procedure on Nε-carboxymethyllysine and Nε-carboxyethyl-lysine Formation in Meat Products. Food Sci. Biotechnol. 2016, 25(4), 1163–1168. DOI: 10.1007/s10068-016-0185-5.
  • Hull, G. L. J.; Woodside, J. V.; Ames, J. M.; Cuskelly, G. J. Nɛ-(carboxymethyl)lysine Content of Foods Commonly Consumed in a Western Style Diet. Food Chem. 2012, 131(1), 170–174. DOI: 10.1016/j.foodchem.2011.08.055.
  • Martins, S. I. F.; Jongen, W. M.; van Boekel, M. A. J. A Review of Maillard Reaction in Food and Implications to Kinetic Modelling. Trends Food Sci. Technol. 2000, 11(9–10), 364–373. DOI: 10.1016/S0924-2244(01)00022-X.
  • Sharma, C.; Kaur, A.; Thind, S. S.; Singh, B.; Raina, S. Advanced Glycation End Products (Ages): An Emerging Concern for Processed Food Industries. J. Food Sci. Technol. 2015, 52(12), 7561–7576. DOI: 10.1007/s13197-015-1851-y.
  • Delgado-Andrade, C.; Seiquer, I.; Navarro, M. P.; Morales, F. J. Maillard Reaction Indicators in Diets Usually Consumed by Adolescent Population. Mol. Nutr. Food Res. 2007, 51(3), 341–351. DOI: 10.1002/mnfr.200600070.
  • Hodge, J. E.; Foods, D. Chemistry of Browning Reactions in Model Systems. J. Agric. Food Chem. 1953, 1(15), 928–943. DOI: 10.1021/jf60015a004.
  • Fu, M. X.; Requena, J. R.; Jenkins, A. J.; Lyons, T. J.; Baynes, J. W.; Thorpe, S. R. The Advanced Glycation End Product, Nɛ-(carboxymethyl)lysine, Is a Productof Both Lipid Peroxidation and Glycoxidation Reactions. J. Biol. Chem. 1996, 271(17), 9982–9986. DOI: 10.1074/jbc.271.17.9982.
  • Wolff, S. P.; Dean, R. T. Glucose Autoxidation and Protein Modification. The Potential Role of “Autoxidative Glycosylation” in Diabetes. Biochem. J. 1987, 245(1), 243–250. DOI: 10.1042/bj2450243.
  • Namiki, M.; Hayashi, T.; New, A. Mechanism of the Maillard Reaction Involving Sugar Fragmentation and Free Radical Formation[C]. Maillard Reaction Foods Nutr. 1983. DOI:10.1021/bk-1983-0215,ch002.
  • Nguyen, H. T.; van der Fels-Klerx, H. J.; van Boekel, M. A. J. S. N Ɛ-(carboxymethyl)lysine: A Review on Analytical Methods, Formation, and Occurrence in Processed Food, and Health Impact. Food Rev. Int. 2013, 30(1), 36–52. DOI: 10.1080/87559129.2013.853774.
  • Prasad, Y. D.; Sonia, S.; Balvinder, S.; Charan, C. R. Advanced Glycation End Products: A Review. Scholars Acad.c J. Biosci. 2013, 1(39), 2185–2197.
  • Zhu, Z.; Fang, R.; Zhao, D.; Huang M.; Wei Y. N-carboxymethyllysine and N-carboxyethyllysine Kinetics and Water Loss Analysis during Chicken braising[J]. J. Sci. Food Agric. 2020, 101(2) :388-397. DOI:10.1002/jsfa.10528.
  • Mitra, B.; Lametsch, R.; Greco, I.; Ruiz-Carrascal, J. Advanced Glycation End Products, Protein Crosslinks and Post Translational Modifications in Pork Subjected to Different Heat Treatments. Meat Sci. 2018, 145, 415–424. DOI: 10.1016/j.meatsci.2018.07.026.
  • Xu, R.; Yue, L.; Kang, S.; Liu, L. Assessment of the Concentration of Advanced Glycation End Products in Traditional Chinese Foods. J. Food Process. Preserv. 2016, 41(2), e12811. DOI: 10.1111/jfpp.12811.
  • Peiretti, P. G.; Medana, C.; Visentin, S.; Giancotti, V.; Zunino, V.; Meineri, G. Determination of Carnosine, Anserine, Homocarnosine, Pentosidine and Thiobarbituric Acid Reactive Substances Contents in Meat from Different Animal Species. Food Chem. 2011, 126(4), 1939–1947. DOI: 10.1016/j.foodchem.2010.12.036.
  • Goldberg, T.; Cai, W.; Peppa, M.; Dardaine, V.; Baliga, B. S.; Uribarri, J.; Vlassara, H. Advanced Glycoxidation End Products in Commonly Consumed Foods. J. Am. Diet. Assoc. 2004, 104(8), 1287–1291. DOI: 10.1016/j.jada.2004.05.214.
  • Chao, P.; Hsu, C.; Yin, M. Analysis of Glycative Products in Sauces and Sauce-treated Foods. Food Chem. 2009, 113(1), 262–266. DOI: 10.1016/j.foodchem.2008.06.076.
  • Sun, X.; Li, X.; Tang, J.; Lai, K.; Rasco, B. A.; Huang, Y. Formation of Protein-bound Nɛ-carboxymethyllysine and Nɛ-carboxyethyllysine in Ground Pork during Commercial Sterilization as Affected by the Type and Concentration of Sugars. Food Chem. 2020, 336(1), 127706. DOI:10.1016/j.foodchem.2020.127706.
  • Niu, L.; Sun, X.; Tang, J.; Wang, J.; Wang, J.; Rasco, B. A.; Fan, L. K.; Huang, Y. Combination Effects of Salts and Cold Storage on the Formation of Protein-bound Nɛ-(carboxymethyl)lysine and Nɛ-(carboxyethyl)lysine in Raw and Subsequently Commercially Sterilized Ground Pork. Food Chem. 2018, 264, 455–461. DOI: 10.1016/j.foodchem.2018.05.054.
  • Sun, X.; Tang, J.; Wang, J.; Rasco, B. A.; Lai, K.; Huang, Y. Formation of Nɛ-carboxymethyllysine and Nɛ-carboxyethyllysine in Ground Beef during Heating as Affected by Fat, Nitrite and Erythorbate. J. Food Meas. Charact. 2016, 11(1), 320–328. DOI: 10.1007/s11694-016-9400-6.
  • Yu, L.; Chai, M.; Zeng, M.; He, Z.; Chen, J. Effect of Lipid Oxidation on the Formation of Nɛ-carboxymethyl-lysine and Nɛ-carboxyethyl-lysine in Chinese-style Sausage during Storage. Food Chem. 2018, 269, 466–472. DOI: 10.1016/j.foodchem.2018.07.051.
  • Honikel, K.-O.;. The Use and Control of Nitrate and Nitrite for the Processing of Meat Products. Meat Sci. 2008, 78(1–2), 68–76. DOI: 10.1016/j.meatsci.2007.05.030.
  • Morrissey, P. A.; Tichivangana, J. Z. The Antioxidant Activities of Nitrite and Nitrosylmyoglobin in Cooked Meats. Meat Sci. 1985, 14(3), 175–190. DOI: 10.1016/0309-1740(85)90063-4.
  • Srey, C.; Hull, G. L. J.; Connolly, L.; Elliott, C. T.; Del Castillo, M. D.; Ames, J. M. Effect of Inhibitor Compounds on N ε-(Carboxymethyl)lysine (CML) and N ε-(Carboxyethyl)lysine (CEL) Formation in Model Foods. J. Agric. Food Chem. 2010, 58(22), 12036–12041. DOI: 10.1021/jf103353e.
  • Rosenthal, A. J. Encyclopedia of Food and Health || Cooking: Domestic Techniques. Encycl. food health.2016, 316–320. DOI:10.1016/B978-0-12-384947-2.00199-9.
  • Vintilă, I. Typical Traditional Processes: Cooking and Frying. Regul. Safety Traditional Ethnic Foods, 2016, 29–62. DOI:10.1016/B978-0-12-800605-4.00003-7.
  • Trevisan, A. J. B.; de Almeida Lima, D.; Sampaio, G. R.; Soares, R. A. M.; Markowicz Bastos, D. H. Influence of Home Cooking Conditions on Maillard Reaction Products in Beef. Food Chem. 2016, 196, 161–169. DOI: 10.1016/j.foodchem.2015.09.008.
  • Feng, Z.; Chun-Xiao, L.; Jian-An, H. E. Contents of Advanced Glycation End Products in Common Foods in Shenzhen City. Pract. Preventive Med. 2019, 26(3), 297–300.
  • Jaramillo Ortiz, S.; Wrobel, K.; Gomez Ojeda, A.; Acevedo-Aguilar, F. J.; Corrales Escobosa, A. R.; Yanez Barrientos, E.; Garay-Sevilla, M. E.; Wrobel, K. N. E-carboxymethyl)-l-lysine Content in Cheese, Meat and Fish Products Is Affected by the Presence of Copper during Elaboration Process. Eur. Food Res. Technol. 2017, 244(2), 225–234. DOI: 10.1007/s00217-017-2949-4.
  • Zhu, Z.; Fang, R.; Yang, J.; Khan, I. A.; Huang, J.; Huang, M. Air Fryingcombined with Grape Seed Extract on Inhibition of Nɛ-carboxymethyllysine and Nɛ-carboxyethyllysineby Controlling Oxidation and Glycosylation. Poultr. Sci. 2020. DOI: 10.1016/j.psj.2020.11.056.
  • Niu, L.; Sun, X.; Tang, J.; Wang, J.; Rasco, B. A.; Lai, K.; Fan, Y.; Huang, Y. Formation of Advanced Glycation End-products in Fish Muscle during Heating: Relationship with Fish Freshness. J. Food Compost. Anal. 2017, 63, 133–138. DOI: 10.1016/j.jfca.2017.07.033.
  • Huang, S.; Dong, X.; Zhang, Y.; Chen, Y.; Yajie, Y.; Huang, M. Formation of Advanced Glycation End Products in Raw and Subsequently Boiled Broiler Muscle: Biological Variation and Effects of Postmortem Ageing and Storage. Food Sci. Hum. Wellness. 2020.
  • Guo, Y.; Huang, J.; Sun, X.; Lu, Q.; Huang, M.; Zhou, G. Effect of Normal and Modified Atmosphere Packaging on Shelf Life of Roast Chicken Meat. J. Food Saf. 2018, 38(5), e12493. DOI: 10.1111/jfs.12493.
  • Li, C.; Xiong, Y. L.; Chen, J. Oxidation-induced Unfolding Facilitates Myosin Cross-linking in Myofibrillar Protein by Microbial Transglutaminase. J. Agric. Food Chem. 2012, 60(32), 8020–8027. DOI: 10.1021/jf302150h.
  • Roldan, M.; Loebner, J.; Degen, J.; Henle, T.; Antequera, T.; Ruiz-Carrascal, J. Advanced Glycation End Products, Physico-chemical and Sensory Characteristics of Cooked Lamb Loins Affected by Cooking Method and Addition of Flavour Precursors. Food Chem. 2015, 168, 487–495. DOI: 10.1016/j.foodchem.2014.07.100.
  • Vistoli, G.; De Maddis, D.; Cipak, A.; Zarkovic, N.; Carini, M.; Aldini, G. Advanced Glycoxidation and Lipoxidation End Products (Ages and ALEs): An Overview of Their Mechanisms of Formation. Free Radical Res. 2013, 47(sup1), 3–27. DOI: 10.3109/10715762.2013.815348.
  • Vlassara, H.; Palace, M. R. Diabetes and Advanced Glycation Endproducts. J. Internal Med. 2002, 251(2), 87–101. DOI: 10.1046/j.1365-2796.2002.00932.x.
  • Uribarri, J.; Cai, W.; Sandu, O.; Peppa, M.; Goldberg, T.; Vlassara, H. Diet-derived Advanced Glycation End Products are Major Contributors to the Body’s AGE Pool and Induce Inflammation in Healthy Subjects. Ann. N.Y. Acad. Sci. 2005, 1043(1), 461–466. DOI: 10.1196/annals.1333.052.
  • Nenna, A.; Spadaccio, C.; Lusini, M.; Ulianich, L.; Chello, M.; Nappi, F. Basic and Clinical Research against Advanced Glycation End Products (Ages): New Compounds to Tackle Cardiovascular Disease and Diabetic Complications. Recent Patents Cardiovascular Drug Discovery. 2015, 10(1), 10–33. DOI: 10.2174/1574890110666151104120039.
  • Zhou Q., Cheng K W., Xiao J., Wang M. The Multifunctional Roles of Flavonoids against the Formation of Advanced Glycation End Products (Ages) and AGEs-induced Harmful effects[J]. Trends Food Sci. Technol. 2020, 103(9), 333–347. DOI: 10.1016/j.tifs.2020.06.002.
  • Kopytek, M.; Zbczyk, M.; Mazur, P.; Undas, A.; Natorska, J. 2020. Accumulation of Advanced Glycation End Products (Ages) Is Associated with the Severity of Aortic Stenosis in Patients with Concomitant Type 2 Diabetes. Cardiovascular Diabetol.2020, 19(1): 92. DOI: 10.1186/s12933-020-01068-7.
  • Jeong, S. R.; Park, H. Y.; Kim, Y.; Lee, K. Methylglyoxal-derived Advanced Glycation End Products Induce Matrix Metalloproteinases through Activation of ERK/JNK/NF-kB Pathway in Kidney Proximal Epithelial cells[J]. Food Sci. Biotechnol. 2019, 29(5), 675-682. DOI: 10.1007/s10068-019-00704-7.
  • Lin, J. A.; Wu, C. H.; Yen, G. C. Perspective of Advanced Glycation End Products on Human Health. J. Agric. Food Chem. 2018, 66(9), 2065–2070. DOI: 10.1021/acs.jafc.7b05943.
  • Turner, D. P.;. Advanced Glycation End-Products: A Biological Consequence of Lifestyle Contributing to Cancer Disparity. Cancer Res. 2015, 75(10), 1925–1929. DOI: 10.1158/0008-5472.CAN-15-0169.
  • Hudson, B. I.; Lippman, M. E. Targeting RAGE Signaling in Inflammatory Disease. Annu. Rev. Med. 2018, 69(1), 349–364. DOI: 10.1146/annurev-med-041316-085215.
  • Yu, P.; Xu, X.-B.; Yu, S.-J. The Effect of pH and Amino Acids on the Formation of Methylglyoxal in a Glucose-amino Acid Model System. J. Sci. Food Agric. 2017, 97(10), 3159–3165. DOI: 10.1002/jsfa.8158.
  • Jahan, H.; Choudhary, M. I. Glycation, Carbonyl Stress and AGEs Inhibitors: A Patent Review. Expert Opin. Ther. Pat. 2015, 25(11), 1267–1284. DOI: 10.1517/13543776.2015.1076394.
  • Abdullah, K. M.; Qais, F. A.; Ahmad, I.; Hasan, H.; Naseem, I. Study of Pyridoxamine against Glycation and Reactive Oxygen Species Production in Human Serum Albumin as Model Protein: An in Vitro & Ex Vivo Approach. Int. J. Biol. Macromol. 2018, 120, 1734–1743. DOI: 10.1016/j.ijbiomac.2018.09.176.
  • Balakumar, P.; Rohilla, A.; Krishan, P.; Solairaj, P.; Thangathirupathi, A. The Multifaceted Therapeutic Potential of Benfotiamine. Pharmacol. Res. 2010, 61(6), 482–488. DOI: 10.1016/j.phrs.2010.02.008.
  • Ishibashi, Y.; Matsui, T.; Takeuchi, M.; Yamagishi, S. Beneficial Effects of Metformin and Irbesartan on Advanced Glycation End Products (Ages)-rage-induced Proximal Tubular Cell Injury. Pharmacol. Res. 2012, 65(3), 297–302. DOI: 10.1016/j.phrs.2011.11.001.
  • Shaw, R. J.;. The Kinase LKB1 Mediates Glucose Homeostasis in Liver and Therapeutic Effects of Metformin. Science. 2005, 310(5754), 1642–1646. DOI: 10.1126/science.1120781.
  • Rahbar, S.; Natarajan, R.; Yerneni, K.; Scott, S.; Gonzales, N.; Nadler, J. L. Evidence that Pioglitazone, Metformin and Pentoxifylline are Inhibitors of Glycation. Clin. Chim. Acta. 2000, 301(1–2), 65–77. DOI: 10.1016/S0009-8981(00)00327-2.
  • Borg, D. J.; Forbes, J. M. Targeting Advanced Glycation with Pharmaceutical Agents: Where are We Now? Glycoconjugate J. 2016, 33(4), 653–670. DOI: 10.1007/s10719-016-9691-1.
  • Nagai, R.; Murray, D. B.; Metz, T. O.; Baynes, J. W. Chelation: A Fundamental Mechanism of Action of Age Inhibitors, Age Breakers, and Other Inhibitors of Diabetes Complications. Diabetes. 2012, 61(3), 549–559. DOI: 10.2337/db11-1120.
  • Murad, H. A.; Gazzaz, Z. J.; Ali, S. S.; Ibraheem, M. S. Candesartan, Rather than Losartan, Improves Motor Dysfunction in Thioacetamide-induced Chronic Liver Failure in Rats. Braz. J. Med. Biol. Res. 2017, 50(11), 11. DOI: 10.1590/1414-431x20176665.
  • Dhara, A.; Desai, K. M.; Wu, L. Alagebrium Attenuates Acute Methylglyoxal-induced Glucose Intolerance in Sprague-Dawley Rats. Br. J. Pharmacol. 2009, 159(1), 166–175. DOI: 10.1111/j.1476-5381.2009.00469.x.
  • Oesterle, A.; Laufs, U.; Liao, J. K. Pleiotropic Effects of Statins on the Cardiovascular System. Circ. Res. 2017, 120(1), 229–243. DOI: 10.1161/CIRCRESAHA.116.308537.
  • Deane, R.; Singh, I.; Sagare, A. P.; Bell, R. D.; Ross, N. T.; LaRue, B.; Love, R.; Perry, S.; Paquette, N.; Deane, R. J.; et al. A Multimodal RAGE-specific Inhibitor Reduces Amyloid β-mediated Brain Disorder in A Mouse Model of Alzheimer Disease. J. Clin. Investigation. 2012, 122(4), 1377–1392. DOI: 10.1172/JCI58642.
  • Manduteanu, I.; Voinea, M.; Antohe, F.; Dragomir, E.; Capraru, M.; Radulescu, L.; Simionescu, M. Effect of Enoxaparin on High Glucose-induced Activation of Endothelial Cells. Eur. J. Pharmacol. 2003, 477(3), 269–276. DOI: 10.1016/j.ejphar.2003.08.016.
  • Wang, J.; Zou, L.; Yuan, F.; Lv, L.; Tian, S.; Li, Z.; Lin, H. Inhibition of Advanced Glycation Endproducts during Fish Sausage Preparation by Transglutaminase and Chitosan Oligosaccharides Induced Enzymatic Glycosylation. Food Funct. 2018, 9(1), 253–262. DOI: 10.1039/C7FO01092C.
  • Freedman, B. I.; Wuerth, J. P.; Cartwright, K.; Bain, R. P.; Dippe, S.; Hershon, K.; Mooradian, A. D.; Spinowitz, B. S. Design and Baseline Characteristics for the Aminoguanidine Clinical Trial in Overt Type 2 Diabetic Nephropathy (Action Ii). Controlled Clin. Trials. 1999, 20(5), 493–510. DOI: 10.1016/S0197-2456(99)00024-0.
  • Thornalley, P. J.;. Use of Aminoguanidine (Pimagedine) to Prevent the Formation of Advanced Glycation Endproducts. Arch. Biochem. Biophys. 2003, 419(1), 0–40. DOI: 10.1016/j.abb.2003.08.013.
  • Packer, L.; Kraemer, K.; Rimbach, G. Molecular Aspects of Lipoic Acid in the Prevention of Diabetes Complications. Nutrition. 2001, 17(10), 888–895. DOI: 10.1016/S0899-9007(01)00658-X.
  • Sajithlal, G. B.; Chithra, P.; Chandrakasan, G. Effect of Curcumin on the Advanced Glycation and Cross-linking of Collagen in Diabetic Rats. Biochem. Pharmacol. 1998, 56(12), 1607–1614. DOI: 10.1016/S0006-2952(98)00237-8.
  • Chen, G.; Madl, R. L.; Smith, J. S. Inhibition of Advanced Glycation Endproducts in Cooked Beef Patties by Cereal Bran Addition. Food Control. 2017, 73, 847–853. DOI: 10.1016/j.foodcont.2016.09.037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.