1,488
Views
17
CrossRef citations to date
0
Altmetric
Review

Quinoa and Amaranth as Functional Foods: A Review

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Gomes, H. M. S.; Teixeira, E. M. B. Pirâmide Alimentar: Guia Para Alimentação Saudável. Bol. Tec. IFTM. 2016, 2, 10–15.
  • Brito, V. S.;. Quinoa of Genesis to the XXI Century: 500 Years of Dormancy for a New Perspective on the Alimentation. Cont. Aliment. 2016, 5, 81–98.
  • Munhoz, M. P.; Souza, J. O.; Lemos, A. C. G.; Gonçalves, R. D.; Fabrizzi, F.; Oliveira, L. C. N. Efeito Hipocolesterolmiante Do Amaranto. Rev. Odontol. Arac. 2014, 35, 51–54.
  • Spehar, C. R.; Teixeira, D. L.; Cabezas, W. A. R. L.; Erasmo, E. A. L. Amaranth BRS Alegria: Alternative for Diversification of Cropping Systems. Pesq. Agropec. Bras. 2003, 38(5), 659–663. DOI: 10.1590/S0100-204X2003000500015.
  • Spehar, C. R.;. Adaptation of Quinoa (Chenopodium Quinoa Willd. To Increase the Agricultural and Alimentary Diversity in Brazil. CC&T. 2006, 23, 41–62.
  • O’Brien, K.; Price, M. L. Amaranth: Grain and Vegetable Types; ECHO: North Fort Myers, USA, 2008
  • Valencia-Chamorro, S. A.;. Quinoa. In Encyclopedia of Food Science and Nutrition; Cabalero, B., Trugo, L.C., Finglas, P.M., Eds.; Academic Press: Amsterdam, Netherlands, 2003; pp pp 4895–4902.
  • Universidade de São Paulo; Food Research Center. Tabela Brasileira de Composição de Alimentos. http://www.fcf.usp.br/tbca ( accessed December 29, 2020).
  • Angeli, V.; Silva, P. M.; Massuela, D. C.; Khan, M. W.; Khajehei, H. A.; Graeff-Hönninger, F.; Piatti, S.; Quinoa, C. Quinoa (Chenopodium Quinoa Willd.): An Overview of the Potentials of the “Golden Grain” and Socio-Economic and Environmental Aspects of Its Cultivation and Marketization. Foods. 2020, 9(2), 1–31. DOI: 10.3390/foods9020216.
  • Spehar, C. R.; Santos, R. L. B. Quinoa BRS Piabiru: Alternative for Diversification of Cropping Systems. Pesq. Agropec. Bras. 2002, 37, 889–893. DOI: 10.1590/S0100-204x2002000600020.
  • Joshi, D. C.; Sood, S.; Hosahatti, R.; Kant, L.; Pattanayak, A.; Kumar, A.; Yadav, D.; Stetter, M. G. From Zero to Hero - The Past, Present and Future of Grain Amaranth Breeding. Theor. Appl. Genet.2018, 131(1), 1807–1823. DOI: 10.1007/s00122-018-3138–y
  • Ferreira, T. A. P. C.; Matias, A. C. G.; Arêas, J. A. G. Nutritional and Functional Characteristics of Amaranth (Amaranthus Spp.) Nutrire. 2007, 32, 91–116.
  • Amaya-Farfan, J.; Marcílio, R.; Spehar, C. R. Deveria O Brasil Investir Em Novos Grãos Para A Sua Alimentação? a Proposta Do Amaranto (Amaranthus SP). Segur. Aliment. Nutr. 2005, 12(1), 47–56. DOI: 10.20396/san.v12i1.1838.
  • Ascheri, J. L. R.; Carvalho, C. W. P.; Spehar, C. R. A Extração Do Amaranto No Desenvolvimento De Produtos - Caracterização Físico-Química; Embrapa Agroindústria De Alimentos: Rio De Janeiro, Brazil, 2004
  • Fink, S. R.; Konzen, R. E.; Vieira, S. E.; Ordonez, A. M.; Nascimento, C. R. B. Benefícios Das Plantas Alimentícias Não Convencionais – PANCs: Caruru (Amaranthus Viridis), Moringa Oleifera Lam. e Ora-pro-nóbis (Pereskia aculeata Mill). Pleiade. 2018, 12, 39–44.
  • Teixeira, D. L.; Spehar, C. R.; Souza, L. A. C. Agronomic Characterization of Amaranth for Cultivation in the Brazilian Savannah. Pesq. Agropec. Bras. 2003, 38(1), 45–51. DOI: 10.1590/S0100-204X2003000100006.
  • Rojas, W. La Quinua: Cultivo Milenario para Contribuir a la Seguridad Alimentaria Mundial; FAO: Quillacollo, Bolivia, 2011
  • Borges, J. T.; Bonomo, R. C.; Paula, C. D.; Oliveira, L. C.; Cesário, M. C. Características Físico-químicas, Nutricionais E Formas De Consumo Da Quinoa (Chenopodium Quinoa Willd.). Temas Agrarios. 2016, 15(1), 9–23. DOI: 10.21897/rta.v15i1.815.
  • Ishimoto, E. Y.; Monteiro, M. P. Quinoa (Chenopodium Quinoa Willd) as Functional Food. RBCS. 2010, 8, 62–67.
  • Almeida, S. G.; Sá, W. A. C. Amaranto (Amaranthus Spp.) E Quinoa (Chenopodium Quinoa): Alimentos Alternativos Para Doentes Celíacos. Ens. Ciênc. 2009, 13, 77–92.
  • Fletcher, R. J.;. Pseudocereals: Overview. In Encyclopedia of Food Grains, 2nd ed ed.; Wrigley, C., Corke, H., Seetharaman, K., Faubion, J., Eds.; Elsevier: Kidlington, England, 2016; pp pp 274–279.
  • Martínez-Villaluenga, C.; Peñas, E.; Pseudocereal Grains, H.-L. B. Nutritional Value, Health Benefits and Current Applications for the Development of Gluten-Free Foods. Food Chem. Toxicol. 2020, 137, 111178. DOI: 10.1016/j.fct.2020.111178.
  • Joshi, D. C.; Chaudhari, G. V.; Sood, S.; Kant, L.; Pattanayak, A.; Zhang, K.; Fan, Y.; Janovská, D.; Meglič, V.; Zhou, M. Revisiting the Versatile Buckwheat: Reinvigorating Genetic Gains through Integrated Breeding and Genomics Approach. Planta. 2019, 250(3), 783–801. DOI: 10.1007/s00425-018-03080-4.
  • Ferreira, A. B. H.;. Novo Dicionário Da Língua Portuguesa; Nova Fronteira: Rio de Janeiro, Brazil, 1986; pp p 86.
  • Silva, A. C. C.; Silva, N. A.; Pereira, M. C. S.; Vassimon, H. S. Are Foods Containing Functional Ingredients in Its Formulation Healthy? A Review of Articles Published in Brazilian Journals. Rev. Conex. Cienc. 2016, 11(2), 133–144. DOI: 10.24862/cco.v11i2.429.
  • Iglesias, M. J.;. Presente y Futuro de los Alimentos Funcionales. In Alimentos saludables y de diseño específico: Alimentos funcionalesEd; Iglesias, M.J., Alejandre, A.P., Eds.; IM&C: Madrid: Spain, 2010; pp pp 29–44.
  • Costa, N. M. B.; Rosa, C. O. B. Alimentos Funcionais – Compostos Bioativos E Efeitos Fisiológicos; Rubio: Rio de Janeiro: Brazil, 2016.
  • Tur, J. A.; Bibiloni, M. M.; Foods. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Amsterdam, Netherlands, 2016; pp pp 157–161. DOI: 10.1016/B978–0–12–384947–2.00340–8
  • (a) Ministério da Saúde. Resolução N. 18, De 30 De Abril De; 1999. (b) Resolução n. 19, de 30 de abril de 1999; Diário Oficial da União: Brasília, Brazil, 1999; Brasília, Brazil: Diário Oficial da União, 1999.
  • Tuan, P. A.; Thwe, A. A.; Kim, Y. B.; Lee, S.; Park, S. U.; Park, S. U. Molecular characterisation and the Light–dark Regulation of Carotenoid Biosynthesis in Sprouts of Tartary Buckwheat (Fagopyrum Tataricum Gaertn.). Food Chem. 2013, 141(4), 3803–3812. DOI: 10.1016/j.foodchem.2013.06.085.
  • Kreft, S.; Strukelj, B.; Gaberscik, A.; Kreft, I. Rutin in Buckwheat Herbs Grown at Different UV-B Radiation Levels: Comparison of Two UV Spectrophotometric and an HPLV Method. J. Exp. Bot. 1801-1804, 2002(53). DOI: 10.1093/jxb/erf032.
  • Repo-Carrasco, R.; E60spinoza, C.; Jacobsen, S. E. Nutritional Value and Use of the Andean Crops Quinoa (Chenopodium Quinoa) and Kañiwa (Chenopodium Pallidicaule). Food Rev. Int. 2003, 19(1–2), 179–189. DOI: 10.1081/FRI-120018884.
  • Otten, J. J.; Hellwig, J. P.; Meyers, L. D. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; National Academy of Sciences: Washington: D.C, 2006.
  • Vega-Gálvez, A.; Miranda, M.; Vergara, J.; Uribe, E.; Puente, L.; Martínez, E. A. Nutrition Facts and Functional Potential of Quinoa (Chenopodium Quinoa Willd.), An Ancient Andean Grain: A Review. J. Sci. Food Agri. 2010, 90(15), 2541–2547. DOI: 10.1002/jsfa.4158.
  • Dogan, H.; Karwe, M. V. Physicochemical Properties of Quinoa Extrudates. Food Sci. Technol. Int. 2003, 9(2), 101–114. DOI: 10.1177/1082013203009002006.
  • Sgarbieri, V. C.;. Alimentação E Nutrição: Fator De Saúde E Desenvolvimento; Almed: São Paulo: Brazil, 1987.
  • Marcone, M. F.; Kakuda, Y.; Yada, R. Y. Amaranth as a Rich Dietary Source of Beta-Sitosterol and Other Phytosterols. Plant Food Hum. Nutr. 2003, 58(3), 207–211. DOI: 10.1023/b:qual.0000040334.99070.3e.
  • Qureshi, A. A.; Lehmann, J. W.; Petersonn, D. M. Amaranth and Its Oil Inhibit Cholesterol Biosynthesis in 6-Weel-Old Female Chicken. J. Nutr. 1972-1978, 1996(126). DOI: 10.1093/jn/126.8.1972.
  • Berganza, B. E.; Moran, A. W.; Rodrigues, M. G.; Coto, N. M.; Santamaria, M.; Bressani, R. Effect of Variety and Location on the Total Fat, Fatty Acids and Squalene Content of Amaranth. Plant. Food. Hum. Nutr. 2003, 58(3), 1–6. DOI: 10.1023/B:QUAL.0000041143.24454.0a.
  • He, H. P.; Yizhong, C.; Mei, S.; Corke, H. Extraction and Extraction and Purification of Squalene fromAmaranthus Grain. J. Agric. Food Chem. 2002, 50(2), 368–372. DOI: 10.1021/jf010918p.
  • Nelson, D. L.; Cox, M. M. Lehninger Principles of Biochemistry, 8th ed.; W. H. Freeman: New York, NY, 2021.
  • La, U. M.;. Arqueología De Arica Y Tacna. Bol. Acad. Nac. Hist. 1919, 3, 1–48.
  • Núñez, L.;. La Agricultura Prehistórica Em Los Andes Meridionales; Editorial Universidad Del Norte; Santiago: Chile, 1974.
  • Towle, M.;. The Ethnobotany of Pre-Columbian Peru; Aldine Transaction: Chicago: IL, 1961.
  • Bermejo, J. E. H.; León, J. Neglected Crops: 1492 from a Different Perspective; FAO: Rome: Italy, 1994.
  • Xiu-Shi, Y.; Pei-You, Q.; Hui-Min, G.; Gui-Xing, R. Quinoa Industry Development in China. Cienc. Investig. Agrar. 2019, 46(2), 208–219. DOI: 10.7764/rcia.v46i2.2157.
  • Cronquist, A.;. An Integrated System of Classification of Flowering Plants; Columbia University Press: New York, NY, 1981.
  • Zhu, G. L.;. Origin, Differentiation, and Geographic Distribution of the Chenopodiaceae. J. Syst. Evol. 1996, 34, 486–504.
  • Kadereit, G.; Borsch, T.; Weising, K.; Fretag, H. Phylogeny of Amaranthaceae and Chenopodiaceae and the Evolution of C4 Photosynthesis. Int. J. Plant Sci. 2003, 164(6), 959–986. DOI: 10.1086/378649.
  • Angiosperm Phylogeny Group III. An Update of the Angiosperm Phylogeny Group Classification for the Orders and Families of Flowering Plants: APG III. Bot. J. Linn. Soc. 2009, 161(2), 105–121. DOI:10.1111/j.1095-8339.2009.00996.x.
  • Mujica, A.;. Genetic Resources of Quinoa (Chenopodium Quinoa Willd); FAO: Rome: Italy, 1996.
  • Latcham, R. E.;. La Agricultura Precolombiana en Chile y los Países Vecinos; Ediciones de la Universidad de Chile: Santiago: Chile, 1936.
  • Kinupp, V. F.; Lorenzi, H. Plantas Alimentícias Não Convencionais (PANC) No Brasil: Guia De Identificação, Aspectos Nutricionais E Receitas Ilustradas; Instituto Plantarum de Estudos da Flora: São Paulo, Brazil, 2014.
  • Rojas, W.; La Diversidad, P. M. Genética de Quinua de Bolívia. In Congreso Científico de la Quinua (Memorias); Vargas, M., Ed.; IICA: La Paz, Bolivia, 2013; pp pp 77–92.
  • Gandarillas, H.;. Observaciones Sobre La Biología Reproductiva de la Quinua. Sayaña. 1967, 5, 26–29.
  • Naik, S.; Paramesh, R.; Siddaraju, R.; Shankar, P. R. Studies on Growth Parameters in Quinoa (Chenopodium quinoaWilld.). Int. J. Chem. Stud. 2020, 8, 393–397. doi: 10.22271/chemi.2020.v8.i1f.8278.
  • Gilman, D. C.; Peck, H. T.; Colby, F. M. The New International Encyclopædia; Dodd, Mead and Company: New York, NY, 1905; Vol. 1. pp p 72
  • Cayoja, M. R.; Caracterización de Variables Contínuas y Discretas del Grano de Quinua (Chenopodium quinoa Willd.) del Banco de Germoplasma de la Estación Experimental Patacamaya. Thesis, Universidad Técnica de Oruro, Oruro, Bolivia, 1996.
  • Instituto Boliviano de Normalización y Calidad. Granos Andinos – Pseudos Cereales – Quinua en grano – Clasificación y Requisitos; IBNORCA: La Paz: Peru, 2007.
  • Tapia, M. E. Cultivos Andinos Subexplotados y Su Aporte a la Alimentación, 2nd ed.; FAO: Santiago, Chile, 2000
  • Basantes-Morales, E. R.; Alconada, M. M.; Pantoja, J. L. Quinoa (Chenopodium Quinoa Willd.) Production in the Andean Region: Challenges and Potentials. JEAI. 2019, 36, 1–18. DOI: 10.9734/JEAI/2019/v36i630251.
  • Vasconcelos, F. S.; Vasconcelos, E. S.; Balan, M. G.; Development, S. L. Productivity of Quinoa Sown on Different Dates during the Off-Season. Rev. Ciên. Agron. 2012, 43, 510–515. DOI: 10.1590/S1806-66902012000300013.
  • Duy, P. Q.; Abe, A.; Hirano, M.; Sagawa, S.; Kuroda, E. Analysis of Lodging-Resistant Characteristics of Different Rice Genotypes Grown under the Standard and Nitrogen-Free Basal Dressing Accompanied with Sparse Planting Density Practices. Plant Prod. Sci. 2004, 7(3), 243–251. DOI: 10.1626/pps.7.243.
  • Spehar, C. R.; Rocha, J. E. S.; Santos, R. L. B. Agronomic Performance and Recommendations for Quinoa (BRS Syetetuba) Crop in the Brazilian Savannah. Pesqui. Agropecu. Trop. 2011, 41, 145–147. DOI: 10.5216/pat.v41i1.9395.
  • Egewarth, V. A.; Vasconcelos, E. S.; Strenske, A.; Egewarth, J. F.; Franciscon, H.; Echer, M. M. Agronomic Characteristics of Quinoa Gentypes. Rev. Sci. Agrar. Parana. 2017, 16, 401–407. DOI: 10.18188/1983-1471/sap.v16n3p401-407.
  • United States Department of Agriculture. Food Data Central. https://fdc.nal.usda.gov ( accessed December 29, 2020).
  • United States Department of Health and Human Services. Nutrient Recommendations: Dietary Reference Intakes (DRI). https://ods.od.nih.gov/HealthInformation/Dietary_Reference_Intakes.aspx ( accessed December 29, 2020).
  • Fuentes, F.; Paredes-Gonzalez, X. Nutraceutical Perspectives of Quinoa: Biological Properties and Functional Applications. In State of the Art Report of Quinoa in the World in 2013; Food and Agriculture Organization of the United Nations, Agricultural Research Centre for International Development; FAO: Rome, Italy, 2015; pp pp 286–299.
  • Food and Agriculture Organization of the United Nations; Asociación Latinoamericana de Integración. Tendencias Y Perspectivas Del Comercio Internacional De Quinua; FAO: Santiago: Chile, 2014.
  • Kozioł, M. J.;. Chemical Composition and Nutritional Evaluation of Quinoa (Chenopodium Quinoa Willd.). J. Food Compos. Anal. 1992, 5(1), 35–68. DOI: 10.1016/0889-1575(92)90006-6.
  • Leonel, M.;. Analysis of the Shape and Size of Starch Grains from Different Botanical Species. Ciencia Tecnol. Alime. 2007, 27(3), 579–588. DOI: 10.1590/S0101-20612007000300024.
  • Patel, A. K.; Rova, U.; Christakopoulos, P.; Matsakas, L. Introduction to Essential Fatty Acids. In Nutraceutical Fatty Acids from Oleaginous Microalgae; Patel, A.K., Matsakas, L., Eds.; Scrivener Publishing: Beverly, MA, 2020; pp pp 1–22. DOI: 10.1002/9781119631729.ch1.
  • Miranda, M.; Vega-Gálvez, A.; Quispe-Fuentes, I.; Rodríguez, M. J.; Maureira, H.; Martínez, E. A. Nutritional Aspects of Six Quinoa (Chenopodium Quinoa Willd.) Ecotypes from Three Geographical Areas of Chile. Chil. J. Agric. Res. 2012, 72(2), 175–181. DOI: 10.4067/S0718-58392012000200002.
  • Güçlü-Üstündağ, Ö.; Mazza, G. Saponins: Properties, Applications and Processing. Crit. Rev. Food Sci. Nutr. 2007, 47(3), 231–258. DOI: 10.1080/10408390600698197.
  • Ahamed, N. T.; Singhal, R. S.; Kulkarni, P. R.; Pal, M. A Lesser-Known Grain, Chenopodium Quinoa: Review of the Chemical Composition of Its Edible Parts. Food Nutr. Bull. 1998, 19(1), 61–70. DOI: 10.1177/156482659801900110.
  • Rao, N. K.; Quinoa, S. M. – A Promising New Crop for the Arabian Peninsula. AEJAES. 2012, 12, 1350–1355. DOI: 10.5829/idosi.aejaes.2012.12.10.1823.
  • Maradini Filho, A. M.; Borges, J. T. S.; Pirozi, M. R.; Sant’ana, H. M. P.; Chaves, J. B. P.; Medeiros, E. A. A. Fatores Antinutricionais Em Grãos De Quinoa. In Avanços E Desafios Da Nutrição; Viera, V.B., Piovesan, N., Eds.; Atena: Ponta Grossa: Brazil, 2019; Vol. 4. pp 94–106. DOI:10.22533/at.ed.43919240510.
  • Siener, R.; Hönow, R.; Seidler, A.; Voss, S.; Hesse, A. Oxalate Contents of Species of the Polygonaceae, Amaranthaceae and Chenopodiaceae Families. Food Chem. 2005, 98, 220–224. DOI: 10.1016/j.foodchem.2005.05.059.
  • Massey, L. K.;. Food Oxalate: Factors Affecting Measurement, Biological Variation, and Bioavailability. J. Am. Diet. Assoc. 2007, 107(7), 1191–1194. DOI: 10.1016/j.jada.2007.04.007.
  • Furche, C.; Salcedo, S.; Krivonos, E.; Rabczuk, P.; Jara, B.; Fernández, D.; Correa, F. International Quinoa Trade. In State of the Art Report of Quinoa in the World in 2013; Food and Agriculture Organization of the United Nations, Agricultural Research Centre for International Development: FAO: Rome, Italy, 2015; pp pp 316–329.
  • Food and Drug Administration. Food Labelling; Gluten-Free Labelling of Fermented of Hydrolysed Foods; FDA: Washington: D.C, 2020.
  • Carimentrand, A.; Baudoin, A.; Lacroix, P.; Bazile, D.; Chia, E. Quinoa Trade in Andean Countries: Opportunities and Challenges for Family. In State of the Art Report of Quinoa in the World in 2013; Food and Agriculture Organization of the United Nations; Agricultural Research Centre for International Development; FAO: Rome, Italy, 2015; pp pp 330–342.
  • Quintero, D. M. D.;. Vigilancia Competitiva De La Quinua: Potencialidad Para El Departamento De Boyacá. SUMNEG. 2014, 5, 85–95. DOI: 10.1016/S2215-910X(14)70030-8.
  • Ministerio de Agricultura y Riego. Análisis Económico de la Producción Nacional de la Quinua; MINAGRI: Lima: Peru, 2017.
  • Das, S.;. Domestication, Phylogeny and Taxonomic Delimitation in Underutilized Grain Amaranthus (Amaranthaceae) – A Status Review. Feddes Repert. 2012, 123, 273–282. DOI: 10.1002/fedr.201200017.
  • Baral, M.; Datta, A.; Chakraborty, S.; Chakraborty, P. Pharmacognostic Studies on Stem and Leaves of Amaranthus Spinosus Linn. IJABPT. 2011, 2, 41–47.
  • Peter, K.; Gandhi, P. Rediscovering the Therapeutic Potential of Amaranthus Species: A Review. EJBAS. 2017, 4, 196–205.
  • Quini, A. R.; Delazari, D. S.; Farinazzi-Machado, F. M. V.; Barbalho, S. M. Literature Review: Nutritional Importance of Some Species of Amaranthus Sp. REB. 2013, 6, 69–81.
  • Tucker, J. B.;. Amaranth: The once and Future Crop. Bioscience. 1986, 36(1), 9–13. DOI: 10.2307/1309789.
  • Spehar, C. R.;. Amaranto: Opção Para Diversificar a Agricultura E Os Alimentos; Embrapa Cerrados: Planaltina: Brazil, 2007.
  • Sumar-Kalinowski, L.;. Amaranthus sp.: El Pequeño Gigante; UNICEF: Cusco: Peru, 1986.
  • Spehar, C. R.;. Morphological Differences between Amaranthus Cruentus, Cv. BRS Alegria, and the Weed Species A. Hybridus, A. Retroflexus, A. Viridis E A. Spinosus. Planta Daninha. 2003, 21(3), 481–485. DOI: 10.1590/S0100-83582003000300017.
  • Coons, M. P.; Gênero, O. Amaranthus Em Minas Gerais. Experientiae. 1981, 27, 115–158.
  • Dyner, L.; Drago, S. R.; Piñero, A.; Sánchez, H.; González, R.; Villaamil, E.; Valencia, M. E. Composición y Aporte Potencial de Hierro, Calcio y Zinc de Panes y Fideos Elaborados con Harinas de Trigo y Amaranto. Arch. Latinoam. Nutr. 2007, 57, 69–78.
  • Department of Agriculture, Forestry and Fisheries. Amaranthus: Production Guideline; DAFF: Pretoria: South Africa, 2010.
  • Ebert, A. W.; Wu, T.; Wang, S. Vegetable Amaranth (Amaranthus L.); AVRDC: Tainan, Taiwan, 2011
  • Computation, G. S.;. Analysis of Amino Acid Reside Sequences of Amaranth and Some Other Proteins. Biosci. Biotechnol. Biochem. 1851, 1998(62), 1845.
  • Teutonico, R. A.; Amaranth, K. D.; Composition, P. Applications of a Rediscovered Crop. Food Technol. 1985, 39, 49–59.
  • Bressani, R.;. Amaranth: The Nutritive Value and Potential Uses of the Grain and By-Products. Food Nutr. Bull. 1988, 10(2), 49–59. DOI: 10.1177/156482658801000219.
  • Marcílio, R.; Amaya-Farfan, J.; Silva, M. A. A. P.; Spehar, C. R. Evaluation of Amaranth Flour for the Manufacture of Gluten-Free Biscuits. BJFT. 2005, 8, 175–181.
  • Saunders, R. M.; Becker, R. Amaranthus: A Potential Food and Feed Resource. Adv. Cereal Sci. Technol. 1984, 6, 357–396.
  • Breene, W. M.;. Food Uses of Grain Amaranth. CFW. 1991, 36, 426–429.
  • Qian, J.; Kuhn, M. Characterization of Amaranthus Cruentus and Chenopodium Quinoa Starch. Starch. 1999, 51(4), 116–120. DOI: 10.1002/(SICI)1521-379X(199904)51:4<116::AID-STAR116>3.0.CO;2-R.
  • Becker, R.; Wheeler, E. L.; Lorenz, K.; Stafford, A. E.; Grosjean, O. K.; Betschart, A. A.; Saunders, R. M.; Compositional, A. Study of Amaranth Grain. J. Food Sci. 1981, 46(4), 1175–1180. DOI: 10.1111/j.1365-2621.1981.tb03018.x.
  • Tosi, E. A.; Re, E.; Lucero, H.; Masciarelli, R. Dietary Fiber Obtained from Amaranth (Amaranthus Cruentus) Grain by Differential Milling. Food Chem. 2001, 73(4), 441–443. DOI: 10.1016/s0308-8146(00)00326-5.
  • He, H. P.; Corke, H. Oil and Squalene in Amaranthus Grain and Leaf. J. Agric. Food Chem. 2003, 51(27), 7913–7920. DOI: 10.1021/jf030489q.
  • Rodas, B.; Bressani, R. Contenido de Aceite, Ácidos Grasos y Escualeno en Variedades Crudas y Procesadas de Grano de Amaranto. Arch. Latinoam. Nutr. 2009, 59, 82–87.
  • Bressani, R.; Sánchez-Marroquín, A.; Morales, E. Chemical Composition of Grain Amaranth Cultivars and Effects of Processing on Their Nutritional Quality. Food Rev. Int. 1992, 8(1), 23–49. DOI: 10.1080/87559129209540928.
  • Costa, D. M. A.; Borges, A. S. Avaliação Da Produção Agrícola Do Amaranto (Amaranthus Hypochondriacus). Holos. 2005, 21, 97–111.
  • Gonçalves Júnior, A.; Mustafá, F.; Gerencer, P. Dossiê Técnico: Cultivo E Funcionalidade De Amaranto; USP/DT: São Paulo, Brazil, 2012
  • Lorenzi, H.; Souza, H. M. Plantas Ornamentais No Brasil: Arbustivas, Herbáceas E Trepadeiras, 3rd ed.; Instituto Plantarum: Nova Odessa, Brazil, 2001.
  • Callisaya, J. A. B.;. Fodder and Animal Feed. In State of the Art Report of Quinoa in the World in 2013; Food and Agriculture Organization of the United Nations, Agricultural Research Centre for International Development; FAO: Rome, Italy, 2015; pp pp 250–266.
  • Peiretti, P. G.;. Amaranth in Animal Nutrition: A Review. Livest. Res. Rural Dev. 2018, 30, 5.
  • Manyelo, T. G.; Sebola, N. A.; Rensburg, E. J. V.; Mabelebele, M. The Probable Use of Genus Amaranthus as Feed Material for Monogastric Animals. Animals. 2020, 10(9), 1–17. DOI: 10.3390/ani10091504.
  • Jacobsen, E. E.; Skadhauge, B.; Jacobsen, S. E. Effect of Dietary Inclusion of Quinoa on Broiler Growth Performance. Anim. Feed Sci. Tech. 1997, 65(1–4), 5–14. DOI: 10.1016/S0377-8401(96)01082-6.
  • Carlson, D.; Fernandez, J. A.; Poulsen, H. D.; Nielsen, B.; Jacobsen, S. E. Effects of Quinoa Hull Meal on Piglet Performance and Intestinal Epithelial Physiology. J. Anim. Physiol. Anim. Nutr. 2011, 96(2), 198–205. DOI: 10.1111/j.1439-0396.2011.01138.x.
  • Asher, A.; Galili, S.; Whitney, T.; Rubinovich, L. The Potential of Quinoa (Chenopodium Quinoa) Cultivation in Israel as a Dual-Propose Crop for Grain Production and Livestock Feed. Sci. Hort. 2020, 272(1). DOI: 10.1016/J.Scienta.2020.109534.
  • Torres, O. P. N.; Rodriguez, M. B.; Sanchez, D.; Guishca-Cunuhay, C. Productive Performance, Ruminal Degradation and in Vitro Gas Production in Sheep Fed Diets Based on Post-Harvest Residues of Chenopodium Quinoa. RIVEP. 2018, 29(3), 765–773. DOI: 10.15381/rivep.v29i3.14836.
  • Aduviri, G.;. Aplicación de Diferentes Niveles de Subproductos del Beneficiado de Quinua (Chenopodium quinoa Willd.) en la Preparación de Raciones para Cuyes (Cavia porcellus L.) en Crecimiento y Engorde. RELAN. 2007, 3(1), 4–11.
  • Gutiérrez-Espinosa, M. C.; Yossa-Perdomo, M. I.; Apparent, V.-T. W. Digestibility of Dry Matter, Protein and Energy regarding Fish Meal, Poultry By-Product Meal and Quinua for Nile Tilapia, Oreochromis Niloticus. Orinoquia. 2011, 15(2), 169–179. DOI: 10.22579/20112629.16.
  • Seguin, P.; Mustafa, A. F.; Donnelly, D. J.; Chemical Composition, G. B. Ruminal Nutrient Degradability of Fresh and Ensiled Amaranth Forage. J. Sci. Food Agric. 2013, 93(15), 3730–3736. DOI: 10.1002/jsfa.6218.
  • Písaříková, B.; Zralý, Z.; Kračmar, S.; Trčková, M.; Herzig, I. The Use of Amaranth (Genus Amaranthus L.) In the Diets for Broiler Chickens. Vet. Med-Czech. 2006, 51(7), 399–407. DOI: 10.17221/5560-VETMED.
  • Longato, E.; Meineri, G.; Peiretti, P. G. The Effect of Amaranthus Caudatus Supplementation to Diets Containing Linseed Oil on Oxidative Status, Blood Serum Metabolites, Growth Performance and Meat Quality Characteristics in Broilers. Anim. Sci. Pap. Rep. 2017, 35(1), 71–86.
  • Shilov, V. N.; Zharkovskii, A. P. Effect of Using Amaranth Hydrolysate on Efficiency of Raising Weaner Pigs. Russ. Agric. Sci. 2012, 38(2), 139–142. 2012. DOI: 10.3103/S1068367412020206.
  • Kambashi, B.; Picron, P.; Boudry, C.; Thewis, A.; Kiatoko, H.; Bindelle, J. Nutritive Value of Tropical Forage Plants Fed to Pigs in the Western Provinces of the Democratic Republic of the Congo. Anim. Feed Sci. Tech. 2014, 191(1), 47–56. DOI: 10.1016/j.anifeedsci.2014.01.012.
  • Chairatanayuth, P.;. Inclusion of Amaranth Crop Residues in Diet for Cattle. Food Rev. Int. 1992, 8(1), 159–164. DOI: 10.1080/87559129209540934.
  • Jalč, D.; Baran, M.; Siroka, P. Use of Grain Amaranth (Amaranthus Hypochondriacus) for Feed and Its Effect on Rumen Fermentation. In Vitro. Czech J. Anim. Sci. 1999, 44(4), 163–167.
  • Molina, E.; González-Redondo, P.; Moreno-Rojas, R.; Montero-Quintero, K.; Bracho, B.; Sánchez-Urdaneta, A. Effects of Diets with Amaranthus Dubius Mart. Ex Thell. On Performance and Digestibility of Growing Rabbits. World Rabbit Sci. 2015, 23(1), 9–18. DOI: 10.4995/wrs.2015.2071.
  • Adewolu, M. A.; Adamson, A. A. Amaranthus Spinosus Leaf Meal as Potential Dietary Protein Source in the Practical Diets for Clarias Gariepinus (Burchell, 1822) Fingerlings. Int. J. Zool. Res. 2011, 7(2), 128–137. DOI: 10.3923/ijzr.2011.128.137.
  • Niewiadomski, P.; Gomułka, P.; Poczyczynski, P.; Wozniak, M.; Szmyt, M. Dietary Effect of Supplementation with Amaranth Meal on Growth Performance and Apparent Digestibility of Rainbow Trout Oncorhynchus Mykiss. Pol. J. Nat. Sci. 2016, 31(3), 459–469.
  • Lehmann, J. W.;. Case History of Grain Amaranth as an Alternative Crop. CFW. 1996, 41, 399–403.
  • National Research Council. Amaranth: Modern Prospects for an Ancient Crop; Washington, D.C: National Academy Press, 1984. DOI:10.17226/19381.
  • Capriles, V. D.; Arêas, J. A. G. Quality Assessment of Snacks Obtained by Extrusion of Whole Amaranth Grains or Defatted Amaranth Flour and Their Mixtures with Corn Grits. BJFT. 2012, 15(1), 21–29. DOI: 10.1590/S1981-67232012000100003.
  • Souza, F. F. J.; Devilla, I. A.; Souza, R. T. G.; Teixeira, I. R.; Spehar, C. R. Physiological Quality of Quinoa Seeds Submitted to Different Storage Conditions. Afr. J. Agric. Res. 2016, 11(15), 1299–1308. DOI: 10.5897/AJAR2016-10870.
  • Spehar, C. R.; Rocha, J. E. S.; Ribeiro Junior, W. Q.; Santos, R. L. B.; Ascheri, J. L. R.; Souza, F. F. J. Advances and Challenges for Quinoa Production and Utilization in Brazil. In State of the Art Report of Quinoa in the World in 2013; Food and Agriculture Organization of the United Nations, Agricultural Research Centre for International Development: FAO: Rome, Italy, 2015; pp pp 562–583.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.