313
Views
0
CrossRef citations to date
0
Altmetric
Review

Effect of Non-LAB Probiotics on Foodborne Enteric Pathogens: A Systematic Review

ORCID Icon, ORCID Icon & ORCID Icon

References

  • FAO/WHO. Guidelines for the Evaluation of Probiotics in Food - Joint FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food; London, Ontario, Canada, 2002.
  • Zendeboodi, F.; Khorshidian, N.; Mortazavian, A. M.; Da Cruz, A. G. Probiotic: Conceptualization from a New Approach. Curr. Opin. Food Sci. 2020, 32(April), 103–123. DOI: 10.1016/j.cofs.2020.03.009.
  • Cutting, S. M.;. Bacillus Probiotics. Food Microbiol. 2011, 28(2), 214–220. DOI: 10.1016/j.fm.2010.03.007.
  • Ghelardi, E.; Celandroni, F.; Salvetti, S.; Gueye, S. A.; Lupetti, A.; Senesi, S. Survival and Persistence of Bacillus Clausii in the Human Gastrointestinal Tract following Oral Administration as Spore-Based Probiotic Formulation. J. Appl. Microbiol. 2015, 119(2), 552–559. DOI: 10.1111/jam.12848.
  • Tiago, F. C. P.; Martins, F. S.; Souza, E. L. S.; Pimenta, P. F. P.; Araujo, H. R. C.; Castro, I. M.; Brandão, R. L.; Nicoli, J. R. Adhesion to the Yeast Cell Surface as a Mechanism for Trapping Pathogenic Bacteria by Saccharomyces Probiotics. J. Med. Microbiol. 2012, 61(PART 9), 1194–1207. DOI: 10.1099/jmm.0.042283-0.
  • Anadón, A.; Martínez-Larrañaga, M. R.; Ares, I.; Martínez, M. A. Probiotics: Safety and Toxicity Considerations. Nutraceuticals Effic. Saf. Toxic. 2016, 777–798. DOI: 10.1016/B978-0-12-802147-7.00055-3.
  • Guarner, F.; Sander, M. E.; Eliiakim, R.; Fedorak, R.; Gangl, A.; Garisch, J.; Kaufmann, P.; Karakan, T.; Khan, A. G.; Kim, N.;, et al. World Gastroenterology Organisation Global Guidelines. Probiotics and Prebiotics. 2017. DOI: 10.1016/B978-0-12-814330-8.00006-8.
  • Cordonnier, C.; Thévenot, J.; Etienne-Mesmin, L.; Alric, M.; Livrelli, V.; Blanquet-Diot, S. Probiotic and Enterohemorrhagic Escherichia Coli: An Effective Strategy against a Deadly Enemy? Crit. Rev. Microbiol. 2017, 43(1), 116–132. DOI: 10.1080/1040841X.2016.1185602.
  • Preidis, G. A.; Hill, C.; Guerrant, R. L.; Ramakrishna, B. S.; Tannock, G. W.; Versalovic, J. Probiotics, Enteric and Diarrheal Diseases, and Global Health. Gastroenterology. 2011, 140, 1. DOI: 10.1053/j.gastro.2010.11.010.
  • Baccigalupi, L.; Ricca, E.; Ghelardi, E. Non-LAB Probiotics: Spore Formers. In Probiotics and Prebiotics: Current Research and Future Trends; Venema, K., do Carmo, A.P., Eds.; Caister Academic Press: Norfolk, UK, 2015; pp 93–105.
  • Konuray, G.; Erginkaya, Z. Potential Use of Bacillus Coagulans in the Food Industry. Foods. 2018, 7, 6. DOI: 10.3390/foods7060092.
  • Lefevre, M.; Racedo, S. M.; Denayrolles, M.; Ripert, G.; Desfougères, T.; Lobach, A. R.; Simon, R.; Pélerin, F.; Jüsten, P.; Urdaci, M. C. Safety Assessment of Bacillus Subtilis CU1 for Use as a Probiotic in Humans. Regul. Toxicol. Pharmacol. 2017, 83, 54–65. DOI: 10.1016/j.yrtph.2016.11.010.
  • Adewumi, G. A.; Oguntoyinbo, F. A.; Romi, W.; Singh, T. A.; Jeyaram, K. Genome Subtyping of Autochthonous Bacillus Species Isolated from Iru, a Fermented Parkia Biglobosa Seed. Food Biotechnol. 2014, 28(3), 250–268. DOI: 10.1080/08905436.2014.931866.
  • Talebi, S.; Makhdoumi, A.; Bahreini, M.; Matin, M. M.; Moradi, H. S. Three Novel Bacillus Strains from a Traditional Lacto-Fermented Pickle as Potential Probiotics. J. Appl. Microbiol. 2018, 125(3), 888–896. DOI: 10.1111/jam.13901.
  • Bajagai, Y. S.; Klieve, A. V.; Dart, P. J.; Bryden, W. L. FAO Probiotics in Animal Nutrition – Production, Impact and Regulation. Rome, 2016. FAO. doi:10.1152/physrev.1954.34.1.25.
  • EFSA. Guidance on the Assessment of the Toxigenic Potential of Bacillus Species Used in Animal Nutrition; Parma, Italy, 2014; Vol. 12. doi:10.2903/j.efsa.2014.3665.
  • Hong, H. A.; Le, H. D.; Cutting, S. M. The Use of Bacterial Spore Formers as Probiotics. FEMS Microbiol. Rev. 2005, 29(4), 813–835. DOI: 10.1016/j.femsre.2004.12.001.
  • Isa, K.; Oka, K.; Beauchamp, N.; Sato, M.; Wada, K.; Ohtani, K.; Nakanishi, S.; McCartney, E.; Tanaka, M.; Shimizu, T.;, et al. Safety Assessment of the Clostridium Butyricum MIYAIRI 588® Probiotic Strain Including Evaluation of Antimicrobial Sensitivity and Presence of Clostridium Toxin Genes in Vitro and Teratogenicity in Vivo. Hum. Exp. Toxicol. 2016, 35(8), 818–832. DOI: 10.1177/0960327115607372.
  • Elshaghabee, F. M. F.; Rokana, N.; Gulhane, R. D.; Sharma, C.; Panwar, H. Bacillus as Potential Probiotics: Status, Concerns, and Future Perspectives. Front. Microbiol. 2017, 8(AUG), 1–15. DOI: 10.3389/fmicb.2017.01490.
  • Cassir, N.; Benamar, S.; La Scola, B. Clostridium Butyricum: From Beneficial to a New Emerging Pathogen. Clin. Microbiol. Infect. 2016, 22(1), 37–45. DOI: 10.1016/j.cmi.2015.10.014.
  • Pourshaban, M.; Franciosa, G.; Fenicia, L.; Aureli, P. Taxonomic Identity of Type E Botulinum Toxin-Producing Clostridium Butyricum Strains by Sequencing of a Short 16S RDNA Region. FEMS Microbiol. Lett. 2002, 214(1), 119–125. DOI: 10.1016/S0378-1097(02)00849-2.
  • Appel-da-silva, M. C.; Narvaez, G. A.; Perez, L. R. R.; Drehmer, L.; Lewgoy, J. Saccharomyces Cerevisiae Var. Boulardii Fungemia Following Probiotic Treatment. Med. Mycol. Case Rep. 2017, 18(May), 15–17. DOI: 10.1016/j.mmcr.2017.07.007.
  • Khatri, I.; Tomar, R.; Ganesan, K.; Prasad, G. S.; Subramanian, S. Complete Genome Sequence and Comparative Genomics of the Probiotic Yeast Saccharomyces Boulardii. Sci. Rep. 2017, 7(1), 1–13. DOI: 10.1038/s41598-017-00414-2.
  • Offei, B.; Vandecruys, P.; De Graeve, S.; Foulquié-Moreno, M. R.; Thevelein, J. M. Unique Genetic Basis of the Distinct Antibiotic Potency of High Acetic Acid Production in the Probiotic Yeast Saccharomyces Cerevisiae Var. Boulardii. Genome Res. 2019, 29(9), 1478–1494. DOI: 10.1101/gr.243147.118.
  • Liu, Z. M.; Ma, Y. X.; Yang, Z. P.; Li, M.; Liu, J.; Bao, P. Y. Immune Responses and Disease Resistance of the Juvenile Sea Cucumber Apostichopus Japonicus Induced by Metschnikowia Sp. C14. Aquaculture. 2012, 368–369, 10–18. DOI: 10.1016/j.aquaculture.2012.09.009.
  • Angulo, C.; Maldonado, M.; Delgado, K.; Reyes-Becerril, M. Debaryomyces Hansenii up Regulates Superoxide Dismutase Gene Expression and Enhances the Immune Response and Survival in Pacific Red Snapper (Lutjanus Peru) Leukocytes after Vibrio Parahaemolyticus Infection. Dev. Comp. Immunol. 2017, 71, 18–27. DOI: 10.1016/j.dci.2017.01.020.
  • Laconi, S.; Pompei, R. Study and Characterization of Intestinal Yeasts of Mullet (Mugil Spp.) For Potential Probiotic Use. Journal of Food, Agriculture and Environment. 2007, 5, 475–480.
  • Quarella, S.; Lovrovich, P.; Scalabrin, S.; Campedelli, I.; Backovic, A.; Gatto, V.; Cattonaro, F.; Turello, A.; Torriani, S.; Felis, G. E. Draft Genome Sequence of the Probiotic Yeast Kluyveromyces Marxianus Fragilis B0399. Genome Announc. 2016, 4(5), 4–5. DOI: 10.1128/genomeA.00923-16.
  • Matsuzaki, C.; Nakagawa, A.; Koyanagi, T.; Tanaka, K.; Minami, H.; Tamaki, H.; Katayama, T.; Yamamoto, K.; Kumagai, H. Kluyveromyces Marxianus-Based Platform for Direct Ethanol Fermentation and Recovery from Cellulosic Materials under Air-Ventilated Conditions. J. Biosci. Bioeng. 2012, 113(5), 604–607. DOI: 10.1016/j.jbiosc.2011.12.007.
  • Maccaferri, S.; Klinder, A.; Brigidi, P.; Cavina, P.; Costabile, A. Potential Probiotic Kluyveromyces Marxianus B0399 Modulates the Immune Response in Caco-2 Cells and Peripheral Blood Mononuclear Cells and Impacts the Human Gut Microbiota in an in Vitro Colonic Model System. Appl. Environ. Microbiol. 2012, 78(4), 956–964. DOI: 10.1128/AEM.06385-11.
  • Fang, K.; Jin, X.; Hong, S. H. Probiotic Escherichia Coli Inhibits Biofilm Formation of Pathogenic E. Coli via Extracellular Activity of DegP. Sci. Rep. 2018, 8(1), 1–12. DOI: 10.1038/s41598-018-23180-1.
  • Yuksekdag, Z. N.; Onal Darilmaz, D.; Beyatli, Y. Dairy Propionibacterium Strains with Potential as Biopreservatives against Foodborne Pathogens and Their Tolerance-Resistance Properties. Eur. Food Res. Technol. 2014, 238(1), 17–26. DOI: 10.1007/s00217-013-2066-y.
  • Deutsch, S. M.; Mariadassou, M.; Nicolas, P.; Parayre, S.; Le Guellec, R.; Chuat, V.; Peton, V.; Le Maréchal, C.; Burati, J.; Loux, V.;, et al. Identification of Proteins Involved in the Anti-Inflammatory Properties of Propionibacterium Freudenreichii by Means of a Multi-Strain Study. Sci. Rep. 2017, 7(March), 1–13. DOI: 10.1038/srep46409.
  • Kazemi, A.; Soltani, S.; Ghorabi, S.; Nasri, F.; Babajafari, S.; Mazloomi, S. M. Is Probiotic and Synbiotic Supplementation Effective on Immune Cells? A Systematic Review and Meta-Analysis of Clinical Trials. Food Rev. Int. 2020, 1–47. DOI: 10.1080/87559129.2019.1710748.
  • Gao, Z.; Daliri, E. B. M.; Wang, J. U. N.; Liu, D.; Chen, S.; Ye, X.; Ding, T. Inhibitory Effect of Lactic Acid Bacteria on Foodborne Pathogens: A Review. J. Food Prot. 2019, 82(3), 441–453. DOI: 10.4315/0362-028X.JFP-18-303.
  • Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L. A.; PRISMA-P Group. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (Prisma-p) 2015 Statement. Syst. Rev. 2015, 4 (1). doi:10.1186/2046-4053-4-1
  • Etienne-Mesmin, L.; Livrelli, V.; Privat, M.; Denis, S.; Cardot, J. M.; Alric, M.; Blanquet-Diot, S. Effect of a New Probiotic Saccharomyces Cerevisiae Strain on Survival of Escherichia Coli O157: H7in a Dynamic Gastrointestinal Model. Appl. Environ. Microbiol. 2011, 77(3), 1127–1131. DOI: 10.1128/AEM.02130-10.
  • Reissbrodt, R.; Hammes, W. P.; Dal Bello, F.; Prager, R.; Fruth, A.; Hantke, K.; Rakin, A.; Starcic-Erjavec, M.; Williams, P. H. Inhibition of Growth of Shiga Toxin-Producing Escherichia Coli by Nonpathogenic Escherichia Coli. FEMS Microbiol. Lett. 2009, 290(1), 62–69. DOI: 10.1111/j.1574-6968.2008.01405.x.
  • Lim, J.-H.; Kim, S. D. Selection and Characterization of the Bacteriocin-Producing Bacterium, Bacillus Subtilis BP6 Isolated from Chicken Gut against Salmonella Gallinarum Causing Fowl-Typhus. J. Korean Soc. Appl. Biol. Chem. 2009, 52(1), 80–87. DOI: 10.3839/jksabc.2009.014.
  • Zaghian, S.; Shokri, D.; Emtiazi, G. Co-Production of a UV-Stable Bacteriocin-like Inhibitory Substance (BLIS) and Indole-3-Acetic Acid Hormone (IAA) and Their Optimization by Taguchi Design in Bacillus Pumilus. Ann. Microbiol. 2012, 62(3), 1189–1197. DOI: 10.1007/s13213-011-0359-6.
  • Naidu, K. S. B.; Govender, P.; Adam, J. K. Identification and Characterization of Bacillus Sp. For Probiotic Properties Isolated from Human Faeces. J. Pure Appl. Microbiol. 2014, 8(4), 2855–2862.
  • Nguyen, V. D.; Pham, T. T.; Nguyen, T. H. X.; Nguyen, T. T. X.; Hoj, L. Screening of Marine Bacteria with Bacteriocin-like Activities and Probiotic Potential for Ornate Spiny Lobster (Panulirus Ornatus) Juveniles. Fish Shellfish Immunol. 2014, 40(1), 49–60. DOI: 10.1016/j.fsi.2014.06.017.
  • Abdhul, K.; Ganesh, M.; Shanmughapriya, S.; Vanithamani, S.; Kanagavel, M.; Anbarasu, K.; Natarajaseenivasan, K. Bacteriocinogenic Potential of a Probiotic Strain Bacillus Coagulans [BDU3] from Ngari. Int. J. Biol. Macromol. 2015, 79, 800–806. DOI: 10.1016/j.ijbiomac.2015.06.005.
  • Eom, J. S.; Choi, H. S. Inhibition of Bacillus Cereus Growth and Toxin Production by Bacillus Amyloliquefaciens RD7-7 in Fermented Soybean Products. J. Microbiol. Biotechnol. 2015, 26(1), 44–55. DOI: 10.4014/jmb.1509.09090.
  • Khochamit, N.; Siripornadulsil, S.; Sukon, P.; Siripornadulsil, W. Antibacterial Activity and Genotypic-Phenotypic Characteristics of Bacteriocin-Producing Bacillus Subtilis KKU213: Potential as a Probiotic Strain. Microbiol. Res. 2015, 170, 36–50. DOI: 10.1016/j.micres.2014.09.004.
  • Mohsin, M.; Guenther, S.; Schierack, P.; Tedin, K.; Wieler, L. H. Probiotic Escherichia Coli Nissle 1917 Reduces Growth, Shiga Toxin Expression, Release and Thus Cytotoxicity of Enterohemorrhagic Escherichia Coli. Int. J. Med. Microbiol. 2015, 305(1), 20–26. DOI: 10.1016/j.ijmm.2014.10.003.
  • Mohkam, M.; Rasoul-amini, S.; Berenjian, A.; Sadraeian, M. Characterization and in Vitro Probiotic Assessment of Potential Indigenous Bacillus Strains Isolated from Soil Rhizosphere. Minerva Biotecnol. 2016, 28(March), 19–28.
  • Cirkovic, I.; Bozic, D. D.; Draganic, V.; Lozo, J.; Beric, T.; Kojic, M.; Arsic, B.; Garalejic, E.; Djukic, S.; Stankovic, S. Licheniocin 50.2 And Bacteriocins from Lactococcus Lactis Subsp. Lactis Biovar. Diacetylactis BGBU1-4 Inhibit Biofilms of Coagulase Negative Staphylococci and Listeria Monocytogenes Clinical Isolates. PLoS One. 2016, 11(12), 1–12. DOI: 10.1371/journal.pone.0167995.
  • Avcı, A.; Çağrı-Mehmetoğlu, A.; Arslan, D. Production of Antimicrobial Substances by a Novel Bacillus Strain Inhibiting Salmonella Typhimurium. LWT - Food Sci. Technol. 2017, 80, 265–270. DOI: 10.1016/j.lwt.2017.02.030.
  • Becattini, S.; Littmann, E. R.; Carter, R. A.; Kim, S. G.; Morjaria, S. M.; Ling, L.; Gyaltshen, Y.; Fontana, E.; Taur, Y.; Leiner, I. M.;, et al. Commensal Microbes Provide First Line Defense against Listeria Monocytogenes Infection. J. Exp. Med. 2017, 214(7), 1973–1989. DOI: 10.1084/jem.20170495.
  • Khattab, M. S. A.; Abd El Tawab, A. M.; Fouad, M. T. Isolation and Characterization of Anaerobic Bacteria from Frozen Rumen Liquid and Its Potential Characterizations. Int. J. Dairy Sci. 2017, 12(1), 47–51. DOI: 10.3923/ijds.2017.47.51.
  • Poormontaseri, M.; Hosseinzadeh, S.; Shekarforoush, S. S.; Kalantari, T. The Effects of Probiotic Bacillus Subtilis on the Cytotoxicity of Clostridium Perfringens Type a in Caco-2 Cell Culture. BMC Microbiol. 2017, 17(1), 1–8. DOI: 10.1186/s12866-017-1051-1.
  • Ren, Y.; Li, S.; Wu, Z.; Zhou, C.; Zhang, D.; Chen, X. The Influences of Bacillus Subtilis on the Virulence of Aeromonas Hydrophila and Expression of LuxS Gene of Both Bacteria under Co-Cultivation. Curr. Microbiol. 2017, 74(6), 718–724. DOI: 10.1007/s00284-017-1236-8.
  • Ali, S. H.; AL-Jobori, K. M.; AL-Mossawei, M. T. Impact of Probiotic Strain of the Non-Pathogenic Escherichia Coli “Nissle1917” on Gene Expression of Shiga Toxin E. Coli O157: H7In Vitro and in Vivo. Biosci. Res. 2017, 14(4), 1064–1073.
  • Nithya, V.; Halami, P. M. Antibacterial Peptides, Probiotic Properties and Biopreservative Efficacy of Native Bacillus Species Isolated from Different Food Sources. Probiotics Antimicrob. Proteins. 2012, 4(4), 279–290. DOI: 10.1007/s12602-012-9115-x.
  • Nithya, V.; Halami, P. M. Evaluation of the Probiotic Characteristics of Bacillus Species Isolated from Different Food Sources. Ann. Microbiol. 2013, 63(1), 129–137. DOI: 10.1007/s13213-012-0453-4.
  • Nithya, V.; Prakash, M.; Halami, P. M. Utilization of Industrial Waste for the Production of Bio-Preservative from Bacillus Licheniformis Me1 and Its Application in Milk and Milk-Based Food Products. Probiotics Antimicrob. Proteins. 2018, 10(2), 228–235. DOI: 10.1007/s12602-017-9319-1.
  • Arbsuwan, N.; Payoungkiattikun, W.; Sirithorn, P.; Daduang, S.; Jangpromma, N.; Dhiravisit, A.; Hahm, Y. T.; Neubert, L. K.; Klaynongsruang, S. Purificación Y Caracterización De Macrolactinas Y Amicoumacinas Procedentes De Bacillus Licheniformis BFP011: Una Nueva Fuente De Sustancias Antimicrobianas Para Los Alimentos. CYTA - J. Food. 2018, 16(1), 50–60. DOI: 10.1080/19476337.2017.1337047.
  • Bosák, J.; Micenková, L.; Hrala, M.; Pomorská, K.; Kunova Bosakova, M.; Krejci, P.; Göpfert, E.; Faldyna, M.; Šmajs, D. Colicin FY Inhibits Pathogenic Yersinia Enterocolitica in Mice. Sci. Rep. 2018, 8(1), 1–12. DOI: 10.1038/s41598-018-30729-7.
  • Duraisamy, S.; Balakrishnan, S.; Jayachandran, J.; Husain, F.; Kumarasamy, A. Effect of Bacillus Cereus Peptide Conjugated with Nanoporous Silica on Inactivation of Listeria Monocytogenes in Apple Juice, as an Ecofriendly Preservative. Environ. Sci. Pollut. Res. 2018, 25, 29345–29355. DOI: 10.1007/s11356-018-2882-5.
  • Lim, E. S.; Koo, O. K.; Kim, M. J.; Kim, J. S. Bio-Enzymes for Inhibition and Elimination of Escherichia Coli O157: H7Biofilm and Their Synergistic Effect with Sodium Hypochlorite. Sci. Rep. 2019, 9(1), 1–10. DOI: 10.1038/s41598-019-46363-w.
  • Lim, J. H.; Jeong, H. Y.; Kim, S. D. Characterization of the Bacteriocin J4 Produced by Bacillus Amyloliquefaciens J4 Isolated from Korean Traditional Fermented Soybean Paste. J. Appl. Biol. Chem. 2011, 54(3), 468–474. DOI: 10.3839/jksabc.2011.072.
  • Vadakedath, N.; Halami, P. M. Characterization and Mode of Action of a Potent Bio-Preservative from Food-Grade Bacillus Licheniformis MCC 2016. Prep. Biochem. Biotechnol. 2019, 49(4), 334–343. DOI: 10.1080/10826068.2019.1566141.
  • Blibech, M.; Mouelhi, S.; Farhat-Khemakhem, A.; Boukhris, I.; Ayeb, A. E.; Chouayekh, H. Selection of Bacillus Subtilis US191 as a Mannanase-Producing Probiotic Candidate. Biotechnol. Appl. Biochem. 2019, 66(5), 858–869. DOI: 10.1002/bab.1798.
  • Halami, P. M.;. Sublichenin, a New Subtilin-like Lantibiotics of Probiotic Bacterium Bacillus Licheniformis MCC 2512 T with Antibacterial Activity. Microb. Pathog. 2019, 128(December 2018), 139–146. DOI: 10.1016/j.micpath.2018.12.044.
  • Kawarizadeh, A.; Tabatabaei, M.; Hosseinzadeh, S.; Farzaneh, M.; Pourmontaseri, M. The Effects of Probiotic Bacillus Coagulans on the Cytotoxicity and Expression of Alpha Toxin Gene of Clostridium Perfringens Type A. Anaerobe. 2019, 59, 61–67. DOI: 10.1016/j.anaerobe.2019.05.008.
  • Arthur, T. M.; Bosilevac, J. M.; Kalchayanand, N.; Wells, J. E.; Shackelford, S. D.; Wheeler, T. L.; Koohmaraieie, M. Evaluation of a Direct-Fed Microbial Product Effect on the Prevalence and Load of Escherichia Coli 0157.-H7 in Feedlot Cattle. J. Food Prot. 2010, 73(2), 366–371. DOI: 10.4315/0362-028X-73.2.366.
  • Bratz, K.; Gölz, G.; Janczyk, P.; Nöckler, K.; Alter, T. Analysis of in Vitro and in Vivo Effects of Probiotics against Campylobacter Spp. Berl. Munch. Tierarztl. Wochenschr. 2015, 128(3–4), 155–162. DOI: 10.2376/0005-9366-128-155.
  • Kim, J. A.; Bayo, J.; Cha, J.; Choi, Y. J.; Jung, M. Y.; Kim, D. H.; Kim, Y. Investigating the Probiotic Characteristics of Four Microbial Strains with Potential Application in Feed Industry. PLoS One. 2019, 14(6), 1–16. DOI: 10.1371/journal.pone.0218922.
  • Burdick Sanchez, N. C.; Carroll, J. A.; Corley, J. R.; Broadway, P. R.; Callaway, T. R. Changes in the Hematological Variables in Pigs Supplemented with Yeast Cell Wall in Response to a Salmonella Challenge in Weaned Pigs. Front. Vet. Sci. 2019, 6(July), 1–13. DOI: 10.3389/fvets.2019.00246.
  • Rawat, A.; Arora, K.; Shandilya, J.; Vignesh, P.; Suri, D.; Kaur, G.; Rikhi, R.; Joshi, V.; Das, J.; Mathew, B.;, et al. Flow Cytometry for Diagnosis of Primary Immune Deficiencies—A Tertiary Center Experience from North India. Front. Immunol. 2019, 10(9). doi:10.3389/fimmu.2019.02111
  • Wan, L. Y. M.; Chen, Z. J.; Shah, N. P.; El-Nezami, H. Modulation of Intestinal Epithelial Defense Responses by Probiotic Bacteria. Crit. Rev. Food Sci. Nutr. 2016, 56(16), 2628–2641. DOI: 10.1080/10408398.2014.905450.
  • Zhou, S.; Song, D.; Zhou, X.; Mao, X.; Zhou, X.; Wang, S.; Wei, J.; Huang, Y.; Wang, W.; Xiao, S. M.;, et al. Characterization of Bacillus Subtilis from Gastrointestinal Tract of Hybrid Hulong Grouper (Epinephelus Fuscoguttatus × E. Lanceolatus) and Its Effects as Probiotic Additives. Fish Shellfish Immunol. 2019, 84, 1115–1124. DOI: 10.1016/j.fsi.2018.10.058.
  • Ripert, G.; Racedo, S. M.; Elie, A. M.; Jacquot, C.; Bressollier, P.; Urdaci, M. C. Secreted Compounds of the Probiotic Bacillus Clausii Strain O/C Inhibit the Cytotoxic Effects Induced by Clostridium Difficile and Bacillus Cereus Toxins. Antimicrob. Agents Chemother. 2016, 60(6), 3445–3454. DOI: 10.1128/AAC.02815-15.
  • Hamdy, A. A.; Elattal, N. A.; Amin, M. A.; Ali, A. E.; Mansour, N. M.; Awad, G. E. A.; Farrag, A. R. H.; Esawy, M. A. In Vivo Assessment of Possible Probiotic Properties of Bacillus Subtilis and Prebiotic Properties of Levan. Biocatal. Agric. Biotechnol. 2018, 13(September 2017), 190–197. DOI: 10.1016/j.bcab.2017.12.001.
  • Gowrishankar, S.; Sivaranjani, M.; Kamaladevi, A.; Ravi, A. V.; Balamurugan, K.; Karutha Pandian, S. Cyclic Dipeptide Cyclo(l-Leucyl-l-Prolyl) from Marine Bacillus Amyloliquefaciens Mitigates Biofilm Formation and Virulence in Listeria Monocytogenes. Pathog. Dis. 2016, 74(4). DOI: 10.1093/femspd/ftw017.
  • Shin, H.-J.; Bang, J.-H.; Choi, H.-J.; Kim, D.-W.; Ahn, C.-S.; Jeong, Y.-K.; Joo, W.-H. Probiotic Potential of Indigenous Bacillus Sp. BCNU 9028 Isolated from Meju. J. Life Sci. 2012, 22(5), 605–612. DOI: 10.5352/jls.2012.22.5.605.
  • Thévenot, J.; Cordonnier, C.; Rougeron, A.; Le Goff, O.; Nguyen, H. T. T.; Denis, S.; Alric, M.; Livrelli, V.; Blanquet-Diot, S. Enterohemorrhagic Escherichia Coli Infection Has Donor-Dependent Effect on Human Gut Microbiota and May Be Antagonized by Probiotic Yeast during Interaction with Peyer’s Patches. Appl. Microbiol. Biotechnol. 2015, 99(21), 9097–9110. DOI: 10.1007/s00253-015-6704-0.
  • Thévenot, J.; Etienne-Mesmin, L.; Denis, S.; Chalancon, S.; Alric, M.; Livrelli, V.; Blanquet-Diot, S. Enterohemorrhagic Escherichia Coli O157: H7 Survival in an in Vitro Model of the Human Large Intestine and Interactions with Probiotic Yeasts and Resident Microbiota. Appl. Environ. Microbiol. 2013, 79(3), 1058–1064. DOI: 10.1128/AEM.03303-12.
  • Roussel, C.; Sivignon, A.; de Vallée, A.; Garrait, G.; Denis, S.; Tsilia, V.; Ballet, N.; Vandekerckove, P.; Van de Wiele, T.; Barnich, N.;, et al. Anti-Infectious Properties of the Probiotic Saccharomyces Cerevisiae CNCM I-3856 on Enterotoxigenic E. Coli (ETEC) Strain H10407. Appl. Microbiol. Biotechnol. 2018, 102(14), 6175–6189. DOI: 10.1007/s00253-018-9053-y.
  • Badia, R.; Brufau, M. T.; Guerrero-Zamora, A. M.; Lizardo, R.; Dobrescu, I.; Martin-Venegas, R.; Ferrer, R.; Salmon, H.; Martínez, P.; Brufau, J. β-Galactomannan and Saccharomyces Cerevisiae Var. Boulardii Modulate the Immune Response against Salmonella Enterica Serovar Typhimurium in Porcine Intestinal Epithelial and Dendritic Cells. Clin. Vaccine Immunol. 2012, 19(3), 368–376. DOI: 10.1128/CVI.05532-11.
  • Penesyan, A.; Gillings, M.; Paulsen, I. T. Antibiotic Discovery: Combatting Bacterial Resistance in Cells and in Biofilm Communities. Molecules. 2015, 20(4), 5286–5298. DOI: 10.3390/molecules20045286.
  • Gebreyohannes, G.; Nyerere, A.; Bii, C.; Sbhatu, D. B. Challenges of Intervention, Treatment, and Antibiotic Resistance of Biofilm-Forming Microorganisms. Heliyon. 2019, 5(8). DOI: 10.1016/j.heliyon.2019.e02192.
  • Mah, T.;. Biofilm-Specific Antibiotic Resistance. Future Microbiol. 2012, 7(9), 1061–1072. DOI: 10.2217/fmb.12.76.
  • Hong, S. H.; Hegde, M.; Kim, J.; Wang, X.; Jayaraman, A.; Wood, T. K. Synthetic Quorum-Sensing Circuit to Control Consortial Biofilm Formation and Dispersal in a Microfluidic Device. Nat. Commun. 2012, 3, 1–8. DOI: 10.1038/ncomms1616.
  • Balaji, K.; Thenmozhi, R.; Pandian, S. K. Effect of Subinhibitory Concentrations of Fluoroquinolones on Biofilm Production by Clinical Isolates of Streptococcus Pyogenes. Indian J. Med. Res. 2013, 137(5), 963–971.
  • Saising, J.; Dube, L.; Ziebandt, A. K.; Voravuthikunchai, S. P.; Nega, M.; Götz, F. Activity of Gallidermin on Staphylococcus Aureus and Staphylococcus Epidermidis Biofilms. Antimicrob. Agents Chemother. 2012, 56(11), 5804–5810. DOI: 10.1128/AAC.01296-12.
  • Probiotic Bacteria and Enteric Infections: Cytoprotection by Probiotic Bacteria. Malago, J.J., Marinsek-Logar, R., Koninkx, J.F.J.G. Eds. Netherlands: Springer. 2011
  • Monteagudo-Mera, A.; Rastall, R. A.; Gibson, G. R.; Charalampopoulos, D.; Chatzifragkou, A. Adhesion Mechanisms Mediated by Probiotics and Prebiotics and Their Potential Impact on Human Health. Appl. Microbiol. Biotechnol. 2019, 103(16), 6463–6472. DOI: 10.1007/s00253-019-09978-7.
  • Hospenthal, M. K.; Costa, T. R. D.; Waksman, G.; Comprehensive, A. Guide to Pilus Biogenesis in Gram-Negative Bacteria. Nat. Rev. Microbiol. 2017, 15(6), 365–379. DOI: 10.1038/nrmicro.2017.40.
  • Binetti, A.; Carrasco, M.; Reinheimer, J.; Suárez, V. Yeasts from Autochthonal Cheese Starters: Technological and Functional Properties. J. Appl. Microbiol. 2013, 115(2), 434–444. DOI: 10.1111/jam.12228.
  • Fanelli, A.; Agazzi, A.; Alborali, G. L.; Pilotto, A.; Bontempo, V.; Dell’Orto, V.; Demey, V.; Caputo, J. M.; Savoini, G. Prevalence Reduction of Pathogens in Poultry Fed with Saccharomyces Cerevisiae. Preval. Reduct. Pathog. Poult. Fed with Saccharomyces Cerevisiae. 2015, 19(1), 3–10.
  • Smith, I. M.; Baker, A.; Arneborg, N.; Jespersen, L. Non-Saccharomyces Yeasts Protect against Epithelial Cell Barrier Disruption Induced by Salmonella Enterica Subsp. Enterica Serovar Typhimurium. Lett. Appl. Microbiol. 2015, 61(5), 491–497. DOI: 10.1111/lam.12481.
  • Lam, T. I.; Tam, C. C.; Stanker, L. H.; Cheng, L. W. Probiotic Microorganisms Inhibit Epithelial Cell Internalization of Botulinum Neurotoxin Serotype A. Toxins (Basel). 2016, 8, 12. DOI: 10.3390/toxins8120377.
  • Suitso, I.; Jõgi, E.; Talpsep, E.; Naaber, P.; Lõivukene, K.; Ots, M. L.; Michelson, T.; Nurk, A. Protective Effect by Bacillus Smithii TBMI12 Spores of Salmonella Serotype Enteritidis in Mice. Benef. Microbes. 2010, 1(1), 37–42. DOI: 10.3920/BM2008.1001.
  • Thirabunyanon, M.; Thongwittaya, N. Protection Activity of a Novel Probiotic Strain of Bacillus Subtilis against Salmonella Enteritidis Infection. Res. Vet. Sci. 2012, 93(1), 74–81. DOI: 10.1016/j.rvsc.2011.08.008.
  • Ganan, M.; Martinez-Rodriguez, A. J.; Carrascosa, A. V.; Vesterlund, S.; Salminen, S.; Satokari, R. Interaction of Campylobacter Spp. And Human Probiotics in Chicken Intestinal Mucus. Zoonoses Public Health. 2013, 60(2), 141–148. DOI: 10.1111/j.1863-2378.2012.01510.x.
  • Gu, S. B.; Zhao, L. N.; Wu, Y.; Li, S. C.; Sun, J. R.; Huang, J. F.; Li, D. D. Potential Probiotic Attributes of a New Strain of Bacillus Coagulans CGMCC 9951 Isolated from Healthy Piglet Feces. World J. Microbiol. Biotechnol. 2015, 31(6), 851–863. DOI: 10.1007/s11274-015-1838-x.
  • Meidong, R.; Doolgindachbaporn, S.; Jamjan, W.; Sakai, K.; Tashiro, Y.; Okugawa, Y.; Tongpim, S. A Novel Probiotic Bacillus Siamensis B44v Isolated from Thai Pickled Vegetables (Phak-dong) for Potential Use as A Feed Supplement in Aquaculture. J. Gen. Appl. Microbiol. 2017, 63(4), 246–253. DOI: 10.2323/jgam.2016.12.002.
  • Behnsen, J.; Liu, J.; Valeri, M.; Hoover, E.; Tjokrosurjo, J.; Montaldo, N. P.; Treacy-Abarca, S.; Garibay, O.; Gilston, B. A.; Edwards, R. A.;, et al. Probiotic Escherichia Coli Nissle 1917 Uses Zinc Transporters and the Siderophore Yersiniabactin to Acquire Zinc in the Inflamed Gut and Outcompete Salmonella Typhimurium. FASEB. J. 2017, 31, 622–6.
  • Jeon, H. L.; Lee, N. K.; Yang, S. J.; Kim, W. S.; Paik, H. D. Probiotic Characterization of Bacillus Subtilis P223 Isolated from Kimchi. Food Sci. Biotechnol. 2017, 26(6), 1641–1648. DOI: 10.1007/s10068-017-0148-5.
  • Manhar, A. K.; Bashir, Y.; Saikia, D.; Nath, D.; Gupta, K.; Konwar, B. K.; Kumar, R.; Namsa, N. D.; Mandal, M. Cellulolytic Potential of Probiotic Bacillus Subtilis AMS6 Isolated from Traditional Fermented Soybean (Churpi): An in-Vitro Study with Regards to Application as an Animal Feed Additive. Microbiol. Res. 2016, 186–187, 62–70. DOI: 10.1016/j.micres.2016.03.004.
  • Jeon, H. L.; Yang, S. J.; Son, S. H.; Kim, W. S.; Lee, N. K.; Paik, H. D. Evaluation of Probiotic Bacillus Subtilis P229 Isolated from Cheonggukjang and Its Application in Soybean Fermentation. LWT - Food Sci. Technol. 2018, 97(January), 94–99. DOI: 10.1016/j.lwt.2018.06.054.
  • Fukuda, S.; Toh, H.; Hase, K.; Oshima, K.; Nakanishi, Y.; Yoshimura, K.; Tobe, T.; Clarke, J. M.; Topping, D. L.; Suzuki, T.;, et al. Bifidobacteria Can Protect from Enteropathogenic Infection through Production of Acetate. Nature.2011, 469(7331), 543–549. DOI: 10.1038/nature09646.
  • Rund, S. A.; Rohde, H.; Sonnenborn, U.; Oelschlaeger, T. A. Antagonistic Effects of Probiotic Escherichia Coli Nissle 1917 on EHEC Strains of Serotype O104: H4 and O157: H7. Int. J. Med. Microbiol. 2013, 303(1), 1–8. DOI: 10.1016/j.ijmm.2012.11.006.
  • Wu, Y.; Shao, Y.; Song, B.; Zhen, W.; Wang, Z.; Guo, Y.; Shahid, M. S.; Nie, W. Effects of Bacillus Coagulans Supplementation on the Growth Performance and Gut Health of Broiler Chickens with Clostridium Perfringens-Induced Necrotic Enteritis. J. Anim. Sci. Biotechnol. 2018, 9(9), 1–14. DOI: 10.1186/s40104-017-0220-2.
  • Zhen, W.; Shao, Y.; Gong, X.; Wu, Y.; Geng, Y.; Wang, Z.; Guo, Y. Effect of Dietary Bacillus Coagulans Supplementation on Growth Performance and Immune Responses of Broiler Chickens Challenged by Salmonella Enteritidis. Poult. Sci. 2018, 97(8), 2654–2666. DOI: 10.3382/ps/pey119.
  • Takahashi, M.; Taguchi, H.; Yamaguchi, H.; Osaki, T.; Komatsu, A.; Kamiya, S. The Effect of Probiotic Treatment with Clostridium Butyricum on Enterohemorrhagic Escherichia Coli O157: H7Infection in Mice. FEMS Immunol. Med. Microbiol. 2004, 41(3), 219–226. DOI: 10.1016/j.femsim.2004.03.010.
  • Amarante-Mendes, G. P.; Adjemian, S.; Branco, L. M.; Zanetti, L. C.; Weinlich, R.; Bortoluci, K. R. Pattern Recognition Receptors and the Host Cell Death Molecular Machinery. Front. Immunol. 2018, 9(OCT), 1–19. DOI: 10.3389/fimmu.2018.02379.
  • Bron, P. A.; Van Baarlen, P.; Kleerebezem, M. Emerging Molecular Insights into the Interaction between Probiotics and the Host Intestinal Mucosa. Nat. Rev. Microbiol. 2012, 10(1), 66–78. DOI: 10.1038/nrmicro2690.
  • Zanello, G.; Berri, M.; Dupont, J.; Sizaret, P. Y.; D’Inca, R.; Salmon, H.; Meurens, F. Saccharomyces Cerevisiae Modulates Immune Gene Expressions and Inhibits ETEC-Mediated ERK1/2 and P38 Signaling Pathways in Intestinal Epithelial Cells. PLoS One. 2011, 6(4). DOI: 10.1371/journal.pone.0018573.
  • Dahan, S.; Dalmasso, G.; Imbert, V.; Peyron, J. F.; Rampal, P.; Czerucka, D. Saccharomyces Boulardii Interferes with Enterohemorrhagic Escherichia Coli-Induced Signaling Pathways in T84 Cells. Infect. Immun. 2003, 71(2), 766–773. DOI: 10.1128/IAI.71.2.766-773.2003.
  • Dalmasso, G.; Loubat, A.; Dahan, S.; Calle, G.; Rampal, P.; Czerucka, D. Saccharomyces Boulardii Prevents TNF-α-Induced Apoptosis in EHEC-Infected T84. Cells. Res. Microbiol. 2006, 157(5), 456–465. DOI: 10.1016/j.resmic.2005.11.007.
  • Cousin, F. J.; Foligné, B.; Deutsch, S. M.; Massart, S.; Parayre, S.; Loir, Y. L.; Boudry, G.; Jan, G. Assessment of the Probiotic Potential of a Dairy Product Fermented by Propionibacterium Freudenreichii in Piglets. J. Agric. Food Chem. 2012, 60(32), 7917–7927. DOI: 10.1021/jf302245m.
  • Tang, Y.; Han, L.; Chen, X.; Xie, M.; Kong, W.; Wu, Z. Dietary Supplementation of Probiotic Bacillus Subtilis Affects Antioxidant Defenses and Immune Response in Grass Carp under Aeromonas Hydrophila Challenge. Probiotics Antimicrob. Proteins. 2019, 11(2), 545–558. DOI: 10.1007/s12602-018-9409-8.
  • Zhang, D.; Wu, Z.; Chen, X.; Wang, H.; Guo, D. Effect of Bacillus Subtilis on Intestinal Apoptosis of Grass Carp Ctenopharyngodon Idella Orally Challenged with Aeromonas Hydrophila. Fish. Sci. 2019, 85(1), 187–197. DOI: 10.1007/s12562-018-1272-8.
  • Hamdy, A. A.; Elattal, N. A.; Amin, M. A.; Ali, A. E.; Mansour, N. M.; Awad, G. E. A.; Awad, H. M.; Esawy, M. A. Possible Correlation between Levansucrase Production and Probiotic Activity of Bacillus Sp. Isolated from Honey and Honey Bee. World J. Microbiol. Biotechnol. 2017, 33(4), 1–10. DOI: 10.1007/s11274-017-2231-8.
  • Lourenco, M. C.; Kuritza, L. N.; Westphal, P.; Muniz, E.; Pickler, L.; Santin, E. Effects of Bacillus Subtilis in the Dynamics of Infiltration of Immunological Cells in the Intestinal Mucosa of Chickens Challenged with Salmonella Minnesota. Int. J. Poult. Sci. 2012, 11(10), 630–634. DOI: 10.3923/ijps.2012.630.634.
  • Khatri, I.; Sharma, S.; Ramya, T. N. C.; Subramanian, S. Complete Genomes of Bacillus Coagulans S-Lac and Bacillus Subtilis TO-A JPC, Two Phylogenetically Distinct Probiotics. PLoS One. 2016, 11(6), 1–25. DOI: 10.1371/journal.pone.0156745.
  • Phelan, R. W.; Clarke, C.; Morrissey, J. P.; Dobson, A. D. W.; O’Gara, F.; Barbosa, T. M. Tetracycline Resistance-Encoding Plasmid from Bacillus Sp. Strain #24, Isolated from the Marine Sponge Haliclona Simulans. Appl. Environ. Microbiol. 2011, 77(1), 327–329. DOI: 10.1128/AEM.01239-10.
  • Bozdogan, B.; Galopín, S.; Leclercq, R. Characterization of a New Erm-Related Macrolide Resistance Gene Present in Probiotic Strains of Bacillus Clausii. Appl. Environ. Microbiol. 2004, 70(1), 280–284. DOI: 10.1128/AEM.70.1.280-284.2004.
  • Gueimonde, M.; Sánchez, B.; de los Reyes-Gavilán, C. G.; Margolles, A. Antibiotic Resistance in Probiotic Bacteria. Front. Microbiol. 2013, 4(JUL), 1–6. DOI: 10.3389/fmicb.2013.00202.
  • EFSA; Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Hilbert, F.; Lindqvist, R.; et al. Update of the List of QPS-Recommended Biological Agents Intentionally Added to Food or Feed as Notified to EFSA 10: Suitability of Taxonomic Units Notified to EFSA until March 2019; 2019; Vol. 17. doi:10.2903/j.efsa.2019.5753.
  • EFSA; Koutsoumanis, K.; Allende, A.; Álvarez-Ordóñz, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; Hilbert, F.; Lindqvist, R.; Nauta, M.; et al. Update of the List of QPS-Recommended Biological Agents Intentionally Added to Food or Feed as Notified to EFSA 9: Suitability of Taxonomic Units Notified to EFSA until September 2018; 2019; Vol. 17. doi:10.2903/j.efsa.2019.5555.
  • FDA. GRAS Notice (GRN) No.560; 2014.
  • FDA. GRAS Notice (GRN) No. 597; 2014.
  • FDA. GRAS Notice (GRN) No. 562; 2014.
  • FDA. GRAS Notice (GRN) No. 601; 2010.
  • FDA. GRAS Notice (GRN) No. 399; 2011.
  • FDA. GRAS Notice (GRN) No. 660; 2016.
  • Psani, M.; Kotzekidou, P. Technological Characteristics of Yeast Strains and Their Potential as Starter Adjuncts in Greek-Style Black Olive Fermentation. World J. Microbiol. Biotechnol. 2006, 22(12), 1329–1336. DOI: 10.1007/s11274-006-9180-y.
  • Rychen, G.; Aquilina, G.; Azimonti, G.; Bampidis, V.; Bastos, M. D. L.; Bories, G.; Chesson, A.; Cocconcelli, P. S.; Flachowsky, G.; Gropp, J.;, et al. Safety and Efficacy of Levucell® SB (Saccharomyces Cerevisiae CNCM I‐1079) as a Feed Additive for Chickens for Fattening and Minor Poultry Species. EFSA J. 2017, 15(1), 1–9. DOI: 10.2903/j.efsa.2017.4674.
  • Younis, G.; Awad, A.; Dawod, R. E.; Yousef, N. E. Antimicrobial Activity of Yeasts against Some Pathogenic Bacteria. Vet. World. 2017, 10(8), 979–983. DOI: 10.14202/vetworld.2017.979-983.
  • Manafi, M.; Hedayati, M.; Mirzaie, S. Probiotic Bacillus Species and Saccharomyces Boulardii Improve Performance, Gut Histology and Immunity in Broiler Chickens. South African J. Anim. Sci. 2018, 48(2), 379–389. DOI: 10.4314/sajas.v48i2.19.
  • Cho, K.-M.;. Characterization of Potential Probiotics Bacillus Subtilis CS90 from Soybean Paste (Doenjang) and Its Antimicrobial Activity against Food-Borne Pathogens. Journal of Applied Biological Chemistry. 2008, 285–291. DOI: 10.3839/jabc.2008.044.
  • Wang, Y.; Zhang, H.; Zhang, L.; Liu, W.; Zhang, Y.; Zhang, X.; Sun, T. In Vitro Assessment of Probiotic Properties of Bacillus Isolated from Naturally Fermented Congee from Inner Mongolia of China. World J. Microbiol. Biotechnol. 2010, 26(8), 1369–1377. DOI: 10.1007/s11274-010-0309-7.
  • Darilmaz, D. O.; Beyatli, Y. Investigating Hydrophobicity and the Effect of Exopolysaccharide on Aggregation Properties of Dairy Propionibacteria Isolated from Turkish Homemade Cheeses. J. Food Prot. 2012, 75(2), 359–365. DOI: 10.4315/0362-028X.JFP-11-225.
  • Ahmad, V.; Muhammad Zafar Iqbal, A. N.; Haseeb, M.; Khan, M. S. Antimicrobial Potential of Bacteriocin Producing Lysinibacillus Jx416856 against Foodborne Bacterial and Fungal Pathogens, Isolated from Fruits and Vegetable Waste. Anaerobe. 2014, 27, 87–95. DOI: 10.1016/j.anaerobe.2014.04.001.
  • Akbar, A.; Sitara, U.; Ali, I.; Muhammad, N.; Khan, S. A. Isolation and Characterization of Biotechnologically Potent Micrococcus Luteus Strain from Environment. Pak. J. Zool. 2014, 46(4), 967–973.
  • Liu, X. F.; Li, Y.; Li, J. R.; Cai, L. Y.; Li, X. X.; Chen, J. R.; Lyu, S. X. Isolation and Characterisation of Bacillus Spp. Antagonistic to Vibrio Parahaemolyticus for Use as Probiotics in Aquaculture. World J. Microbiol. Biotechnol. 2015, 31(5), 795–803. DOI: 10.1007/s11274-015-1833-2.
  • Arsi, K.; Donoghue, A. M.; Woo-Ming, A.; Blore, P. J.; Donoghue, D. J. Intracloacal Inoculation, an Effective Screening Method for Determining the Efficacy of Probiotic Bacterial Isolates against Campylobacter Colonization in Broiler Chickens. J. Food Prot. 2015, 78(1), 209–213. DOI: 10.4315/0362-028X.JFP-14-326.
  • Barba-Vidal, E.; Roll, V. F. B.; Castillejos, L.; Guerra-Ordaz, A. A.; Manteca, X.; Mallo, J. J.; Martín-Orúe, S. M. Response to a Salmonella Typhimurium Challenge in Piglets Supplemented with Protected Sodium Butyrate or Bacillus Licheniformis: Effects on Performance, Intestinal Health and Behavior. Transl. Anim. Sci. 2017, 1(2), 186–200. DOI: 10.2527/tas2017.0021.
  • Nair, D. V. T.; Johny, A. K. Characterizing the Antimicrobial Function of a Dairy-Originated Probiotic, Propionibacterium Freudenreichii, against Multidrug-Resistant Salmonella Enterica Serovar Heidelberg in Turkey Poults. Front. Microbiol. 2018, 9(JUL), 1–13. DOI: 10.3389/fmicb.2018.01475.
  • Borah, D.; Gogoi, P.; Agarwal, D.; Khataniar, A. Characterization of a Newly Isolated Probiotic Strain from Oecophylla Smaragdina, an Edible Insect Popular among the Indigenous Communities of Northeast India. Indian J. Microbiol. 2019, 59(1), 39–50. DOI: 10.1007/s12088-018-0758-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.