547
Views
5
CrossRef citations to date
0
Altmetric
Review

Understanding the Mechanism for the Structure-Activity Relationship of Food-Derived ACEI Peptides

, , , , , , , & show all

References

  • Parati, G.; Torlasco, C.; Pengo, M.; Bilo, G.; Ochoa, J. E. Blood Pressure Variability: Its Relevance for Cardiovascular Homeostasis and Cardiovascular Diseases. Hypertens. Res. 2020, 43(7), 609–620. DOI: 10.1038/s41440-020-0421-5.
  • Aluko, R. E.;. Antihypertensive Peptides from Food Proteins. Ann. Rev. Food Sci. Technol. 2015, 6, 235–262. DOI: 10.1146/annurev-food-022814-015520.
  • F.Roy, J. I. B. B. K. S.;. Bioactive Proteins and Peptides in Pulse Crops: Pea, Chickpea and Lentil. Food Res. Int. 2010, 43(2), 432–442-432–442.
  • Huan, Y.;. Meal Prepared ACE Hydrolysis Studies Inhibitory Peptide and Its Properties; Unpublished. Hunan Agricultural University: Changsha, 2012.
  • Paiva, L.; Lima, E.; Neto, A. I.; Baptista, J. Isolation and Characterization of Angiotensin I-converting Enzyme (ACE) Inhibitory Peptides from Ulva Rigida C Agardh Protein Hydrolysate. J Funct Foods. 2016, 26, 65–76. Doi:10.1016/j.jff.2016.07.006.
  • Phelan, M.; Kerins, D. The Potential Role of Milk-derived Peptides in Cardiovascular Disease. Food Funct. 2011, 2(3–4), 153–167. DOI: 10.1039/c1fo10017c.
  • Mohd Salim, M. A. S.; Gan, C.-Y. Dual-function Peptides Derived from Egg White Ovalbumin: Bioinformatics Identification with Validation Using in Vitro Assay. J. Funct. Foods. 2020, 64, 103618. DOI: 10.1016/j.jff.2019.103618.
  • Jingjing, W.; Jingjing, W.; Wei, J.; Hongwu, J.; Weiming, S.; Yahui, L.; Shucheng, L.; Antihypertensive Effect of Enzymatic Hydrolysate from Sardinops Melanosticta Muscle on Spontaneously Hypertensive Rats and Identification of Its Angiotensin-converting Enzyme (ACE) Inhibitory Peptide. 2016年 04 2016, 63–68.
  • Bingjun, Z. Z. Z. J. Z. Y. Z. W. H. Y. Q.;. Progress in the Preparation and Structure-activity Relationship of Marine Biological Antihypertensive Peptides. Anhui Agric Sci. 2015, 43(26), 336–342,345.
  • Girgih, A. T.; He, R.; Malomo, S.; Offengenden, M.; Wu, J.; Aluko, R. E. Structural and Functional Characterization of Hemp Seed (Cannabis Sativa L.) Protein-derived Antioxidant and Antihypertensive Peptides. J. Funct. Foods. 2014, 6, 384–394. DOI: 10.1016/j.jff.2013.11.005.
  • Wang Xiaodan, X. L.; Zhihe, H. U.; Zhang, Q.; Yanjun, L. I.; Lei, X. Progress in Research on Structure-Activity Relationship of ACE Inhibitory Peptides. Food Sci. 2017, 38(5), 305–310.
  • Wu, J.; Aluko, R. E.; Nakai, S. Structural Requirements of Angiotensin I-converting Enzyme Inhibitory Peptides: Quantitative Structure-activity Relationship Study of Di- and Tripeptides. J. Agric. Food Chem. 2006, 54(3), 732–738. DOI: 10.1021/jf051263l.
  • Ryan, J. T.; Ross, R. P.; Bolton, D.; Fitzgerald, G. F.; Stanton, C. Bioactive Peptides from Muscle Sources: Meat and Fish. Nutrients. 2011, 3(9), 765–791. DOI: 10.3390/nu3090765.
  • An Guixiang, Z. G.;. Xu Zhenkai, Yao Mingjing, Chi Yusen Research Progress of Angiotensin-converting Enzyme Inhibitory Peptides in Food. Food Res. Dev. 2006, 27(6), 173–175.
  • Mizuno, S.; Nishimura, S.; Matsuura, K.; Gotou, T.; Yamamoto, N. J. J. O. D. S., Release of Short and Proline-rich Antihypertensive Peptides from Casein Hydrolysate with an Aspergillus Oryzae Protease. Journal of Dairy Science. 2004, 87(10), 3183–3188. DOI: 10.3168/jds.S0022-0302(04)73453-0.
  • Iroyukifujita, H.; Eiichiyokoyama, K.; Yoshikawa, M. Classification and Antihypertensive Activity of Angiotensin I‐converting Enzyme Inhibitory Peptides Derived from Food Proteins. J. Food Sci. 2000, 65(4), 564–569. DOI: 10.1111/j.1365-2621.2000.tb16049.x.
  • Arihara, K.; Nakashima, Y.; Mukai, T.; Ishikawa, S.; Itoh, M. Peptide Inhibitors for Angiotensin I-converting Enzyme from Enzymatic Hydrolysates of Porcine Skeletal Muscle Proteins. Meat Sci. 2001, 57(3), 319–324. DOI: 10.1016/S0309-1740(00)00108-X.
  • Kim, S.-K.; Byun, H.-G.; Park, P.-J.; Shahidi, F. Angiotensin I Converting Enzyme Inhibitory Peptides Purified from Bovine Skin Gelatin Hydrolysate. J. Agric. Food Chem. 2001, 49(6), 2992–2997. DOI: 10.1021/jf001119u.
  • Jang, A.; Lee, M. Purification and Identification of Angiotensin Converting Enzyme Inhibitory Peptides from Beef Hydrolysates. Meat Sci. 2005, 69(4), 653–661. DOI: 10.1016/j.meatsci.2004.10.014.
  • Vercruysse, L.; Van Camp, J.; Smagghe, G. ACE Inhibitory Peptides Derived from Enzymatic Hydrolysates of Animal Muscle Protein: A Review. J. Agric. Food Chem. 2005, 53(21), 8106–8115. DOI: 10.1021/jf0508908.
  • Majumder, K.; Wu, J. Angiotensin I Converting Enzyme Inhibitory Peptides from Simulated in Vitro Gastrointestinal Digestion of Cooked Eggs. J. Agric. Food Chem. 2009, 57(2), 471–477. DOI: 10.1021/jf8028557.
  • Terashima, M.; Baba, T.; Ikemoto, N.; Katayama, M.; Morimoto, T.; Matsumura, S. Novel Angiotensin-converting Enzyme (ACE) Inhibitory Peptides Derived from Boneless Chicken Leg Meat. J. Agric. Food Chem. 2010, 58(12), 7432–7436. DOI: 10.1021/jf100977z.
  • Yu, Z.; Zhao, W.; Liu, J.; Lu, J.; Chen, F. QIGLF, a Novel Angiotensin I-converting Enzyme-inhibitory Peptide from Egg White Protein. J. Sci. Food Agric. 2011, 91(5), 921–926. DOI: 10.1002/jsfa.4266.
  • Escudero, E.; Toldrá, F.; Sentandreu, M. A.; Nishimura, H.; Arihara, K. Antihypertensive Activity of Peptides Identified in the in Vitro Gastrointestinal Digest of Pork Meat. Meat Sci. 2012, 91(3), 382–384. DOI: 10.1016/j.meatsci.2012.02.007.
  • Wu, S.; Sun, J.; Tong, Z.; Lan, X.; Zhao, Z.; Liao, D. Optimization of Hydrolysis Conditions for the Production of Angiotensin-I Converting Enzyme-Inhibitory Peptides and Isolation of a Novel Peptide from Lizard Fish (Saurida Elongata) Muscle Protein Hydrolysate. Mar. Drugs. 2012, 10(5), 1066–1080. DOI: 10.3390/md10051066.
  • Sangsawad, P.; Roytrakul, S.; Yongsawatdigul, J. Angiotensin Converting Enzyme (ACE) Inhibitory Peptides Derived from the Simulated in Vitro Gastrointestinal Digestion of Cooked Chicken Breast. J. Funct. Foods. 2017, 29, 77–83. DOI: 10.1016/j.jff.2016.12.005.
  • Thuanthong, M.; De Gobba, C.; Sirinupong, N.; Youravong, W.; Otte, J. Purification and Characterization of Angiotensin-converting Enzyme-inhibitory Peptides from Nile Tilapia (Oreochromis Niloticus) Skin Gelatine Produced by an Enzymatic Membrane Reactor. J. Funct. Foods. 2017, 36, 243–254. DOI: 10.1016/j.jff.2017.07.011.
  • Liu, Y.-F.; Oey, I.; Bremer, P.; Carne, A.; Silcock, P. Bioactive Peptides Derived from Egg Proteins: A Review. Crit. Rev. Food Sci. Nutr. 2018, 58(15), 2508–2530. DOI: 10.1080/10408398.2017.1329704.
  • Maqsoudlou, A.; Mahoonak, A. S.; Mora, L.; Mohebodini, H.; Toldrá, F.; Ghorbani, M. Peptide Identification in Alcalase Hydrolysated Pollen and Comparison of Its Bioactivity with Royal Jelly. Food Res. Int. 2019, 116, 905–915. DOI: 10.1016/j.foodres.2018.09.027.
  • Yang, X.; Chen, K.; Liu, H.; Zhang, Y.; Luo, Y. Purification and Identification of Peptides with High angiotensin-I Converting Enzyme (ACE) Inhibitory Activity from Honeybee Pupae (Apis Mellifera) Hydrolysates with in Silico Gastrointestinal Digestion. Eur. Food Res. Technol. 2019, 245(3), 535–544. DOI: 10.1007/s00217-018-03223-7.
  • Toldrá, F.; Gallego, M.; Reig, M.; Aristoy, M.-C.; Mora, L. Bioactive Peptides Generated in the Processing of Dry-cured Ham. In Food Chemistry, 2020; , 321, pp 126689.
  • Baba, W. N.; Baby, B.; Mudgil, P.; Gan, C.-Y.; Vijayan, R.; Maqsood, S. Pepsin Generated Camel Whey Protein Hydrolysates with Potential Antihypertensive Properties: Identification and Molecular Docking of Antihypertensive Peptides. In LWT, 2021; pp 111135.
  • Zhang, P.; Chang, C.; Liu, H.; Li, B.; Yan, Q.; Jiang, Z. Identification of Novel Angiotensin I-converting Enzyme (ACE) Inhibitory Peptides from Wheat Gluten Hydrolysate by the Protease of Pseudomonas Aeruginosa. J. Funct. Foods. 2020, 65, 103751. DOI: 10.1016/j.jff.2019.103751.
  • Hasan, F.; Kitagawa, M.; Kumada, Y.; Hashimoto, N.; Shiiba, M.; Katoh, S.; Terashima, M. Production Kinetics of angiotensin-I Converting Enzyme Inhibitory Peptides from Bonito Meat in Artificial Gastric Juice. Process Biochem. 2006, 41(3), 505–511. DOI: 10.1016/j.procbio.2005.06.032.
  • Jiménez-Cantizano, R. M.; Infante, C.; Martin-Antonio, B.; Ponce, M.; Hachero, I.; Navas, J. I.; Manchado, M. Molecular Characterization, Phylogeny, and Expression of C-type and G-type Lysozymes in Brill (Scophthalmus Rhombus). Fish Shellfish Immunol. 2008, 25(1–2), 57–65.
  • Terashima, M.; Oe, M.; Ogura, K.; Matsumura, S. Inhibition Strength of Short Peptides Derived from an ACE Inhibitory Peptide. J. Agric. Food Chem. 2011, 59(20), 11234–11237. DOI: 10.1021/jf202902r.
  • Garcés-Rimón, M.; López-Expósito, I.; López-Fandiño, R.; Miguel, M. Egg White Hydrolysates with in Vitro Biological Multiactivities to Control Complications Associated with the Metabolic Syndrome. Eur. Food Res. Technol. 2016, 242(1), 61–69. DOI: 10.1007/s00217-015-2518-7.
  • Ochoa-Méndez, C. E.; Lara-Hernández, I.; González, L. M.; Aguirre-Bañuelos, P.; Ibarra-Barajas, M.; Castro-Moreno, P.; González-Ortega, O.; Soria-Guerra, R. E. Bioactivity of an Antihypertensive Peptide Expressed in Chlamydomonas Reinhardtii. J. Biotechnol. 2016, 240, 76–84. DOI: 10.1016/j.jbiotec.2016.11.001.
  • Udenigwe, C. C.; Okolie, C. L.; Qian, H.; Ohanenye, I. C.; Agyei, D.; Aluko, R. E. Ribulose-1, 5-bisphosphate Carboxylase as a Sustainable and Promising Plant Source of Bioactive Peptides for Food Applications. Trends Food Sci. Technol. 2017, 69, 74–82. DOI: 10.1016/j.tifs.2017.09.001.
  • Wang, J.; Weng, P.; Zhou, J.; Zhang, X.; Cui, S. Carrier-mediated Solvent Bar Microextraction Coupled with HPLC-DAD for the Quantitative Analysis of the Hydrophilic Antihypertensive Peptide VLPVPR in Human Plasma. Anal. Methods. 2018, 10(1), 69–75. DOI: 10.1039/C7AY01927K.
  • Mirzaei, M.; Mirdamadi, S.; Ehsani, M. R.; Aminlari, M. Production of Antioxidant and ACE-inhibitory Peptides from Kluyveromyces Marxianus Protein Hydrolysates: Purification and Molecular Docking. J. Food Drug Anal. 2018, 26(2), 696–705. DOI: 10.1016/j.jfda.2017.07.008.
  • Amorim, M.; Pinheiro, H.; Pintado, M. Valorization of Spent Brewer’s Yeast: Optimization of Hydrolysis Process Towards the Generation of Stable ACE-inhibitory Peptides. LWT. 2019, 111, 77–84. DOI: 10.1016/j.lwt.2019.05.011.
  • Mirzaei, M.; Mirdamadi, S.; Safavi, M.; Hadizadeh, M. In Vitro and in Silico Studies of Novel Synthetic ACE-inhibitory Peptides Derived from Saccharomyces Cerevisiae Protein Hydrolysate. Bioorg. Chem. 2019, 87, 647–654. DOI: 10.1016/j.bioorg.2019.03.057.
  • Anekthanakul, K.; Senachak, J.; Hongsthong, A.; Charoonratana, T.; Ruengjitchatchawalya, M. Natural ACE Inhibitory Peptides Discovery from Spirulina (Arthrospira Platensis) Strain C1. Peptides. 2019, 118, 170107. DOI: 10.1016/j.peptides.2019.170107.
  • Lee, S. Y.; Hur, S. J. Antihypertensive Peptides from Animal Products, Marine Organisms, and Plants. Food Chem. 2017, 228, 506–517. DOI: 10.1016/j.foodchem.2017.02.039.
  • Maeno, M.; Yamamoto, N.; Takano, T. Identification of an Antihypertensive Peptide from Casein Hydrolysate Produced by a Proteinase from Lactobacillus Helveticus CP790. J. Dairy Sci. 1996, 79(8), 1316–1321. DOI: 10.3168/jds.S0022-0302(96)76487-1.
  • Lee, H. S.; Lee, K. J. Cathepsin B Inhibitory Peptides Derived from β-casein. Peptides. 2000, 21(6), 807–809. DOI: 10.1016/S0196-9781(00)00212-6.
  • Saito, T.;. Antihypertensive Peptides Derived from Bovine Casein and Whey Proteins. In Bioactive Components of Milk, Bösze, Z.; Ed.; New York; Springer: New York, NY; 2008, 295–317.
  • De Leo, F.; Panarese, S.; Gallerani, R.; Ceci, L. Angiotensin Converting Enzyme (ACE) Inhibitory Peptides: Production and Implementation of Functional Food. Curr. Pharm. Des. 2009, 15(31), 3622–3643.
  • Anadón, A.; Martínez, M.; Ares, I.; Ramos, E.; Martínez-Larrañaga, M.; Contreras, M.; Ramos, M.; Recio, I. Acute and Repeated Dose (4 Weeks) Oral Toxicity Studies of Two Antihypertensive Peptides, RYLGY and AYFYPEL, that Correspond to Fragments (90–94) and (143–149) from αs1-casein. Food Chem. Toxicol. 2010, 48(7), 1836–1845. DOI: 10.1016/j.fct.2010.04.016.
  • Wada, Y.; Lönnerdal, B. Bioactive Peptides Derived from Human Milk Proteins—mechanisms of Action. J. Nutr. Biochem. 2014, 25(5), 503–514. DOI: 10.1016/j.jnutbio.2013.10.012.
  • McClean, S.; Beggs, L. B.; Welch, R. W. Antimicrobial Activity of Antihypertensive Food-derived Peptides and Selected Alanine Analogues. Food Chem. 2014, 146, 443–447. DOI: 10.1016/j.foodchem.2013.09.094.
  • Zhang, Y.; Chen, R.; Ma, H.; Chen, S. Isolation and Identification of Dipeptidyl Peptidase IV-inhibitory Peptides from Trypsin/chymotrypsin-treated Goat Milk Casein Hydrolysates by 2D-TLC and LC–MS/MS. J. Agric. Food Chem. 2015, 63(40), 8819–8828. DOI: 10.1021/acs.jafc.5b03062.
  • Lu, Y.; Govindasamy-Lucey, S.; Lucey, J. A. Angiotensin-I-converting Enzyme-inhibitory Peptides in Commercial Wisconsin Cheddar Cheeses of Different Ages. J. Dairy Sci. 2016, 99(1), 41–52. DOI: 10.3168/jds.2015-9569.
  • Zhang, Y.; Chen, R.; Zuo, F.; Ma, H.; Zhang, Y.; Chen, S. Comparison of Dipeptidyl Peptidase IV-inhibitory Activity of Peptides from Bovine and Caprine Milk Casein by in Silico and in Vitro Analyses. Int. Dairy J. 2016, 53, 37–44. DOI: 10.1016/j.idairyj.2015.10.001.
  • Xu, W.-H.; SHUANG, Q.; Wu, N. Progression of Antihypertensive Peptides. Food Res. Dev. 2017, (5), 51.
  • Bhat, Z. F, Mason, S., Morton, J. D., Bekhit, A. E. D. A., & Bhat, H. F. 2017. Antihypertensive peptides from animal proteins. Bioactive Molecules in Food, Mérillon, JM, Ramawat, KG (eds.), Reference Series in Phytochemistry, 1–36.
  • Tu, M.; Wang, C.; Chen, C.; Zhang, R.; Liu, H.; Lu, W.; Jiang, L.; Du, M. Identification of a Novel ACE-inhibitory Peptide from Casein and Evaluation of the Inhibitory Mechanisms. Food Chem. 2018, 256, 98–104. DOI: 10.1016/j.foodchem.2018.02.107.
  • Nongonierma, A. B.; Paolella, S.; Mudgil, P.; Maqsood, S.; FitzGerald, R. J. Identification of Novel Dipeptidyl Peptidase IV (DPP-IV) Inhibitory Peptides in Camel Milk Protein Hydrolysates. Food Chem. 2018, 244, 340–348. DOI: 10.1016/j.foodchem.2017.10.033.
  • Fan, Y.; Yu, Z.; Zhao, W.; Ding, L.; Zheng, F.; Li, J.; Liu, J. Identification and Molecular Mechanism of Angiotensin-converting Enzyme Inhibitory Peptides from Larimichthys Crocea Titin. Food Sci. Hum. Wellness. 2020, 9, 257–263. DOI: 10.1016/j.fshw.2020.04.001.
  • Miyoshi, S.; Ishikawa, H.; Kaneko, T.; Fukui, F.; Tanaka, H.; Maruyama, S. Structures and Activity of Angiotensin-converting Enzyme Inhibitors in an α-Zein Hydrolysate. Agric Biol Chem. 1991, 55(5), 1313–1318.
  • Zeng, X.; Wang, M.; Zhu, B.; Liang, H.; Liao, T.; Wang, S.; Zhe, W. Simultaneous Analysis of AY and Amino Acids in Corn Oligopeptides by HPLC-fluorescence Detector with OPA/FMOC-Cl Pre-column Derivatization. Int J Food Agric & Environment. 2013, 11, 86–90.
  • Wu, Q.; Du, J.; Jia, J.; Kuang, C. Production of ACE Inhibitory Peptides from Sweet Sorghum Grain Protein Using Alcalase: Hydrolysis Kinetic, Purification and Molecular Docking Study. Food Chem. 2016, 199, 140–149. DOI: 10.1016/j.foodchem.2015.12.012.
  • Sivananthan Manoharan, A. S. S.; Abdullah, N.; Abdullah, N. Structural Characteristics and Antihypertensive Effects of Angiotensin-iconverting Enzyme Inhibitory Peptides in the Renin-angiotensin and Kallikrein Kinin Systems. Afr J Tradit Complement Altern Med. 2017, 14(2), 383–406. DOI: 10.21010/ajtcam.v14i2.39.
  • Li, B.; Qiao, L.; Li, L.; Zhang, Y.; Li, K.; Wang, L.; Qiao, Y. Novel Antihypertensive Peptides Derived from Adlay (Coix Larchryma-jobi L Var. Ma-yuen Stapf) Glutelin. Molecules. 2017, 22(1), 123.
  • Zhang, P.; Roytrakul, S.; Sutheerawattananonda, M. Production and Purification of Glucosamine and angiotensin-I Converting Enzyme (ACE) Inhibitory Peptides from Mushroom Hydrolysates. J. Funct. Foods. 2017, 36, 72–83. DOI: 10.1016/j.jff.2017.06.049.
  • Nazir, M. A.; Mu, T. H.; Zhang, M. Preparation and Identification of Angiotensin I‐converting Enzyme Inhibitory Peptides from Sweet Potato Protein by Enzymatic Hydrolysis under High Hydrostatic Pressure. Int. J. Food Sci. Technol. 2020, 55(2), 482–489. DOI: 10.1111/ijfs.14291.
  • Zieliński, H.; Honke, J.; Topolska, J.; Bączek, N.; Piskuła, M. K.; Wiczkowski, W.; Wronkowska, M. ACE Inhibitory Properties and Phenolics Profile of Fermented Flours and of Baked and Digested Biscuits from Buckwheat. Foods. 2020, 9(7), 847. DOI: 10.3390/foods9070847.
  • Wu, J.-S.; Li, J.-M.; Lo, H.-Y.; Hsiang, C.-Y.; Ho, T.-Y. Anti-hypertensive and Angiotensin-converting Enzyme Inhibitory Effects of Radix Astragali and Its Bioactive Peptide AM-1. J. Ethnopharmacol. 2020, 254, 112724. DOI: 10.1016/j.jep.2020.112724.
  • Sutopo, C. C.; Sutrisno, A.; Wang, L.-F.; Hsu, J.-L. Identification of a Potent angiotensin-I Converting Enzyme Inhibitory Peptide from Black Cumin Seed Hydrolysate Using Orthogonal Bioassay-guided Fractionations Coupled with in Silico Screening. Process Biochem. 2020, 95, 204–213. DOI: 10.1016/j.procbio.2020.02.010.
  • Sonklin, C.; Alashi, M. A.; Laohakunjit, N.; Kerdchoechuen, O.; Aluko, R. E. Identification of Antihypertensive Peptides from Mung Bean Protein Hydrolysate and Their Effects in Spontaneously Hypertensive Rats. J. Funct. Foods. 2020, 64, 103635. DOI: 10.1016/j.jff.2019.103635.
  • Sompinit, K.; Lersiripong, S.; Reamtong, O.; Pattarayingsakul, W.; Patikarnmonthon, N.; Panbangred, W. In Vitro Study on Novel Bioactive Peptides with Antioxidant and Antihypertensive Properties from Edible Rhizomes. LWT. 2020, 134, 110227. DOI: 10.1016/j.lwt.2020.110227.
  • Xia, Y.; Yu, J.; Xu, W.; Shuang, Q. Purification and Characterization of angiotensin-I-converting Enzyme Inhibitory Peptides Isolated from Whey Proteins of Milk Fermented with Lactobacillus Plantarum QS670. J. Dairy Sci. 2020, 103(6), 4919–4928. DOI: 10.3168/jds.2019-17594.
  • Mudgil, P.; Baby, B.; Ngoh, -Y.-Y.; Kamal, H.; Vijayan, R.; Gan, C.-Y.; Maqsood, S. Molecular Binding Mechanism and Identification of Novel Anti-hypertensive and Anti-inflammatory Bioactive Peptides from Camel Milk Protein Hydrolysates. LWT. 2019, 112, 108193. DOI: 10.1016/j.lwt.2019.05.091.
  • Je, J.-Y.; Park, P.-J.; Byun, H.-G.; Jung, W.-K.; Kim, S.-K. Angiotensin I Converting Enzyme (ACE) Inhibitory Peptide Derived from the Sauce of Fermented Blue Mussel, Mytilus Edulis. Bioresour. Technol. 2005, 96(14), 1624–1629. DOI: 10.1016/j.biortech.2005.01.001.
  • Suetsuna, K.; Chen, J.-R. Identification of Antihypertensive Peptides from Peptic Digest of Two Microalgae, Chlorella Vulgaris and Spirulina Platensis. Mar. Biotechnol. 2001, 3(4), 305–309. DOI: 10.1007/s10126-001-0012-7.
  • Jung, W.-K.; Mendis, E.; Je, J.-Y.; Park, P.-J.; Son, B. W.; Kim, H. C.; Choi, Y. K.; Kim, S.-K. Angiotensin I-converting Enzyme Inhibitory Peptide from Yellowfin Sole (Limanda Aspera) Frame Protein and Its Antihypertensive Effect in Spontaneously Hypertensive Rats. Food Chem. 2006, 94(1), 26–32. DOI: 10.1016/j.foodchem.2004.09.048.
  • Zhong-Ji, Q.; Je, J.-Y.; Kim, S.-K. Antihypertensive Effect of Angiotensin I Converting Enzyme-Inhibitory Peptide from Hydrolysates of Bigeye Tuna Dark Muscle, Thunnus Obesus. J. Agric. Food Chem. 2007, 55, 8398–8403. DOI: 10.1021/jf0710635.
  • Qian, Z.-J.; Jung, W.-K.; Lee, S.-H.; Byun, H.-G.; Kim, S.-K. Antihypertensive Effect of an Angiotensin I-converting Enzyme Inhibitory Peptide from Bullfrog (Rana Catesbeiana Shaw) Muscle Protein in Spontaneously Hypertensive Rats. Process Biochem. 2007, 42(10), 1443–1448. DOI: 10.1016/j.procbio.2007.05.013.
  • Tsai, J.-S.; Chen, J.-L.; Pan, B. S. ACE-inhibitory Peptides Identified from the Muscle Protein Hydrolysate of Hard Clam (Meretrix Lusoria). Process Biochem. 2008, 43(7), 743–747. DOI: 10.1016/j.procbio.2008.02.019.
  • Wu, H.; He, H.-L.; Chen, X.-L.; Sun, C.-Y.; Zhang, Y.-Z.; Zhou, B.-C. Purification and Identification of Novel angiotensin-I-converting Enzyme Inhibitory Peptides from Shark Meat Hydrolysate. Process Biochem. 2008, 43(4), 457–461. DOI: 10.1016/j.procbio.2008.01.018.
  • Lee, J. K.; Hong, S.; Jeon, J.-K.; Kim, S.-K.; Byun, H.-G. Purification and Characterization of Angiotensin I Converting Enzyme Inhibitory Peptides from the Rotifer, Brachionus Rotundiformis. Bioresour. Technol. 2009, 100(21), 5255–5259. DOI: 10.1016/j.biortech.2009.05.057.
  • Alemán, A.; Pérez-Santín, E.; Bordenave-Juchereau, S.; Arnaudin, I.; Gómez-Guillén, M.; Montero, P. Squid Gelatin Hydrolysates with Antihypertensive, Anticancer and Antioxidant Activity. Food Res. Int. 2011, 44(4), 1044–1051. DOI: 10.1016/j.foodres.2011.03.010.
  • Alemán, A.; Giménez, B.; Pérez-Santin, E.; Gómez-Guillén, M.; Montero, P. Contribution of Leu and Hyp Residues to Antioxidant and ACE-inhibitory Activities of Peptide Sequences Isolated from Squid Gelatin Hydrolysate. Food Chem. 2011, 125(2), 334–341. DOI: 10.1016/j.foodchem.2010.08.058.
  • Alemán, A.; Gómez-Guillén, M.; Montero, P. Identification of Ace-inhibitory Peptides from Squid Skin Collagen after in Vitro Gastrointestinal Digestion. Food Res. Int. 2013, 54(1), 790–795. DOI: 10.1016/j.foodres.2013.08.027.
  • Liu, R.; Zhu, Y.; Chen, J.; Wu, H.; Shi, L.; Wang, X.; Wang, L. Characterization of ACE Inhibitory Peptides from Mactra Veneriformis Hydrolysate by Nano-Liquid Chromatography Electrospray Ionization Mass Spectrometry (Nano-lc-esi-ms) and Molecular Docking. Mar. Drugs. 2014, 12(7), 3917–3928. DOI: 10.2174/138161209789271834.
  • Ngo, D.-H.; Kang, K.-H.; Ryu, B.; Vo, T.-S.; Jung, W.-K.; Byun, H.-G.; Kim, S.-K. Angiotensin-I Converting Enzyme Inhibitory Peptides from Antihypertensive Skate (Okamejei Kenojei) Skin Gelatin Hydrolysate in Spontaneously Hypertensive Rats. Food Chem. 2015, 174, 37–43. DOI: 10.1016/j.foodchem.2014.11.013.
  • Wu, Q.; Cai, Q.-F.; Tao, Z.-P.; Sun, L.-C.; Shen, J.-D.; Zhang, L.-J.; Liu, G.-M.; Cao, M.-J. Purification and Characterization of a Novel Angiotensin I-converting Enzyme Inhibitory Peptide Derived from Abalone (Haliotis Discus Hannai Ino) Gonads. Eur. Food Res. Technol. 2015, 240(1), 137–145. DOI: 10.1007/s00217-014-2315-8.
  • Pan, S.; Wang, S.; Jing, L.; Yao, D. Purification and Characterisation of a Novel angiotensin-I Converting Enzyme (Ace)-inhibitory Peptide Derived from the Enzymatic Hydrolysate of Enteromorpha Clathrata Protein. Food Chem. 2016, 211, 423–430. DOI: 10.1016/j.foodchem.2016.05.087.
  • So, P. B. T.; Rubio, P.; Lirio, S.; Macabeo, A. P.; Huang, H.-Y.; Corpuz, M. J.-A. T.; Villaflores, O. B. In Vitro Angiotensin I Converting Enzyme Inhibition by a Peptide Isolated from Chiropsalmus Quadrigatus Haeckel (Box Jellyfish) Venom Hydrolysate. Toxicon. 2016, 119, 77–83. DOI: 10.1016/j.toxicon.2016.04.050.
  • Ko, S.-C.; Jang, J.; Ye, B.-R.; Kim, M.-S.; Choi, I.-W.; Park, W.-S.; Heo, S.-J.; Jung, W.-K. Purification and Molecular Docking Study of Angiotensin I-converting Enzyme (ACE) Inhibitory Peptides from Hydrolysates of Marine Sponge Stylotella Aurantium. Process Biochem. 2017, 54, 180–187. DOI: 10.1016/j.procbio.2016.12.023.
  • Guo, M.; Chen, X.; Wu, Y.; Zhang, L.; Huang, W.; Yuan, Y.; Fang, M.; Xie, J.; Wei, D. Angiotensin I-converting Enzyme Inhibitory Peptides from Sipuncula (Phascolosoma Esculenta): Purification, Identification, Molecular Docking and Antihypertensive Effects on Spontaneously Hypertensive Rats. Process Biochem. 2017, 63, 84–95. DOI: 10.1016/j.procbio.2017.08.009.
  • Neves, A. C.; Harnedy, P. A.; O’Keeffe, M. B.; FitzGerald, R. J. Bioactive Peptides from Atlantic Salmon (Salmo Salar) with Angiotensin Converting Enzyme and Dipeptidyl Peptidase IV Inhibitory, and Antioxidant Activities. Food Chem. 2017, 218, 396–405. DOI: 10.1016/j.foodchem.2016.09.053.
  • Li, J.; Liu, Z.; Zhao, Y.; Zhu, X.; Yu, R.; Dong, S.; Wu, H. Novel Natural Angiotensin Converting Enzyme (Ace)-inhibitory Peptides Derived from Sea Cucumber-modified Hydrolysates by Adding Exogenous Proline and a Study of Their Structure–activity Relationship. Mar. Drugs. 2018, 16(8), 271.
  • Samarakoon, K. W.; O-Nam, K.; Ko, J.-Y.; Lee, J.-H.; Kang, M.-C.; Kim, D.; Lee, J. B.; Lee, J.-S.; Jeon, Y.-J. Purification and Identification of Novel angiotensin-I Converting Enzyme (ACE) Inhibitory Peptides from Cultured Marine Microalgae (Nannochloropsis Oculata) Protein Hydrolysate. J. Appl. Phycol. 2013, 25(5), 1595–1606. DOI: 10.1007/s10811-013-9994-6.
  • Qian, Z.-J.; Heo, S.-J.; Oh, C. H.; Kang, D.-H.; Jeong, S. H.; Park, W. S.; Choi, I.-W.; Jeon, Y.-J.; Jung, W.-K. Angiotensin I-Converting Enzyme (ACE) Inhibitory Peptide Isolated from Biodiesel Byproducts of Marine Microalgae, Nannochloropsis Oculata. J. Biobased Mater. Bioenergy. 2013, 7(1), 135–142. DOI: 10.1166/jbmb.2013.1264.
  • Xie, J.; Chen, X.; Wu, J.; Zhang, Y.; Zhou, Y.; Zhang, L.; Tang, Y.-J.; Wei, D. Antihypertensive Effects, Molecular Docking Study, and Isothermal Titration Calorimetry Assay of Angiotensin I-converting Enzyme Inhibitory Peptides from Chlorella Vulgaris. J. Agric. Food Chem. 2018, 66(6), 1359–1368. DOI: 10.1021/acs.jafc.7b04294.
  • Sun, S.; Xu, X.; Sun, X.; Zhang, X.; Chen, X.; Xu, N. Preparation and Identification of ACE Inhibitory Peptides from the Marine Macroalga Ulva Intestinalis. Mar. Drugs. 2019, 17(3), 179. DOI: 10.3390/md17030179.
  • Liu, P.; Lan, X.; Yaseen, M.; Wu, S.; Feng, X.; Zhou, L.; Sun, J.; Liao, A.; Liao, D.; Sun, L. Purification, Characterization and Evaluation of Inhibitory Mechanism of ACE Inhibitory Peptides from Pearl Oyster (Pinctada Fucata Martensii) Meat Protein Hydrolysate. Mar. Drugs. 2019, 17(8), 463. DOI: 10.3390/md17080463.
  • Shi, J.; Su, R.-Q.; Zhang, W.-T.; Chen, J. Purification and the Secondary Structure of a Novel Angiotensin I-converting Enzyme (ACE) Inhibitory Peptide from the Alcalase Hydrolysate of Seahorse Protein. J. Food Sci. Technol. 202057, 3927–39341–8.
  • Lee, S. Y.; Hur, S. J. Purification of Novel Angiotensin Converting Enzyme Inhibitory Peptides from Beef Myofibrillar Proteins and Analysis of Their Effect in Spontaneously Hypertensive Rat Model. Biomed. Pharmacother. 2019, 116, 109046. DOI: 10.1016/j.biopha.2019.109046.
  • Segura Campos, M. R.; Peralta González, F.; Chel Guerrero, L.; Betancur Ancona, D. Angiotensin I-Converting Enzyme Inhibitory Peptides of Chia (Salvia Hispanica) Produced by Enzymatic Hydrolysis. Int. J. Food Sci. 2013, 2013, 158482. DOI: 10.1155/2013/158482.
  • Ronghai, J. J. M. H. W. Z. L. L. H.;. Structure-activity Relationship of Antihypertensive Peptides. Oils Chinese J. 2009, 24(5), 110–114.
  • Haile, J. J. M.; Ronghai, W. Z. L. L. H. Structure-Activity Relationship of Antihypertensive Peptides. J. Chin. Cereal. Oils Assoc. 2009, (5), 33.
  • Lin Kai, H. X.; Lanwei, Z.; Fei, Q.; Dayou, C. Progress in Structure-Activity Relationship and Enzymatic Preparation of ACE Inhibitory Peptides. Food Sci. 2017, 38(3), 261–270.
  • Peng, L.; Angiotensin Converting Enzyme (ACE) Inhibitory Peptides Were Prepared, and the Structure-activity Relationship Study of the Mechanism of Inhibition. Unpublished thesis Shanghai: East China University of Technology, 2014.
  • Jingjing, K.; Study on Synthesis and Properties of ACE Inhibitory Peptide Analogues. Unpublished Henan University of Technology, 2012.
  • Nakashima, Y.; Arihara, K.; Sasaki, A.; Mio, H.; Ishikawa, S.; Itoh, M. Antihypertensive Activities of Peptides Derived from Porcine Skeletal Muscle Myosin in Spontaneously Hypertensive Rats. J. Food Sci. 2002, 67(1), 434–437. DOI: 10.1111/j.1365-2621.2002.tb11424.x.
  • Hodgson, J. M.; Burke, V.; Beilin, L. J.; Puddey, I. B. Partial Substitution of Carbohydrate Intake with Protein Intake from Lean Red Meat Lowers Blood Pressure in Hypertensive Persons. Am. J. Clin. Nutr. 2006, 83(4), 780–787. DOI: 10.1093/ajcn/83.4.780.
  • Fujita, H.;. Yokoyama K and Yoshikawa M, Classification and Antihypertensive Activity of Angiotensin I-converting Enzyme Inhibitory Peptides Derived from Food Proteins. J. Agric. Food Chem. 2000, 65, 564–569.
  • Liu, M.; Du, M.; Zhang, Y.; Xu, W.; Wang, C.; Wang, K.; Zhang, L. Purification and Identification of an ACE Inhibitory Peptide from Walnut Protein. J. Agric. Food Chem. 2013, 61(17), 4097–4100. DOI: 10.1021/jf4001378.
  • Ling, Y.; Liping, S.; Yongliang, Z. Preparation and Identification of Novel Inhibitory angiotensin-I-converting Enzyme Peptides from Tilapia Skin Gelatin Hydrolysates: Inhibition Kinetics and Molecular Docking. Food Funct. 2018, 9(10), 5251–5259. DOI: 10.1039/C8FO00569A.
  • García, M. C.; Endermann, J.; Gonzalez-Garcia, E.; Marina, M. L. HPLC-Q-TOF-MS Identification of Antioxidant and Antihypertensive Peptides Recovered from Cherry (Prunus Cerasus L.) Subproducts. J Agric Food Chem. 2015, 63(5), 1514–1520. DOI: 10.1021/jf505037p.
  • Joel, C. H.; Sutopo, C. C.; Prajitno, A.; Su, J.-H.; Hsu, J.-L. Screening of angiotensin-I Converting Enzyme Inhibitory Peptides Derived from Caulerpa Lentillifera. Molecules. 2018, 23(11), 3005. DOI: 10.3390/molecules23113005.
  • Dang, Y.; Zhou, T.; Hao, L.; Cao, J.; Sun, Y.; Pan, D. In Vitro and in Vivo Studies on the Angiotensin-converting Enzyme Inhibitory Activity Peptides Isolated from Broccoli Protein Hydrolysate. J. Agric. Food Chem. 2019, 67(24), 6757–6764. DOI: 10.1021/acs.jafc.9b01137.
  • Teymoori, F.; Asghari, G.; Mirmiran, P.; Azizi, F. Dietary Amino Acids and Incidence of Hypertension: A Principle Component Analysis Approach. Sci. Rep. 2017, 7(1), 1–9. DOI: 10.1038/s41598-017-17047-0.
  • Lee, S. Y.; Hur, S. J. Angiotensin Converting Enzyme Inhibitory and Antioxidant Activities of Enzymatic Hydrolysates of Korean Native Cattle (Hanwoo) Myofibrillar Protein. In BioMed Research International, 2017; pp 2017. https://www.hindawi.com/journals/bmri/2017/5274637/abs/
  • Yamada, Y.; Matoba, N.; Usui, H.; Onishi, K.; Yoshikawa, M. Design of a Highly Potent Anti-hypertensive Peptide Based on Ovokinin (2-7). Biosci., Biotechnol., Biochem. 2002, 66(6), 1213–1217. DOI: 10.1271/bbb.66.1213.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.