1,062
Views
6
CrossRef citations to date
0
Altmetric
Review

Starch Extraction and Modification by Pulsed Electric Fields

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Singh, N.; Singh, J.; Kaur, L.; Sodhi, N. S.; Gill, B. S. Morphological, Thermal and Rheological Properties of Starches from Different Botanical Sources. Food Chem. 2003, 81(2), 219–231. DOI: 10.1016/S0308-8146(02)00416-8.
  • Vallons, K. J. R.; Ryan, L. A. M.; Arendt, E. K. Pressure-Induced Gelatinization of Starch in Excess Water. Crit. Rev. Food Sci. Nutr. 2014, 54(3), 399–409. DOI: 10.1080/10408398.2011.587037.
  • ud-Din, Z.; Xiong, H.; Fei, P. Physical and Chemical Modification of Starches: A Review. Crit. Rev. Food Sci. Nutr. 2017, 57(12), 2691–2705. DOI: 10.1080/10408398.2015.1087379.
  • Lloyd, J. R.; Kossmann, J. Starch Trek: The Search for Yield. Front. Plant Sci. 2019, 9(January), 1–8. DOI: 10.3389/fpls.2018.01930.
  • Lappalainen, K.; Kärkkäinen, J.; Niemelä, M.; Vartiainen, H.; Rissanen, O.; Korva, H. Preparation of Cationized Starch from Food Industry Waste Biomass and Its Utilization in Sulfate Removal from Aqueous Solution. Carbohydr. Polym. 2017, 178(2), 331–337. DOI: 10.1016/j.carbpol.2017.09.054.
  • Schirmer, M.; Jekle, M.; Becker, T. Starch Gelatinization and Its Complexity for Analysis. Starch - Stärke. 2015, 67(1–2), 30–41. DOI: 10.1002/star.201400071.
  • Alcázar-Alay, S. C.; Meireles, M. A. A. Physicochemical Properties, Modifications and Applications of Starches from Different Botanical Sources. Food Sci. Technol. 2015, 35(2), 215–236. DOI: 10.1590/1678-457X.6749.
  • BeMiller, J. N.; Lafayette, W. Starch Modification: Challenges and Prospects. Starch - Stärke. 1997, 49(4), 127–131. DOI: 10.1002/star.19970490402.
  • Abbas, K. A.; Khalil, S.; Meor Hussin, A. S. Modified Starches and Their Usages in Selected Food Products: A Review Study. J. Agric. Sci. 2010, 2(2), 90–100. DOI: 10.5539/jas.v2n2p90.
  • Egharevba, H. O. Chemical Properties of Starch and Its Application in the Food Industry. In Chemical Properties of Starch; Emeje, M., Ed.;  IntechOpen: London, 2020; pp 13. doi:10.5772/intechopen.87777
  • Masina, N.; Choonara, Y. E.; Kumar, P.; Toit, L. C.; Govender, M.; Indermun, S.; Pillay, V. A Review of the Chemical Modification Techniques of Starch. Carbohydr. Polym. 2017, 157, 1226–1236. DOI: 10.1016/j.carbpol.2016.09.094.
  • Haq, F.; Yu, H.; Wang, L.; Teng, L.; Haroon, M.; Khan, R. U.; Mehmood, S.; Bilal, U. A.; Ullah, R. S.; Khan, A.; et al. Advances in Chemical Modifications of Starches and Their Applications. Carbohydr. Res. 2019, 476(2018), 12–35. DOI: 10.1016/j.carres.2019.02.007.
  • Haroon, M.; Wang, L.; Yu, H.; Abbasi, N. M.; Zain-ul-Abdin, Z.-A.; Saleem, M.; Khan, R. U.; Ullah, R. S.; Chen, Q.; Wu, J. Chemical Modification of Starch and Its Application as an Adsorbent Material. RSC Adv. 2016, 6(82), 78264–78285. DOI: 10.1039/C6RA16795K.
  • BeMiller, J. N.; Huber, K. C. Physical Modification of Food Starch Functionalities. Annu. Rev. Food Sci. Technol. 2015, 6(1), 19–69. DOI: 10.1146/annurev-food-022814-015552.
  • Zhu, F.; Xie, Q.; Structure and Physicochemical Properties of Starch. In Physical Modifications of Starch; Shi, Z., and Kong, X., Ed.; Springer Singapore: Singapore, 2018; pp. 1–14. DOI:10.1007/978-981-13-0725-6_1.
  • Li, Y.; Hu, A.; Zheng, J.; Wang, X. Comparative Studies on Structure and Physiochemical Changes of Millet Starch under Microwave and Ultrasound at the Same Power. Int. J. Biol. Macromol. 2019, 141, 76–84. DOI: 10.1016/j.ijbiomac.2019.08.218.
  • Castro, L. M. G.; Alexandre, E. M. C.; Saraiva, J. A.; Pintado, M. Impact of High Pressure on Starch Properties: A Review. Food Hydrocoll. 2020, 106(2019), 105877. DOI: 10.1016/j.foodhyd.2020.105877.
  • Abduh, S. B. M.; Leong, S. Y.; Agyei, D.; Oey, I. Understanding the Properties of Starch in Potatoes (Solanum Tuberosum Var. Agria) after Being Treated with Pulsed Electric Field Processing. Foods. 2019, 8(5), 159. DOI: 10.3390/foods8050159.
  • Wu, C.; Wu, Q.-Y.; Wu, M.; Jiang, W.; Qian, J.-Y.; Rao, S.-Q.; Zhang, L.; Li, Q.; Zhang, C. Effect of Pulsed Electric Field on Properties and Multi-Scale Structure of Japonica Rice Starch. LWT. 2019, 116(August), 108515. DOI: 10.1016/j.lwt.2019.108515.
  • Duque, S. M. M.; Leong, S. Y.; Agyei, D.; Singh, J.; Larsen, N.; Oey, I. Understanding the Impact of Pulsed Electric Fields Treatment on the Thermal and Pasting Properties of Raw and Thermally Processed Oat Flours. Food Res. Int. 2020, 129(2019), 108839. DOI: 10.1016/j.foodres.2019.108839.
  • Han, Z.; Zeng, X. A.; Fu, N.; Yu, S. J.; Chen, X. D.; Kennedy, J. F. Effects of Pulsed Electric Field Treatments on Some Properties of Tapioca Starch. Carbohydr. Polym. 2012, 89(4), 1012–1017. DOI: 10.1016/j.carbpol.2012.02.053.
  • Han, Z.; Zeng, X. A.; Yu, S. J.; Zhang, B. S.; Chen, X. D. Effects of Pulsed Electric Fields (PEF) Treatment on Physicochemical Properties of Potato Starch. Innov. Food Sci. Emerg. Technol. 2009, 10(4), 481–485. DOI: 10.1016/j.ifset.2009.07.003.
  • Han, Z.; Yu, Q.; Zeng, X. A.; Luo, D. H.; Yu, S. J.; Zhang, B. S.; Chen, X. D. Studies on the Microstructure and Thermal Properties of Pulsed Electric Fields (PEF)-Treated Maize Starch. Int. J. Food Eng. 2012, 8(1), 1556–3758. DOI: 10.1515/1556-3758.2375.
  • Han, Z.; Zeng, X.; Zhang, B.; Yu, S. Effects of Pulsed Electric Fields (PEF) Treatment on the Properties of Corn Starch. J. Food Eng. 2009, 93(3), 318–323. DOI: 10.1016/j.jfoodeng.2009.01.040.
  • Li, Q.; Wu, Q.-Y.; Jiang, W.; Qian, J.-Y.; Zhang, L.; Wu, M.; Rao, S.-Q.; Wu, C.-S. Effect of Pulsed Electric Field on Structural Properties and Digestibility of Starches with Different Crystalline Type in Solid State. Carbohydr. Polym. 2019, 207(2018), 362–370. DOI: 10.1016/j.carbpol.2018.12.001.
  • Zeng, F.; Gao, Q.; Han, Z.; Zeng, X.; Yu, S. Structural Properties and Digestibility of Pulsed Electric Field Treated Waxy Rice Starch. Food Chem. 2016, 194, 1313–1319. DOI: 10.1016/j.foodchem.2015.08.104.
  • Alexandre, E. M. C.; Pinto, C. A.; Moreira, S. A.; Pintado, M.; Saraiva, J. A. Nonthermal Food Processing/Preservation Technologies. In Saving Food; Galanakis, C. M., Ed.; Elsevier: London, 2019; pp 141–169. DOI: 10.1016/B978-0-12-815357-4.00005-5.
  • Barba, F. J.; Parniakov, O.; Pereira, S. A.; Wiktor, A.; Grimi, N.; Boussetta, N.; Saraiva, J. A.; Raso, J.; Martin-Belloso, O.; Witrowa-Rajchert, D.; et al. Current Applications and New Opportunities for the Use of Pulsed Electric Fields in Food Science and Industry. Food Res. Int. 2015, 77, 773–798. DOI: 10.1016/j.foodres.2015.09.015.
  • Ricci, A.; Parpinello, G. P.; Versari, A. Recent Advances and Applications of Pulsed Electric Fields (PEF) to Improve Polyphenol Extraction and Color Release during Red Winemaking. Beverages. 2018, 4(1), 18. DOI: 10.3390/beverages4010018.
  • Kempkes, M. A.; International Non-Thermal Processing Workshop. In Industrial PEF Systems; Beijing, China, 2016.
  • Puértolas, E.; Luengo, E.; Álvarez, I.; Raso, J. Improving Mass Transfer to Soften Tissues by Pulsed Electric Fields: Fundamentals and Applications. Annu. Rev. Food Sci. Technol. 2012, 3(1), 263–282. DOI: 10.1146/annurev-food-022811-101208.
  • Raso, J.; Frey, W.; Ferrari, G.; Pataro, G.; Knorr, D.; Teissie, J.; Miklavčič, D. Recommendations Guidelines on the Key Information to Be Reported in Studies of Application of PEF Technology in Food and Biotechnological Processes. Innov. Food Sci. Emerg. Technol. 2016, 37, 312–321. DOI: 10.1016/j.ifset.2016.08.003.
  • Rebersek, M.; Miklavcic, D.; Bertacchini, C.; Sack, M. Cell Membrane Electroporation-Part 3: The Equipment. IEEE Electr. Insul. Mag. 2014, 30(3), 8–18. DOI: 10.1109/MEI.2014.6804737.
  • Huang, K.; Wang, J. Designs of Pulsed Electric Fields Treatment Chambers for Liquid Foods Pasteurization Process: A Review. J. Food Eng. 2009, 95(2), 227–239. DOI: 10.1016/j.jfoodeng.2009.06.013.
  • Mohamed, M. E. A.; Eissa, A. H. A. Pulsed Electric Fields for Food Processing Technology. In Structure and Function of Food Engineering; InTech: Egypt, 2012; pp 275–305. DOI: 10.5772/48678.
  • Toepfl, S.; Siemer, C.; Saldaña-Navarro, G.; Heinz, V. Overview of Pulsed Electric Fields Processing for Food. In Emerging Technologies for Food Processing; Eissa, A. A., Ed.; Elsevier: USA, 2014; pp 93–114. DOI: 10.1016/B978-0-12-411479-1.00006-1.
  • Kotnik, T.; Rems, L.; Tarek, M.; Miklavčič, D. Membrane Electroporation and Electropermeabilization: Mechanisms and Models. Annu. Rev. Biophys. 2019, 48(1), 63–91. DOI: 10.1146/annurev-biophys-052118-115451.
  • Saulis, G.;. Electroporation of Cell Membranes: The Fundamental Effects of Pulsed Electric Fields in Food Processing. Food Eng. Rev. 2010, 2(2), 52–73. DOI: 10.1007/s12393-010-9023-3.
  • Alexandre, E. M. C.; Castro, M. G.; Moreira, S. A.; Saraiva, J. A.; Saraiva, J. A. Comparison of Emerging Technologies to Extract High-Added Value Compounds from Fruit Residues: Pressure- and Electro-Based Technologies. Food Eng. Rev. 2017, 9, 190–212. DOI: 10.1007/s12393-016-9154-2.
  • Dhital, S.; Brennan, C.; Gidley, M. J. Location and Interactions of Starches in Planta: Effects on Food and Nutritional Functionality. Trends Food Sci. Technol. 2019, 93(April), 158–166. DOI: 10.1016/j.tifs.2019.09.011.
  • Baldwin, P. M.;. Starch Granule-Associated Proteins and Polypeptides: A Review. Starch - Stärke. 2001, 53(10), 475. DOI: 10.1002/1521-379X(200110)53:10<475::AID-STAR475>3.0.CO;2-E.
  • Prabhu, M. S.; Levkov, K.; Livney, Y. D.; Israel, A.; Golberg, A. High-Voltage Pulsed Electric Field Preprocessing Enhances Extraction of Starch, Proteins, and Ash from Marine Macroalgae Ulva Ohnoi. ACS Sustain. Chem. Eng. 2019, 7(20), 17453–17463. DOI: 10.1021/acssuschemeng.9b04669.
  • Herrejón-Escutia, M.; Solorio-Díaz, G.; Vergara-Hernández, H. J.; López-Martínez, E.; Chávez-Campos, G. M.; Vázquez-Gómez, O.; Electric-Thermo-Mechanical Analysis of Joule Heating in Dilatometric Specimens. Strojniški Vestn. J. Mech. Eng. 2017, 639, 537–547. DOI:10.5545/sv-jme.2017.4320.
  • Copeland, L.; Blazek, J.; Salman, H.; Tang, M. C. Form and Functionality of Starch. Food Hydrocoll. 2009, 23(6), 1527–1534. DOI: 10.1016/j.foodhyd.2008.09.016.
  • Jayaram, S. H.;. Sterilization of Liquid Foods by Pulsed Electric Fields. IEEE Electr. Insul. Mag. 2000, 16(6), 17–25. DOI: 10.1109/57.887601.
  • Reineke, K.; Schottroff, F.; Meneses, N.; Knorr, D. Sterilization of Liquid Foods by Pulsed Electric Fields–an Innovative Ultra-High Temperature Process. Front. Microbiol. 2015, 6(May), 1–11. DOI: 10.3389/fmicb.2015.00400.
  • Hamim, N.; Krismastuti, F. S. H.; Hindayani, A.; Aristiawan, Y. Certified Reference Materials for Calibration of Conductivity Meter at the Measuring of Electrolytic Conductivity in Water: Preparation and Its Measurement. AIP Conf. Proc. 2019, 2175, 020065. DOI: 10.1063/1.5134629.
  • Yang, Z.; Chaib, S.; Gu, Q.; Hemar, Y. Impact of Pressure on Physicochemical Properties of Starch Dispersions. Food hydrocoll. 2017, 68, 164–177. DOI: 10.1016/j.foodhyd.2016.08.032.
  • Zhao, W.; Yang, R. Pulsed Electric Field Induced Aggregation of Food Proteins: Ovalbumin and Bovine Serum Albumin. Food Bioprocess Technol. 2012, 5(5), 1706–1714. DOI: 10.1007/s11947-010-0464-8.
  • Cornejo-Ramírez, Y. I.; Martínez-Cruz, O.; Del Toro-Sánchez, C. L.; Wong-Corral, F. J.; Borboa-Flores, J.; Cinco-Moroyoqui, F. J. The Structural Characteristics of Starches and Their Functional Properties. CyTA - J. Food. 2018, 16(1), 1003–1017. DOI: 10.1080/19476337.2018.1518343.
  • Pozo, C.; Rodríguez-Llamazares, S.; Bouza, R.; Barral, L.; Castaño, J.; Müller, N.; Restrepo, I. Study of the Structural Order of Native Starch Granules Using Combined FTIR and XRD Analysis. J. Polym. Res. 2018, 25(12), 266. DOI: 10.1007/s10965-018-1651-y.
  • Warren, F. J.; Gidley, M. J.; Flanagan, B. M. Infrared Spectroscopy as a Tool to Characterise Starch Ordered Structure—a Joint FTIR–ATR, NMR, XRD and DSC Study. Carbohydr. Polym. 2016, 139, 35–42. DOI: 10.1016/j.carbpol.2015.11.066.
  • Bertoft, E.;. Understanding Starch Structure: Recent Progress. Agronomy. 2017, 7(3), 56. DOI: 10.3390/agronomy7030056.
  • Hong, J.; Zeng, X.-A.; Buckow, R.; Han, Z. Structural, Thermodynamic and Digestible Properties of Maize Starches Esterified by Conventional and Dual Methods: Differentiation of Amylose Contents. Food Hydrocoll. 2018, 83(April), 419–429. DOI: 10.1016/j.foodhyd.2018.05.032.
  • Lopez-Rubio, A.; Flanagan, B. M.; Gilbert, E. P.; Gidley, M. J.; Novel, A. Approach for Calculating Starch Crystallinity and Its Correlation with Double Helix Content: A Combined XRD and NMR Study. Biopolymers. 2008, 89(9), 761–768. DOI: 10.1002/bip.21005.
  • Englyst, H. N.; Kingman, S. M.; Cummings, J. H. Classification and Measurement of Nutritionally Important Starch Fractions. Eur. J. Clin. Nutr. 1992, 46(Suppl. 2), S33–S50.
  • Ashwar, B. A.; Gani, A.; Shah, A.; Wani, I. A.; Masoodi, F. A. Preparation, Health Benefits and Applications of Resistant Starch-a Review. Starch - Stärke. 2016, 68(3–4), 287–301. DOI: 10.1002/star.201500064.
  • Vallons, K. J. R.; Arendt, E. K. Effects of High Pressure and Temperature on the Structural and Rheological Properties of Sorghum Starch. Innov. Food Sci. Emerg. Technol. 2009, 10(4), 449–456. DOI: 10.1016/j.ifset.2009.06.008.
  • Hong, J.; Zeng, X.-A.; Han, Z.; Brennan, C. S. Effect of Pulsed Electric Fields Treatment on the Nanostructure of Esterified Potato Starch and Their Potential Glycemic Digestibility. Innov. Food Sci. Emerg. Technol. 2018, 45(2017), 438–446. DOI: 10.1016/j.ifset.2017.11.009.
  • Hong, J.; Chen, R.; Zeng, X.-A.; Han, Z. Effect of Pulsed Electric Fields Assisted Acetylation on Morphological, Structural and Functional Characteristics of Potato Starch. Food Chem. 2016, 192, 15–24. DOI: 10.1016/j.foodchem.2015.06.058.
  • Hong, J.; Zeng, X.-A.; Buckow, R.; Han, Z.; Wang, M.-S. Nanostructure, Morphology and Functionality of Cassava Starch after Pulsed Electric Fields Assisted Acetylation. Food Hydrocoll. 2016, 54, 139–150. DOI: 10.1109/MEI.2014.6804737.
  • Hong, J.; Li, C.; An, D.; Liu, C.; Li, L.; Han, Z.; Zeng, X.; Zheng, X.; Cai, M. Differences in the Rheological Properties of Esterified Total, A‐type, and B‐type Wheat Starches and Their Effects on the Quality of Noodles. J. Food Process. Preserv. 2020, 44(3), 1–10. DOI: 10.1111/jfpp.14342.
  • Hong, J.; Zeng, X.; Brennan, C.; Brennan, M.; Han, Z. Recent Advances in Techniques for Starch Esters and the Applications: A Review. Foods. 2016, 5(4), 50. DOI: 10.3390/foods5030050.
  • Kempkes, M. A.; Liang, R.; Petry, J. E.; Gaudreau, M. P. J. PEF Systems For Food And Waste Streams. In 2008 IEEE International Power Modulators and High-Voltage Conference; IEEE: Las Vegas, NV, 2008; pp 73–76. DOI: 10.1109/IPMC.2008.4743580.
  • Galanakis, C. M.; Implementation of Emergent Technologies. Innovation Strategies in the Food Industry: Tools for Implementation; Galanakis, C. M., Ed.; Elsevier: USA, 2016. DOi: 10.1016/C2015-0-00303-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.