596
Views
4
CrossRef citations to date
0
Altmetric
Review

Recent Advances in Extraction, Techno-functional Properties, Food and Therapeutic Applications as Well as Safety Aspects of Natural and Modified Stabilizers

ORCID Icon, , ORCID Icon, & ORCID Icon

References

  • Tasneem, M.; Siddique, F.; Ahmad, A.; Farooq, U. Stabilizers: Indispensable Substances in Dairy Products of High Rheology. Crit. Rev. Food Sci. Nutr. 2014, 54(7), 869–879. DOI: 10.1080/10408398.2011.614702.
  • Chai, Q.; Jiao, Y.; Yu, X. Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them. Gels. 2017, 3(1), 1–15. DOI: 10.3390/gels3010006.
  • Milani, J.; Maleki, G. Hydrocolloids in Food Industry. In Food Industrial Processes-methods and Equipment, Valdez, B., Ed.; IntechOpen: Shanghai, China, 2012; pp 17–38. DOI: 10.5772/32358.
  • Milani, J. M.; Golkar, A. Health Aspect of Novel Hydrocolloids. In Emerging Natural Hydrocolloids: Rheology and Function,Razavi, M.A. Seyed, Ed.; Wiley: Oxford, UK, 2019; pp 601–622.
  • Yemenicioğlu, A.; Farris, S.; Turkyilmaz, M.; Gulec, S. A Review of Current and Future Food Applications of Natural Hydrocolloids. Int. J. Food Sci. Technol. 2020, 55(4), 1389–1406. DOI: 10.1111/ijfs.14363.
  • Philips, G. O.; Williams, P. A. Gum Arabic. In Handbook of Hydrocolloids; Williams, P.A., Phillips, G.O., Eds.; Woodhead Publishing: Cambridge, UK, 2009; pp 252–273.
  • Elnour, A. A.; Mirghani, M. E.; Kabbashi, N. A.; Md Alam, Z.; Musa, K. H. Study of Antioxidant and Anti-Inflammatory Crude Methanol Extract and Fractions of Acacia Seyal Gum. Am. J. Pharmacol. Pharmacother. 2018, 51, 3. DOI:10.21767/2393-8862.100012.
  • Philp, K.;. Polysaccharide Ingredients. In Reference Module in Food Science, Elsevier Inc: Amsterdam, Netherlands, 2018, pp 1-23. DOI: 10.1016/b978-0-08-100596-5.22367-6.
  • Lopez-Franco, Y.; Higuera-Ciapara, I.; Goycoolea, F. M.; Wang, W. Other Exudates: Tragacanth, Karaya, Mesquite Gum and Larchwood Arabinogalactan. In Handbook of Hydrocolloids; Williams, P.A., Phillips, G.O., Eds.; Woodhead Publishing: Cambridge, U. K, 2009; pp 495–534.
  • Sahu, P.; Pisalkar, P. S.; Patel, S.; Katiyar, P. Physico-chemical and Rheological Properties of Karaya Gum (Sterculia Urens Roxb.). Int. J. Curr. Microbiol. App. Sci. 2019, 8(4), 672–681. DOI: 10.20546/ijcmas.2019.804.072.
  • Parvathi, K. M. M.; Ramesh, C. K.; Krishna, V.; Paramesha, M.; Kuppast, I. J. Hypolipidemic Activity of Gum Ghatti of Anogeissus Latifolia. Pharmacogn. Mag. 2009, 5(19), 11–14.
  • Mudgil, D.; Barak, S.; Khatkar, B. S. Effect of Partially Hydrolyzed Guar Gum on Pasting, Thermo-Mechanical and Rheological Properties of Wheat Dough. Int. J. Biol. Macromol. 2016, 93, 131–135. DOI: 10.1016/j.ijbiomac.2016.08.064.
  • Barak, S.; Mudgil, D. Locust Bean Gum: Processing, Properties and Food Applications—A Review. Int. J. Biol. Macro. 2014, 66, 74–80. DOI: 10.1016/j.ijbiomac.2014.02.017.
  • Dionísio, M.; Grenha, A. Locust Bean Gum: Exploring Its Potential For Biopharmaceutical Applications. J. Pharm. Bioallied Sci. 2012, 4(3), 175. DOI: 10.4103/j.foodchem.09757406.99013.
  • Wu, Y.; Ding, W.; Jia, L.; He, Q. The Rheological Properties of Tara Gum (Caesalpinia Spinosa). Food Chem. 2015, 168, 366–371. DOI: 10.1016/j.foodchem.2014.07.083.
  • Stanley, N. F.;. Agars. In Food Polysaccharides and Their Applications, 2nd ed.; Stephen, A.M., Philips, G.O., Williams, P.A., Eds.; CRC Press: Florida, United States, 2006; pp 217–230.
  • Szekalska, M.; Puciłowska, A.; Szymańska, E.; Ciosek, P.; Winnicka, K. Alginate: Current Use and Future Perspectives in Pharmaceutical and Biomedical Applications. Int. J. Polym. Sci. 2016. DOI: 10.1155/2016/7697031.
  • Tarande, M. G.; Manriquez-Hernandez, J. Carrageenan Properties and Applications: A Review. In Carrageeans: Sources and Extraction Methods, Molecular Structure, Bioactive Properties and Health Effects; Pereira, L., Ed.; Nova Science Publishers: Hauppauge, NewYork, U. S. A, 2016; pp 17–49.
  • Vanitha, T.; Khan, M. Role of Pectin in Food Processing and Food Packaging. in Pectins- Extraction, Purification, Characterization and Applications, Martin, M., Ed.; IntechOpen: Shanghai, China, 2019, Vol. 6, pp 85-104. DOI: 10.5772/intechopen.83677.
  • Majee, S. B.; Avlani, D.; Ghosh, P.; Biswas, G. R. Therapeutic and Pharmaceutical Benefits of Native and Modified Plant Pectin. J. Med. Plants Res. 2018, 12(1), 1–6. DOI: 10.5897/JMPR2017.6542.
  • Behera, S. S.; Ray, R. C. Konjac Glucomannan, A Promising Polysaccharide of Amorphophallus Konjac K. Koch in Health Care. Int. J. Biol. Macromol. 2016, 92, 942–956. DOI: 10.1016/j.ijbiomac.2016.07.098.
  • Echave, M. C.; Hernáez-Moya, R.; Iturriaga, L.; Pedraz, J. L.; Lakshminarayanan, R.; Dolatshahi-Pirouz, A.; Taebnia, N.; Orive, G. Recent Advances in Gelatin-Based Therapeutics. Expert Opin. Biol. Ther. 2019, 19(8), 773–779. DOI:10.1080/14712598.2019.1610383.
  • Roy, J. C.; Salaün, F.; Giraud, S.; Ferri, A.; Chen, G.; Guan, J. Solubility of Chitin: Solvents, Solution Behaviors and Their Related Mechanisms. In Solubility of Polysaccharides, Zhenbo, X., Ed.; Intechopen: Shanghai, China, 2017, pp 109-128. DOI: 10.5772/intechopen.71385.
  • Broyard, C.; Gaucheron, F. Modifications of Structures and Functions of Caseins: A Scientific and Technological Challenge. Dairy Sci. Technol. 2015, 95(6), 831–862. DOI: 10.1007/s13594-015-0220-y.
  • Jeewanthi, R. K.; Lee, N. K.; Paik, H. D. Improved Functional Characteristics of Whey Protein Hydrolysates in Food Industry. Korean J. Food Sci. Anim. Res. 2015, 353, 350–359. DOI:10.5851/kosfa.2015.35.3.350.
  • Lopes, B. M.; Lessa, V. L.; Silva, B. M.; La Cerda, L. G. Xanthan Gum: Properties, Production Conditions, Quality and Economic Perspective. J. Food Nutr. Res. 2015, 54(3), 185–194.
  • Osmałek, T.; Froelich, A.; Tasarek, S. Application of Gellan Gum in Pharmacy and Medicine. Int. J. Pharm. 2014, 466(1–2), 328–340. DOI: 10.1016/j.ijpharm.2014.03.038.
  • Kothari, D.; Das, D.; Patel, S.; Goyal, A. Dextran and Food Application. Polysaccharides. 2014, 1–16. DOI: 10.1007/978-3-319-03751-6_66-1.
  • Kurt, A. Physicochemical, Rheological and Structural Characteristics Af Alcohol Precipitated Fraction of Gum Tragacanth. Food Health. 2018, 4(3), 183–193. DOI:10.3153/FH18019.
  • Deshmukh, A. S.; Setty, C. M.; Badiger, A. M.; Muralikrishna, K. S. Gum Ghatti: A Promising Polysaccharide for Pharmaceutical Applications. Carbohydr. Polym. 2012, 87(2), 980–986. DOI: 10.1016/j.carbpol.2011.08.099.
  • Nejatian, M.; Abbasi, S.; Azarikia, F. Gum Tragacanth: Structure, Characteristics and Applications in Foods. Int. J. Biol. Macromol. 2020, BIOMAC-15697. DOI:10.1016/j.ijbiomac.2020.05.214.
  • Lujan-Medina, G. A.; Ventura, J.; Ceniceros, A. C. L.; Ascacio, J. A.; Valdés, D. B. V.; Aguilar, C. N. Karaya Gum: General Topics and Applications. Macromol. Indian J. 2013, 9, 111–116.
  • Ido, T.; Ogasawara, T.; Katayama, T.; Sasaki, Y.; Al-Assaf, S.; Phillips, G. O. Emulsification Property of GATIFOLIA (Gum Ghatti) Used for Emulsions in Food Products. Foods Food Ingredients J. Jpn. 2008, 213, 365–372.
  • Aphibanthammakit, C.; Barbar, R.; Nigen, M.; Sanchez, C.; Chalier, P. Emulsifying Properties of Acacia Senegal Gum: Impact of High Molar Mass Protein-Rich Agps. Food Chem. 2020, X, 100090. DOI: 10.1016/j.fochx.2020.100090.
  • Gavlighi, H. A.; Meyer, A. S.; Mikkelsen, J. D. Tragacanth Gum: Functionality and Prebiotic Potential. Agro Food Ind. Hi. Tec. 2013, 24, 46–48.
  • Farzi, M.; Yarmand, M. S.; Safari, M.; Emam-Djomeh, Z.; Mohammadifar, M. A. Gum Tragacanth Dispersions: Particle Size and Rheological Properties Affected by High-Shear Homogenization. Int. J. Biol. Macromol. 2015, 79, 433–439. DOI: 10.1016/j.ijbiomac.2015.04.037.
  • Shekarforoush, E.; Mirhosseini, H.; Amid, B. T.; Ghazali, H.; Muhammad, K.; Sarker, M. Z. I.; Paykary, M. Rheological Properties and Emulsifying Activity of Gum Karaya (Sterculia Urens) in Aqueous System and Oil in Water Emulsion: Heat Treatment and Microwave Modification. Int. J. Food Prop. 2016, 19(3), 662–679. DOI: 10.1080/10942912.2015.1038836.
  • Thombare, N.; Mate, C. J.; Thamilarasi, K.; Chowdhury, A. R.; Srivastava, S. Physico-Chemical Characterization and Microbiological Evaluation of Gum Ghatti as Potential Food Additive. Multilogic. Sci. 2018, 8, 316–319.
  • Codex Alimenatrius. General Standard for Food Additives. Codex Stan 192–1995. 2018. ( accessed December 25, 2019). http://www.fao.org/gsfaonline/docs/CXS_192e.pdf
  • FAO. 2017. Gum Ghatti. 84th JECFA - Chemical and Technical Assessment (CTA), 2017. ( accessed September 08, 2020). http://www.fao.org/3/BU606EN/bu606en.pdf
  • Al-Nahdi, Z. M.; Al-Alawi, A.; Al-Marhobi, I. The Effect of Extraction Conditions on Chemical and Thermal Characteristics of Kappa-carrageenan Extracted from Hypnea Bryoides. J. Marine Biol. 2019, 5183261. DOI: 10.1155/2019/5183261.
  • Parija, S.; Misra, M.; Mohanty, A. K. Studies of Natural Gum Adhesive Extracts: An Overview. J. Macromol. Sci. Part C, Polym. Rev. 2001, 413, 175–197. DOI:10.1081/MC-100107775.
  • Yilmaz-Ersan, L.; Ozcan, T.; Akpinar-Bayizit, A.; Omak, G. Impact of Some Gums on the Growth and Activity of Bifidobacterium Animalis Subsp. lactis. Int. J. Food Eng. 2017, 31, 73–77. DOI:10.18178/ijfe.3.1.73-77.
  • Yagoub, N. A.; Nur, A. O. The Influence of Thermal Treatment on Physical Properties of Guar Gum. Int. J. Innovations Pharm. Sci. 2013, 2, 26–31.
  • Samavati, V.; Razavi, S. H.; Mousavi, S. M. Effect of Sweeteners on Viscosity and Particle Size of Dilute Guar Gum Solutions. Iran J. Chem. Chem. Eng. 2008, 27(2), 23–31.
  • Wu, Y.; Ding, W.; Jia, L.; He, Q. The Rheological Properties of Tara Gum (Caesalpinia Spinosa). Food Chem. 2015, 168, 366–371. DOI: 10.1016/j.foodchem.2014.07.083.
  • Huamaní-Meléndez, V. J.; Mauro, M. A.; Darros-Barbosa, R. Physicochemical and Rheological Properties of Aqueous Tara Gum Solutions. Food Hydrocolloids. 2020, 111, 106195. DOI: 10.1016/j.foodhyd.2020.106195.
  • Tripathy, S.; Das, M. K. Guar Gum: Present Status and Applications. J. Pharm. Innov. 2013, 2(4), 24–28. DOI: 10.7897/2277-4572.02447.
  • FAO and WHO. 2020. Compendium of Food Additive Specifications. Joint FAO/WHO Expert Committee on Food Additives (JECFA), 87th Meeting June 2019. FAO JECFA Monographs 23. Rome. DOI: 10.4060/ca7513en
  • Öğretmen, Ö. Y.; Duyar, H. A. The Effect of Different Extraction Methods and Pre-Treatments on Agar Yield and Physico-Chemical Properties of Gelidium Latifolium (Gelidiaceae, Rhodophyta) from Sinop Peninsula Coast of Black Sea, Turkey. J. App. Phycol. 2018, 302, 1355–1360. DOI:10.1007/s10811-017-1292-2.
  • Lee, K. Y.; Mooney, D. J. Alginate: Properties and Biomedical Applications. Prog. Polym. Sci. 2012, 37(1), 106–126. DOI: 10.1016/j.progpolymsci.2011.06.003.
  • Łabowska, M. B.; Michalak, I.; Detyna, J. Methods of Extraction, Physicochemical Properties of Alginates and Their Applications in Biomedical Field–A Review. Open Chem. 2019, 17(1), 738–762. DOI: 10.1515/chem-2019-0077.
  • Heriyanto, H.; Kustiningsih, I.; Sari, D. K. The Effect of Temperature and Time of Extraction on the Quality of Semi Refined Carrageenan (SRC). MATEC Web Conf. 2018, 154, 01034. DOI: 10.1051/matecconf/201815401034.
  • Khodaparast, M. H.; Razavi, S. M. A. The Effect of Carboxymethyl Gums on the Physiochemical and Sensory Properties of Typical Soft Ice Cream. J. Int. Dairy Technol. 2009, 62(4), 571–576. DOI: 10.1111/j.1471-0307.2009.00526.x.
  • Al-Baarri, A. N.; Legowo, A. M.; Rizqiati, H.; Septianingrum, A.; Sabrina, H. N.; Arganis, L. M.; Mochtar, R. C. Application of Iota and Kappa Carrageenans to Traditional Several Food Using Modified Cassava Flour. In IOP Conference Series: Earth and Environmental Science, International Symposium on Food and Agro-biodiversity (ISFA), Semarang, Indonesia, September 26-27, 2017; IOP Publishing Ltd.: United Kingdom, IOP Publishing, 2018, Vol. 102( 1), p. 012056.
  • Yu, Z.; Zhan, J.; Wang, H.; Zheng, H.; Xie, J.; Wang, X. Analysis of Influencing Factors on Viscosity of Agar Solution for Capsules. J. Phys. 2020, 1653, 012059. DOI: 10.1088/1742-6596/1653/1/012059.
  • Leo, W. J.; McLoughlin, A. J.; Malone, D. M. Effects of Sterilization Treatments on Some Properties of Alginate Solutions and Gels. Biotechnol. Progr. 1990, 6(1), 51–53. DOI: 10.1021/bp00001a008.
  • Kim, S.; Jeong, C.; Cho, S.; Kim, S. B. Effects of Thermal Treatment on the Physical Properties of Edible Calcium Alginate Gel Beads: Response Surface Methodological Approach. Foods. 2019, 8(11), 578. DOI: 10.3390/foods8110578.
  • EFSA Panel on Food Additives and Nutrient Sources Added to Food (ANS); Mortensen, A.; Aguilar, F.; Crebelli, R.; Di Domenico, A.; Frutos, M. J.; Galtier, P.; Gott, D.; Gundret-Remy, U.; Lambe, C.; Leblanc, J. C.;, et al. Re‐evaluation of Agar (E 406) as a Food Additive. EFSA J. 2016, 14(12), e04645. DOI:10.2903/j.efsa.2016.4645.
  • Tobacman, J. K.;. Review of Harmful Gastrointestinal Effects of Carrageenan in Animal Experiments. Environ. Health Perspect. 2001, 109(10), 983–994. DOI: 10.1289/ehp.01109983.
  • Sundar Raj, A. A.; Rubila, S.; Jayabalan, R.; Ranganathan, T. V. A. Review on Pectin: Chemistry Due to General Properties of Pectin and Its Pharmaceutical Uses. Sci. Rep. 2012, 1, 550. DOI: 10.4172/scientificreports.550.
  • Robledo, V. R.; Vázquez, L. I. C. Pectin - Extraction, Purification, Characterization and Applications. In Pectins - Extraction, Purification, Characterization and Applications, Masuelli, M., Ed.; IntechOpen: London, UK, 2019, pp 65-84. DOI: 10.5772/intechopen.85588.
  • BeMiller, J.Inulin and Konjac Glucomannan. In Carbohydrate Chemistry for Food Scientists, 3rd ed; AOAC International: Rockville, Maryland, 2019; pp 253–259.
  • Ridley, B. L.; O’Neill, M. A.; Mohnen, D. Pectins: Structure, Biosynthesis, and Oligogalacturonide-Related Signaling. Phytochem. 2001, 57(6), 929–967. DOI: 10.1016/S0031-9422(01)00113-3.
  • Goubet, F.; Barton, C. J.; Mortimer, J. C.; Yu, X.; Zhang, Z.; Miles, G. P.; Richens, J.; Liepman, A. H.; Seffen, K.; Dupree, P. Cell Wall Glucomannan in Arabidopsis Is Synthesised by CSLA Glycosyltransferases, and Influences the Progression of Embryogenesis. Plant J. 2009, 60, 527–538. DOI: 10.1111/j.1365-313X.2009.03977.x.
  • Chan, S. Y.; Choo, W. S. Effect of Extraction Conditions on the Yield and Chemical Properties of Pectin from Cocoa Husks. Food Chem. 2013, 141(4), 3752–3758. DOI: 10.1016/j.foodchem.2013.06.097.
  • Impaprasert, R.; Borompichaichartkul, C.; Srzednicki, G. A New Drying Approach to Enhance Quality of Konjac Glucomannan Extracted from Amorphophallus Muelleri. Drying Tech. 2014, 32(7), 851–860. DOI: 10.1080/07373937.2013.871728.
  • Duconseille, A.; Astruc, T.; Quintana, N.; Meersman, F.; Sante-Lhoutellier, V. Gelatin Structure and Composition Linked to Hard Capsule Dissolution: A Review. Food Hydrocolloids. 2015, 43, 360–376. DOI: 10.1016/j.foodhyd.2014.06.006.
  • Gómez-Guillén, M. C.; Giménez, B.; López-Caballero, M. A.; Montero, M. P. Functional and Bioactive Properties of Collagen and Gelatin from Alternative Sources: A Review. Food Hydrocolloids. 2011, 25(8), 1813–1827. DOI: 10.1016/j.foodhyd.2011.02.007.
  • Park, J. H.; Choe, J. H.; Kim, H. W.; Hwang, K. E.; Song, D. H.; Yeo, E. J.; Kim, H. Y.; Choi, Y. S.; Lee, S. H.; Kim, C. J. Effects of Various Extraction Methods on Quality Characteristics of Duck Feet Gelatin. Korean J. Food Sci. An. 2013, 33(2), 162–169. DOI: 10.5851/kosfa.2013.33.2.162.
  • Lertsutthiwong, P.; How, N. C.; Chandrkrachang, S.; Stevens, W. F. Effect of Chemical Treatment on the Characteristics of Shrimp Chitosan. J. Met. Mater. Mineral. 2012, 12(1), 11–18.
  • Islam, S.; Bhuiyan, M. R.; Islam, M. N. Chitin and Chitosan: Structure, Properties and Applications in Biomedical Engineering. J. Polym Environ. 2017, 253, 854–866. DOI:10.1007/s10924-016-0865-5.
  • Lopez-Santamarina, A.; Mondragon, A. D. C.; Lamas, A.; Miranda, J. M.; Franco, C. M.; Cepeda, A. Animal-Origin Prebiotics Based on Chitin: An Alternative for the Future? A Critical Review. Foods. 2020, 9(6), 782. DOI: 10.3390/foods9060782.
  • Baziwane, D.; He, Q. Gelatin: The Paramount Food Additive. Food Rev. Int. 2003, 19(4), 423–435. DOI: 10.1081/fri-120025483.
  • El-Aidie, S. A. A.;. M. A Review on Chitosan: Ecofriendly Multiple Potential Applications in the Food Industry. Int. J. Adv. Life Sci. Res. 2018, 1–14. DOI: 10.31632/ijalsr.2018v01i01.001.
  • Sarode, A. R.; Sawale, P. D.; Khedkar, C. D.; Kalyankar, S. D.; Pawshe, R. D. Casein and Caseinate: Method of Manufacture. In The Encyclopedia of Food and Health, 1st ed.; Caballero, B., Finglar, P., Toldra, F., Eds.; Oxford, Academic press: London, UK, 2016; pp 676–682.
  • Tovar Jiménez, X.; Arana Cuenca, A.; Téllez Jurado, A.; Abreu Corona, A.; Muro Urista, C. R. Traditional Methods for Whey Protein Isolation and Concentration: Effects on Nutritional Properties and Biological Activity. J. Mex. Chem. Soc. 2012, 56(4), 369–377.
  • Tavares, G. M.; Croguennec, T.; Carvalho, A. F.; Bouhallab, S. Milk Proteins as Encapsulation and Delivery Vehicles: Applications and Trends. Trends Food Sci. Technol. 2014, 37(1), 5–20. DOI: 10.1016/j.tifs.2014.02.008.
  • Guo, M.; Wang, G. Milk Protein Polymer and Its Application in Environmentally Safe Adhesives. Polym. 2016, 8(9), 324. DOI: 10.3390/polym8090324.
  • Petrotos, K.; Tsakali, E.; Goulas, P.; D’Alessandro, A. G. Casein and Whey Proteins in Human Health. In Milk and Dairy Products as Functional Foods; Kanekanian, A., Ed.; Wiley-Blackwel: New Jersey, U.S.A, 2014; pp 94–146.
  • Broyard, C.; Gaucheron, F. Modifications of Structures and Functions of Caseins: A Scientific and Technological Challenge. Dairy Sci. Technol. 2015, 95(6), 831–862. DOI: 10.1007/s13594-015-0220-y.
  • Sauer, A.; Moraru, C. I. Heat Stability of Micellar Casein Concentrates as Affected by Temperature and pH. J. Dairy Sci. 2012, 95(11), 6339–6350. DOI: 10.3168/jds.2012-5706.
  • Demetriades, K.; Coupland, J. N.; McClements, D. J. Physicochemical Properties of Whey Protein‐stabilized Emulsions as Affected by Heating and Ionic Strength. J. Food Sci. 1997, 62(3), 462–467. DOI: 10.1111/j.1365-2621.1997.tb04407.x.
  • Sliwinski, E. L.; Roubos, P. J.; Zoet, F. D.; Van Boekel, M. A. J. S.; Wouters, J. T. M. Effects of Heat on Physicochemical Properties of Whey Protein-stabilised Emulsions. Colloids Surf. B. 2003, 31(1–4), 231–242. DOI: 10.1016/S0927-7765(03)00143-7.
  • USFDA. 2019. CFR - Code of Federal Regulations Title 21. ( accessed September 21, 2020). https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=582.1748.
  • EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies); Turck, D.; Bresson, J., . L.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K. I.; Mangelsdorf, I.; McArdle, H. J.; Naska, A.;, et al. Scientific Opinion on the Safety of Whey Basic Protein Isolates as a Novel Food Pursuant to Regulation (EU) 2015/2283. EFSA J. 2018, 16(7), 5360–5378. DOI:10.2903/j.efsa.2018.5360.
  • Luvielmo, M. D. M.; Borges, C. D.; Toyama, D. D. O.; Vendruscolo, C. T.; Scamparini, A. R. P. Structure of Xanthan Gum and Cell Ultrastructure at Different Times of Alkali Stress. Braz. J. Microbiol. 2016, 47(1), 102–109. DOI: 10.1016/j.bjm.2015.11.006.
  • Wang, X.; Xu, P.; Yuan, Y.; Liu, C.; Zhang, D.; Yang, Z.; Yang, C.; Ma, C. Modeling for Gellan Gum Production by Sphingomonas Paucimobilis ATCC 31461 in a Simplified Medium. Appl. Environ. Microbiol. 2006, 72(5), 3367–3374. DOI: 10.1128/aem.72.5.3367-3374.2006.
  • Huang, J.; Jiang, S.; Xu, X.; Wu, H.; Zhu, X.; Ke, Z.; Cai, J.; Huang, L.; Xu, Z. Effects of Carbon/Nitrogen Ratio, Dissolved Oxygen and Impeller Type on Gellan Gum Production in Sphingomonas Paucimobilis. Ann. Microbiol. 2012, 621, 299–305. DOI:10.1007/s13213-011-0261-2.
  • Purama, R. K.; Goyal, A. Dextransucrase Production by Leuconostoc Mesenteroides. Indian J. Microbiol. 2005, 45(2), 89–101.
  • Sworn, G.;. Gellan Gum. In Handbook of Hydrocolloids, 2nd ed.; Phillips, G.O., Williams, P.A., Eds.; Woodhead Publishing: New York, 2009; pp 204–227.
  • Cassanelli, M.; Prosapio, V.; Norton, I.; Mills, T. Acidified/ Basified Gellan Gum Gels: The Role of the Structure in Drying/Rehydration Mechanisms. Food Hydrocolloids. 2018, 82, 346–354. DOI: 10.1016/j.foodhyd.2018.04.024.
  • Pachekrepapol, U.; Horne, D. S.; Lucey, J. A. Effect of Dextran and Dextran Sulfate on the Structural and Rheological Properties of Model Acid Milk Gels. J. Dairy Sci. 2015, 98(5), 2843–2852. DOI: 10.3168/jds.2014-8660.
  • Jindal, N.; Khattar, J. S. Microbial Polysaccharides in Food Industry. In Biopolymers for Food Design, Grumezescu A.M., Holban, A.M. Eds.; Academic Press: London, UK, 2018; 95–123. DOI: 10.1007/978-3-319-03751-6_66-1.
  • Chiu, C.; Solarek, D. Modification of Starches. In Starch: Chemistry and Technology; BeMiller, J.N., Whistler, R.L., Eds.; Elesvier: Burlington, USA, 2009; pp 629–655.
  • Singh, V.; Ali, S. Z. Properties of Starches Modified by Different Acids. Int. J. Food Prop. 2008, 11(3), 495–507. DOI: 10.1080/10942910802083774.
  • Qin, Y.; Zhang, H.; Dai, Y.; Hou, H.; Dong, H. Effect of Alkali Treatment on Structure and Properties of High Amylose Corn Starch Film. Materials. 2019, 12(10), 1705. DOI: 10.3390/ma12101705.
  • Korma, S. A.; Niazi, S.; Ammar, A. F.; Zaaboul, F.; Zhang, T. Chemically Modified Starch and Utilization in Food Stuffs. Int. J. Nutr. Food Sci. 2016, 5(4), 264–272. DOI: 10.11648/j.ijnfs.20160504.15.
  • Luckett, C. R.; Wang, Y. J. Application of Enzyme‐Treated Corn Starches in Breakfast Cereal Coating. J. Food Sci. 2012, 77(8), C901–C906. DOI: 10.1111/j.1750-3841.2012.02794.x.
  • Krempel, M.; Griffin, K.; Khouryieh, H. Hydrocolloids as Emulsifiers and Stabilizers in Beverage Preservation. In Preservatives and Preservation Approaches in Beverages; Grumezescu, A., Holban, A.M., Eds.; Academic Press: Cambridge, United States, 2019; pp 427–465.
  • Tian, S.; Chen, Y.; Chen, Z.; Yang, Y.; Wang, Y. Preparation and Characteristics of Starch Esters and Its Effects on Dough Physicochemical Properties. J. Food Qual. 2018. DOI: 10.1155/2018/1395978.
  • Le Thanh-Blicharz, J.; Lewandowicz, G.; Błaszczak, W.; Prochaska, K. Starch Modified by High-pressure Homogenisation of the Pastes–Some Structural and Physico-chemical Aspects. Food Hydrocolloids. 2012, 27(2), 347–354. DOI: 10.1016/j.foodhyd.2011.10.004.
  • El Halal, S. L. M.; Colussi, R.; Pinto, V. Z.; Bartz, J.; Radunz, M.; Carreño, N. L. V.; Dias, A. R. G.; Zavareze, E. R. Structure, Morphology and Functionality of Acetylated and Oxidised Barley Starches. Food Chem. 2015, 168, 247–256. DOI: 10.1016/j.foodchem.2014.07.046.
  • Jia, F.; Liu, H. J.; Zhang, G. G. Preparation of Carboxymethyl Cellulose from Corncob. Procedia. Environ. Sci. 2016, 311, 98–102. DOI:10.1016/j.proenv.2016.02.013.
  • Nasatto, P. L.; Pignon, F.; Silveira, J. L.; Duarte, M. E. R.; Noseda, M. D.; Rinaudo, M. Methylcellulose, A Cellulose Derivative with Original Physical Properties and Extended Applications. Polymers. 2015, 7(5), 777–803. DOI: 10.3390/polym7050777.
  • Zia-ud, D.; Xiong, H.; Fei, P. Physical and Chemical Modification of Starches: A Review. Crit. Rev. Food Sci. Nutr. 2015, 57(12), 2691–2705. DOI: 10.1080/10408398.2015.1087379.
  • Li, H.; Gidley, M. J.; Dhital, S. High‐amylose Starches to Bridge the “Fiber Gap”: Development, Structure, and Nutritional Functionality. Compr. Rev. Food Sci. Food Saf. 2019, 18(2), 362–379. DOI: 10.1111/1541-4337.12416.
  • Egharevba, H. O.;. Chemical Properties of Starch and Its Application in the Food Industry. in Chemical Properties of Starch, Emeje, M., Ed.; IntechOpen: Shanghai, China, 2019. Vol. 9, pp 63-88. DOI: 10.5772/intechopen.87777.
  • Singh, A. V.; Nath, L. K.; Singh, A. Pharmaceutical, Food and Non-Food Applications of Modified Starches: A Critical Review. Elect. J. Env. Agric. Food Chem. 2010, 9(7), 1214–1221.
  • Saxena, I. M.; Brown, R. M., Jr. Biosynthesis of Cellulose. In Progress in Biotechnology,  Morohoshi, N., Komamine, A. Eds.; Elsevier: Amsterdam, Netherlands, 2001; Vol. 18, pp 69–76.
  • Brigham, J. S.; Adney, W. S.; Himmel, M. E. Hemicellulases: Diversity and Applications. In Handbook on Bioethanol; Wayman, C. E. Ed.; Routledge: England, UK, 2018; pp 119–141.
  • Gulati, I.; Park, J.; Maken, S.; Lee, M. G. Production of Carboxymethylcellulose Fibers from Waste Lignocellulosic Sawdust Using NaOH/NaClO2 Pretreatment. Fibers Polym. 2014, 15(4), 680–686. DOI: 10.1007/s12221-014-0680-3.
  • Asl, S. A.; Mousavi, M.; Labbafi, M. Synthesis and Characterization of Carboxymethyl Cellulose from Sugarcane Bagasse. J. Food Process. Technol. 2017, 8, 1–6. DOI: 10.4172/2157-7110.1000687.
  • Hindi, S. S.;. Microcrystalline Cellulose: Its Processing and Pharmaceutical Specifications. Biocrystals J. 2016, 1(1), 26–38.
  • Chauhan, Y. P.; Khedkar, S. V.; Bhagat, S. L.; Pardey, A. P. A Comparative Study of Acid Hydrolysis of Cellulosic Waste (Waste of Hosiery Industry) for Manufacturing Microcrystalline Cellulose. Int. J. Chem. Sci. 2010, 8(4), 2227–2235.
  • Deshmukh, K.; Ahamed, M. B.; Deshmukh, R. R.; Pasha, S. K.; Sadasivuni, K. K.; Polu, A. R.; Ponnamma, D.; A-a., A. M.; Chidambaram, K. Newly Developed Biodegradable Polymer Nanocomposites of Cellulose Acetate and Al2O3 Nanoparticles with Enhanced Dielectric Performance for Embedded Passive Applications. J. Mater. Sci.: Mater Electron. 2017, 281, 973–986. DOI:10.1007/s10854-016-5616-9.
  • Marques-Marinho, F. D.; Vianna-Soares, C. D. Cellulose and Its Derivatives Use in the Pharmaceutical Compounding Practice. in Cellulose-Medical, Pharmaceutical and Electronic Applications, Theo, V.D.V., Goudbut, L., Eds.; IntechOpen: Shanghai, China, 2013, pp 141–162. DOI: 10.5772/56637.
  • EFSA Panel on Food Additives and Nutrient Sources Added to Food (ANS); Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Domenico, A. D.; Dusemund, B.; Filipič, M.; Frutos, M. J.; Galtier, P.; Gott, D.;, et al. Re‐evaluation of Celluloses E 460 (I), E 460 (Ii), E 461, E 462, E 463, E 464, E 465, E 466, E 468 and E 469 as Food Additives. EFSA J. 2018, 16(1), e05047.
  • Salehi, F.;. Effect of Common and New Gums on the Quality, Physical, and Textural Properties of Bakery Products: A Review. J. Texture Stud. 2019, 51(2), 361–370. DOI: 10.1111/jtxs.12482.
  • Asghar, A.; Anjum, F. M.; Ahmed, A.; Hussain, S.; Tariq, M. W. Effect of Polyols on Quality and Acceptability of Frozen Dough Bread. Pak. J. Food Sci. 2005, 15(1–2), 11–14.
  • Brownlee, I. A.; Allen, A.; Pearson, J. P.; Dettmar, P. W.; Havler, M. E.; Atherton, M. R.; Onsøyen, E. Alginate as a Source of Dietary Fiber. Crit. Rev. Food Sci. Nutr. 2005, 45(6), 497–510. DOI: 10.1080/10408390500285673.
  • Pereira-Pacheco, F.; Robledo, D.; Rodríguez-Carvajal, L.; Freile-Pelegrín, Y. Optimization of Native Agar Extraction from Hydropuntia Cornea from Yucatán, México. Bioresour. Technol. 2007, 98(6), 1278–1284. DOI: 10.1016/j.biortech.2006.05.016.
  • Shalini, K. G.; Laxmi, A. Influence of Additives on Rheological Characteristics of Wholewheat Dough and Quality of Chapatti (Indian Unleavened Flat Bread) Part I-Hydrocolloids. Food Hydrocolloids. 2007, 21(1), 110–117. DOI: 10.1016/j.foodhyd.2006.03.002.
  • Hajmohamadi, A.; Keramat, J.; Hojjatoleslamy, M.; Molavi, H. Effect of Tragacanth Gum on Texture and Staling of Commercial Sponge Cake. J. Herb. Drugs. 2013, 4(1), 39–42.
  • Khan, T.; Park, J. K.; Kwon, J. Functional Biopolymers Produced by Biochemical Technology considering Applications in Food Engineering. Korean J. Chem. Eng. 2007, 24(5), 816–826. DOI: 10.1007/s11814-007-0047-1.
  • Miyazaki, M.; Maeda, T.; Morita, N. Effect of Various Dextrin Substitutions for Wheat Flour on Dough Properties and Bread Qualities. Food Res. Int. 2004, 37(1), 59–65. DOI: 10.1016/j.foodres.2003.08.007.
  • Akram, N.; Pasha, I.; Huma, N.; Asghar, M. Effect of Modified Cereal Starches on Dough and Bread Quality. Pak. J. Agric. Sci. 2017, 54(1), 145–151.
  • Correa, M. J.; Ferrero, C. Comparative Study of Commercial Modified Celluloses as Bread Making Additives. Int. J. Food Prop. 2015, 18(4), 849–861. DOI: 10.1080/10942912.2013.869598.
  • Bourekoua, H.; Różyło, R.; Benatallah, L.; Wójtowicz, A.; Łysiak, G.; Zidoune, M. N.; Sujak, A. Characteristics of Gluten-Free Bread: Quality Improvement by the Addition of Starches/Hydrocolloids and Their Combinations Using A Definitive Screening Design. Eur. Food Res. Technol. 2018, 244(2), 345–354. DOI: 10.1007/s00217-017-2960-9.
  • Ghanbari, M.; Farmani, J. Influence of Hydrocolloids on Dough Properties and Quality of Barbari: An Iranian Leavened Flat Bread. J. Agric. Sci. Technol. 2013, 15(3), 545–555.
  • Tabara, A.; Miyajima, C.; Moki, N.; Kasahara, F.; Seguchi, M. Improvement of Bread Making Properties by the Addition of Alginates. Food Sci. Technol. Res. 2016, 22(1), 145–151. DOI: 10.3136/fstr.22.145.
  • Miller, R. A.; Maningat, C. C.; Hoseney, R. C. Modified Wheat Starches Increase Bread Yield. Cereal Chem. 2008, 85(6), 713–715. DOI: 10.1094/CCHEM8560713.
  • Nessrien, M. N.; Gadallah, M. G. E. Effect of Adding Different Gums and Emulsifiers on Quality Attributes and Staling Rate of Microwave-Baked Cakes. Alex. J. Fd. Sci. Technol. 2011, 8(2), 1–12.
  • Song, Z. S.; Li, J. Y.; Zhou, X. S.; Guangzhou, H. I. Effect of Hydrophilic Colloid on the Quality of Sponge Cake. Mod. Food Sci. Technol. 2013, 29(9), 2206–2210.
  • Sánchez‐Paz, L. A.; Pérez‐Alonso, C.; Dublán‐García, O.; Arteaga‐Arcos, J. C.; Mayorga‐Rojas, M.; Romero‐Salazar, L.; Díaz‐Ramírez, M. Effect of A Mixture of Canola‐Chia Oils and Gelatin Addition on A Pound Cake Reduced in Margarine. J. Food Process. Preserv. 2020, 44(1), e14298. DOI: 10.1111/jfpp.14298.
  • Ebrahimi, F.; Tarzi, B. G.; Asghari, M. Effect of Pre-Gelatinized Wheat Starch on Physical and Rheological Properties of Shortened Cake Batter and Cake Texture. Eng. Tech. Appl. Sci. Res. 2016, 6(5), 1162–1166. DOI: 10.48084/etasr.751.
  • Sahnoun, M.; Ismail, N.; Kammoun, R. Enzymatically Hydrolysed, Acetylated and Dually Modified Corn Starch: Physico-Chemical, Rheological and Nutritional Properties and Effects on Cake Quality. J. Food Sci. Technol. 2016, 53(1), 481–490. DOI: 10.1007/s13197-015-1984-z.
  • Lee, Y. T.; Puligundla, P. Characteristics of Reduced-Fat Muffins and Cookies with Native and Modified Rice Starches. Emirates J. Food Agric. 2016, 285, 311–316. DOI:10.9755/ejfa.2015-05-227.
  • Riaz, A.; Pasha, I.; Sharif, M. K.; Jamil, A. Physico-Chemical and Organoleptic Properties of Cookies Supplemented with Chemically Modified Starch. Pak. J. Agric. Sci. 2018, 55(1), 169–174.
  • Pérez-Carrillo, E.; Frías-Escobar, A.; Gutiérrez-Mendívil, K.; Guajardo-Flores, S.; Serna-Saldívar, S. O. Effect of Maize Starch Substitution on Physicochemical and Sensory Attributes of Gluten-Free Cookies Produced from Nixtamalized Flour. J. Food Process. 2017. DOI: 10.1155/2017/6365182.
  • Tamer, E.; Karaman, B.; Utku Copur, O. A Traditional Turkish Beverage: Salep. Food Rev. Int. 2006, 22(1), 43–50. DOI: 10.1080/87559120500379902.
  • Li, L.; Kim, J. H.; Jo, Y. J.; Min, S. G.; Chun, J. Y. Effect of Porcine Collagen Peptides on the Rheological and Sensory Properties of Ice Cream. Korean J. Food Sci. Anim. Res. 2015, 352, 156–163. DOI:10.5851/fns.2015.35.2.156.
  • Ibrahim, A. H.; Khalifa, S. A. The Effects of Various Stabilizers on Physiochemical Properties of Camel’s Milk Yoghurt. J. Am. Sci. 2015, 11(1), 15–24.
  • Naresh, L.; Shailaja, M. Stabilizer Blends and Their Importance in Ice Cream Industry-a Review. N. Z. Food Mag. 2006, 24(6), 7–12.
  • Bahramparvar, M.; Tehrani, M. Application and Functions of Stabilizers in Ice Cream. Food Rev. Int. 2011, 27(4), 389–407. DOI: 10.1080/87559129.2011.563399.
  • Hematyar, N.; Samarin, A. M.; Poorazarang, H.; Elhamirad, A. H. Effect of Gums on Yogurt Characteristics. World Appl. Sci. J. 2012, 20(5), 661–665. DOI: 10.5829/idosi.wasj.2012.20.05.2353.
  • Abbasi, S.; Mohammadi, S. Stabilization of Milk–Orange Juice Mixture Using Persian Gum: Efficiency and Mechanism. Food Biosci. 2013, 2, 53–60. DOI: 10.1016/j.fbio.2013.04.002.
  • Danesh, E.; Goudarzi, M.; Jooyandeh, H. Effect of Whey Protein Addition and Transglutaminase Treatment on the Physical and Sensory Properties of Reduced-Fat Ice Cream. J. Dairy Sci. 2017, 100(7), 5206–5211. DOI: 10.3168/jds.2016-12537.
  • Babu, A. S.; Parimalavalli, R.; Mohan, R. J. Effect of Modified Starch from Sweet Potato as A Fat Replacer on the Quality of Reduced Fat Ice Creams. J. Food Meas. Charact. 2018, 12(4), 2426–2434. DOI: 10.1007/s11694-018-9859-4.
  • Sangle Jagdish, K.; Sawate Arvind, R.; Rodge Ashok, B. Utilization of Guar Gum as Stabilizer in Ice Cream. Int. J. Curr. Microbiobiol. App. Sci. 2015, 4(1), 284–287.
  • Guven, M.; Karaca, O. B.; Kacar, A. The Effects of the Combined Use of Stabilizers Containing Locust Bean Gum and of the Storage Time on Kahramanmaraş‐Type Ice Creams. Int. J. Dairy Technol. 2003, 56(4), 223–228. DOI: 10.1046/j.1471-0307.2003.00108.x.
  • Pintor, A.; Totosaus, A. Ice Cream Properties Affected by Lambda-Carrageenan or Iota-Carrageenan Interactions with Locust Bean Gum/Carboxymethylcellulose Mixtures. Int. Food Res. J. 2012, 19(4), 1409–1414.
  • Murtaza, M. A.; Mueenuddin, G.; Huma, N.; Shabbir, M. A.; Mahmood, S. Quality Evaluation of Ice Cream Prepared with Different Stabilizers/Emulsifier Blends. Int. J. Agric. Biol. 2004, 6(1), 65–67.
  • Milliatti, M. C.; Lannes, S. C. D. S. Impact of Stabilizers on the Rheological Properties of Ice Creams. Food Sci. Technol. 2018, 38(4), 733–739. DOI: 10.1590/fst.31818.
  • Tekin, E.; Sahin, S.; Sumnu, G. Physicochemical, Rheological, and Sensory Properties of Low-Fat Ice Cream Designed by Double Emulsions. Eur. J. Lipid Sci. Tech. 2017, 1199, 1600505. DOI:10.1002/ejlt.201600505.
  • Sharma, M.; Singh, A. K.; Yadav, D. N. Rheological Properties of Reduced Fat Ice Cream Mix Containing Octenyl Succinylated Pearl Millet Starch. J. Food Sci. Technol. 2017, 54(6), 1638–1645. DOI: 10.1007/s13197-017-2595-7.
  • Okoth, E. M.; Kinyanjui, P. K.; Kinyuru, J. N.; Juma, F. O. Effects of Substituting Skimmed Milk Powder with Modified Starch in Yoghurt Production. J. Agric. Sci. Technol. 2012, 13(2), 15–32.
  • Schmidt, K. A.; Herald, T. J.; Khatib, K. A. Modified Wheat Starches Used as Stabilizers in Set‐Style Yogurt. J. Food Qual. 2001, 24(5), 421–434. DOI: 10.1111/j.1745-4557.2001.tb00620.x.
  • Imbachí-Narváez, P. C.; Sepúlveda-valencia, J. U.; Rodriguez-Sandoval, E. Effect of Modified Cassava Starch on the Rheological and Quality Properties of A Dairy Beverage Prepared with Sweet Whey. Food Sci. Technol. 2019, 39(1), 134–142. DOI: 10.1590/1678-457x.28017.
  • Sanyal, M. K.; Pal, S. C.; Gangopadhyay, S. K.; Dutta, S. K.; Ganguli, D.; Das, S.; Maiti, P. Influence of Stabilizers on Quality of Sandesh from Buffalo Milk. J. Food. Sci. Technol. 2011, 48, 740–744. DOI: 10.1007/s13197-010-0176-0.
  • Akkarachaneeyakorn, S.; Tinrat, S. Effects of Types and Amounts of Stabilizers on Physical and Sensory Characteristics of Cloudy Ready‐to‐Drink Mulberry Fruit Juice. Food Sci. Nutri. 2015, 3(3), 213–220. DOI: 10.1002/fsn3.206.
  • Chawla, P.; Kumar, N.; Kaushik, R.; Dhull, S. B. Synthesis, Characterization and Cellular Mineral Absorption of Nanoemulsions of Rhododendron Arboreum Flower Extracts Stabilized with Gum Arabic. J. Food Sci. Tech. 2019, 56(12), 5194–5203. DOI: 10.1007/s13197-019-03988-z.
  • Dhull, S. B.; Anju, M.; Punia, S.; Kaushik, R.; Chawla, P. Application of Gum Arabic in Nanoemulsion for Safe Conveyance of Bioactive Components. In Nanobiotechnology in Bioformulations,Prasad, R., Kumar, V., Kumar, M., Choudhary, D., Eds.; Springer: Cham, 2019; pp 85–98.
  • Ogbodo, A.; Okoroji, N.; Okoroji, N. Production and Stabilization of Coconut-Carrot Drink Using Gum Arabic as Stabilizer. Afr. J. Agric Food Secur. 2019, 7(1), 289–292.
  • Taiwo, A. C.; Gift, N. O. Studies on the Addition of Hydrocolloids to Tomato-Carrot Juice Blend. J. Nutr. Food Sci. 2013, 3, 1–7. DOI: 10.4172/2155-9600.1000212.
  • Khan, M.; Ayub, M.; Durrani, Y.; Wahab, S.; Ali, M.; Ali, S. A.; Shakoor, A.; Rehman, Z. Effect of Sucrose and Stabilizer on the Overall Quality of Guava Bar. World J. Pharm. Pharm. Sci. 2014, 3(5), 130–146.
  • Koocheki, A.; Ghandi, A.; Razavi, S. M. A.; Mortazavi, S. A.; Vasiljevic, T. The Rheological Properties of Ketchup as A Function of Different Hydrocolloids and Temperature. Int. J. Food Sci. Technol. 2009, 44(3), 596–602. DOI: 10.1111/j.1365-2621.2008.01868.
  • Poiana, M. A.; Munteanu, M. F.; Bordean, D. M.; Gligor, R.; Alexa, E. Assessing the Effects of Different Pectins Addition on Color Quality and Antioxidant Properties of Blackberry Jam. Chem. Cent. J. 2013, 7(1), 121. DOI: 10.1186/1752-153X-7-121.
  • Pichler, A.; Pozderović, A.; Moslavac, T.; Popović, K. Influence of Sugars, Modified Starches and Hydrocolloids Addition on Colour and Thermal Properties of Raspberry Cream Fillings. Pol. J. Food Nutr. Sci. 2017, 67(1), 49–58. DOI: 10.1515/pjfns-2016-0018.
  • Amini Sarteshnizi, R.; Hosseini, H.; Mousavi Khaneghah, A.; Karimi, N. Review on Application of Hydrocolloids in Meat and Poultry Products. Int. Food Res. J. 2015, 22(3), 872–887.
  • Norsker, M.; Jensen, M.; Alder-Nissen, J. Enzymatic Gelation of Sugar Beet Pectin in Food Products. Food Hydrocolloids. 2000, 14(3), 237–243. DOI: 10.1016/S0268-005X(00)00016-3.
  • Lee, C. H.; Chin, K. B. Effects of Pork Gelatin Levels on the Physicochemical and Textural Properties of Model Sausages at Different Fat Levels. LWT. 2016, 74, 325–330. DOI: 10.1016/j.lwt.2016.07.032.
  • Mwove, J. K.; Gogo, L. A.; Chikamai, B. N.; Omwamba, M. N.; Mahungu, S. M. Preparation and Quality Evaluation of Extended Beef Rounds Containing Gum Arabic from Acacia Senegal Var. Kerensis. Food Nutr. Sci. 2016, 7(11), 977–988. DOI: 10.4236/fns.2016.711096.
  • Rather, S. A.; Masoodi, F. A.; Akhter, R.; Gani, A.; Wani, S. M.; Malik, A. H. Xanthan Gum as a Fat Replacer in Goshtaba-A Traditional Meat Product of India: Effects on Quality and Oxidative Stability. J. Food Sci. Tech. 2015, 52(12), 8104–8112. DOI: 10.1007/fns.2016.1319701519607.
  • Funami, T.; Yada, H.; Nakao, Y. A. Curdlan Properties for Application in Fat Mimetics for Meat Products. J. Food Sci. 1998, 63(2), 283–287. DOI: 10.1111/j.1365-2621.1998.tb15727.x.
  • McArdle, R.; Hamill, R. Utilisation of Hydrocolloids in Processed Meat Systems. In Processed Meats; Kerry, J.P., Kerry, J.F., Eds.; Woodhead Publishing: Cambridge, 2011; pp 243–269.
  • Demirci, Z. O.; Yılmaz, I.; Demirci, A. S. Effects of Xanthan, Guar, Carrageenan and Locust Bean Gum Addition on Physical, Chemical and Sensory Properties of Meatballs. J. Food Sci.Tech. 2014, 515, 936–942. DOI:10.1007/s13197-011-0588-5.
  • Kilincceker, O.; Yilmaz, M. T. Effects of Different Gums on the Some Properties of Fried Beef Patties. Carpathian J. Food Sci. Technol. 2016, 8(2), 63–70.
  • Gibis, M.; Schuh, V.; Weiss, J. Effects of Carboxymethyl Cellulose (CMC) and Microcrystalline Cellulose (MCC) as Fat Replacers on the Microstructure and Sensory Characteristics of Fried Beef Patties. Food Hydrocolloids. 2015, 45, 236–246. DOI: 10.1016/j.foodhyd.2014.11.021.
  • Kanatt, S. R.; Rao, M. S.; Chawla, S. P.; Sharma, A. Effects of Chitosan Coating on Shelf-Life of Ready-To-Cook Meat Products during Chilled Storage. LWT Food Sci. Technol. 2013, 53(1), 321–326. DOI: 10.1016/j.lwt.2013.01.019.
  • Sharma, H.; Sharma, B. D.; Talukder, S.; Mendiratta, S. K.; Kumar, R. R. Effect of Gum Acacia on the Product Characteristics of Extended Restructured Mutton Chops. Indian J. Anim. Res. 2014, 485, 504–508. DOI:10.5958/0976-0555.2014.00020.X.
  • Gai, S.; Zhang, Z.; Zou, Y.; Liu, D. Effects of Hydrocolloid Injection on the Eating Quality of Pork Analyzed Based on Low-Field Nuclear Magnetic Resonance (LF-NMR). J. Food Qual. 2019, 1–7. DOI: 10.1155/2019/3536824.
  • Kim, T. K.; Shim, J. Y.; Hwang, K. E.; Kim, Y. B.; Sung, J. M.; Paik, H. D.; Choi, Y. S. Effect of Hydrocolloids on the Quality of Restructured Hams with Duck Skin. Poult. Sci. 2018, 97(12), 4442–4449. DOI: 10.3382/ps/pey309.
  • Mohammadi, M.; Oghabi, F.; Neyestani, T. R.; Hasani, I. Effect of Modified Starch Used Alone or in Combination with Wheat Flour on the Sensory Characteristics of Beef Sausage. J. Paramedical Sci. 2013, 4, 20–25.
  • Cierach, M.; Idaszewska, N.; Niedzwiedz, J. Quality Features of Meat Products with the Addition of Modified Starches. Agric.Food. 2014, 2, 439–447.
  • Petcharat, T.; Benjakul, S. Effect of Gellan and Calcium Chloride on Properties of Surimi Gel with Low and High Setting Phenomena. RSC Adv. 2017, 7(83), 52423–52434. DOI: 10.1039/C7RA10869A.
  • FSSAI. 2011. Appendix A: List of Food Additives. ( accessed January 20, 2020). http://old.fssai.gov.in/Portals/0/Pdf/appendix_a_and_b_revised%2830-12-2011%29.pdf.
  • Elkhalifa, A. E.; Mohammed, A. M.; Mustafa, M. A.; Abdullahi, H. E. Use of Guar Gum and Gum Arabic as Bread Improvers for the Production of Bakery Products from Sorghum Flour. Food Sci. Technol. Res. 2007, 13(4), 327–331. DOI: 10.3136/fstr.13.327.
  • Mikuš, Ľ.; Valík, Ľ.; Dodok, L. Usage of Hydrocolloids in Cereal Technology. Acta Univ. Agric et silvic. Mendel. Brun. 2014, 59(5), 325–334. DOI: 10.11118/actaun201159050325.
  • Maleki, G.; MilaNi, J. M. Effect of Guar Gum, Xanthan Gum, CMC and HPMC on Dough Rhealogy and Physical Properties of Barbari Bread. Food Sci. Technol. Res. 2013, 19(3), 353–358. DOI: 10.3136/fstr.19.353.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.