748
Views
17
CrossRef citations to date
0
Altmetric
Review

Chitosan, Chitooligosaccharides and Their Polyphenol Conjugates: Preparation, Bioactivities, Functionalities and Applications in Food Systems

ORCID Icon, ORCID Icon & ORCID Icon

  • Singh, A.; Benjakul, S.; Prodpran, T. Ultrasound-Assisted Extraction of Chitosan from Squid Pen: Molecular Characterization and Fat Binding Capacity. J. Food Sci. 2019, 84(2), 224–234. DOI: 10.1111/1750-3841.14439.
  • Lavall, R. L.; Assis, O. B. G.; Campana-Filho, S. P. β-Chitin from the Pens of Loligo Sp.: Extraction and Characterization. Bioresour. Technol. 2007, 98, 2465–2472.
  • Rinaudo, M.;. Chitin and Chitosan: Properties and Applications. Prog. Polym. Sci. 2006, 31, 603–632.
  • Pillai, C. K. S.; Paul, W.; Sharma, C. P. Chitin and Chitosan Polymers: Chemistry, Solubility and Fiber Formation. Prog. Polym. Sci. 2009, 34, 641–678.
  • Mittal, A.; Singh, A.; Aluko, R. E.; Benjakul, S. Pacific White Shrimp (Litopenaeus Vannamei) Shell Chitosan and the Conjugate with Epigallocatechin Gallate: Antioxidative and Antimicrobial Activities. J. Food Biochem. 2021, 45, e13569.
  • Laokuldilok, T.; Potivas, T.; Kanha, N.; Surawang, S.; Seesuriyachan, P.; Wangtueai, S.; Phimolsiripol, Y.; Regenstein, J. M. Physicochemical, Antioxidant, and Antimicrobial Properties of Chitooligosaccharides Produced Using Three Different Enzyme Treatments. Food Biosci. 2017, 18, 28–33.
  • Singh, A.; Benjakul, S.; Prodpran, T. Chitooligosaccharides from Squid Pen Prepared Using Different Enzymes: Characteristics and the Effect on Quality of Surimi Gel during Refrigerated Storage. Food Prod. Process. Nutr. 2019, 1, 1–10.
  • Liu, F.; Sun, C.; Yang, W.; Yuan, F.; Gao, Y. Structural Characterization and Functional Evaluation of Lactoferrin–Polyphenol Conjugates Formed by Free-Radical Graft Copolymerization. RSC Adv. 2015, 5, 15641–15651.
  • Quan, T. H.; Benjakul, S.; Sae-leaw, T.; Balange, A. K.; Maqsood, S. Protein–Polyphenol Conjugates: Antioxidant Property, Functionalities and Their Applications. Trend. Food Sci. Technol. 2019, 91, 507–517.
  • Xiao, J.; Kai, G. A Review of Dietary Polyphenol-Plasma Protein Interactions: Characterization, Influence on the Bioactivity, and Structure-Affinity Relationship. Crit. Rev. Food Sci. Nutr. 2012, 52(1), 85–101. DOI: 10.1080/10408398.2010.499017.
  • Hu, Q.; Luo, Y. Polyphenol-Chitosan Conjugates: Synthesis, Characterization, and Applications. Carbohydr. Polym. 2016, 151, 624–639.
  • Zhang, J.; Xia, W.; Liu, P.; Cheng, Q.; Tahi, T.; Gu, W.; Chitosan Modification, L. B. Pharmaceutical/Biomedical Applications. Mar. Drugs. 2010, 8, 1962–1987.
  • Huang, Y.-L.; Tsai, Y.-H. Extraction of Chitosan from Squid Pen Waste by High Hydrostatic Pressure: Effects on Physicochemical Properties and Antioxidant Activities of Chitosan. Int. J. Biol. Macromol. 2020, 160, 677–687.
  • Younes, I.; Rinaudo, M. Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications. Mar. Drugs. 2015, 13, 1133–1174.
  • Methacanon, P.; Prasitsilp, M.; Pothsree, T.; Pattaraarchachai, J. Heterogeneous N-Deacetylation of Squid Chitin in Alkaline Solution. Carbohydr. Polym. 2003, 52, 119–123.
  • Nemtsev, S. V.; Gamzazade, A. I.; Rogozhin, S. V.; Bykova, V. M.; Bykov, V. P. Deacetylation of Chitin under Homogeneous Conditions. Appl. Biochem. Microbiol. 2002, 38, 521–526.
  • Tsaih, M. L.; Chen, R. H. The Effect of Reaction Time and Temperature during Heterogenous Alkali Deacetylation on Degree of Deacetylation and Molecular Weight of Resulting Chitosan. J. Appl. Polym. Sci. 2003, 88, 2917–2923.
  • Abdou, E. S.; Nagy, K. S.; Elsabee, M. Z. Extraction and Characterization of Chitin and Chitosan from Local Sources. Bioresour. Technol. 2008, 99, 1359–1367.
  • Weska, R. F.; Moura, J. M.; Batista, L. M.; Rizzi, J.; Pinto, L. A. A. Optimization of Deacetylation in the Production of Chitosan from Shrimp Wastes: Use of Response Surface Methodology. J. Food Eng. 2007, 80, 749–753.
  • Hwang, K. T.; Jung, S. T.; Lee, G. D.; Chinnan, M. S.; Park, Y. S.; Park, H. J. Controlling Molecular Weight and Degree of Deacetylation of Chitosan by Response Surface Methodology. J. Agric. Food Chem. 2002, 50, 1876–1882.
  • Mittal, A.; Singh, A.; Benjakul, S.; Prodpran, T.; Nilsuwan, K.; Huda, N.; Caba, K. Composite Films Based on Chitosan and Epigallocatechin Gallate Grafted Chitosan: Characterization, Antioxidant and Antimicrobial Activities. Food Hydrocoll. 2021, 111, 106384.
  • Lopata, A. L.; O’Hehir, R. E.; Lehrer, S. B. Shellfish Allergy. Clin. Exp. Allergy. 2010, 40, 850–858.
  • Il’ina, A. V.; Varlamov, V. P. Hydrolysis of Chitosan in Lactic Acid. Appl. Biochem. Microbiol. 2004, 40, 300–303.
  • Lodhi, G.; Kim, Y.-S.; Hwang, J.-W.; Kim, S.-K.; Jeon, Y.-J.; Je, J.-Y.; Ahn, C.-B.; Moon, S.-H.; Jeon, B.-T.; Park, P.-J. Chitooligosaccharide and Its Derivatives: Preparation and Biological Applications. BioMed Res. Int. 2014, 2014, 1–14.
  • Rahman, M. H.; Hjeljord, L. G.; Aam, B. B.; Sørlie, M.; Tronsmo, A. Antifungal Effect of Chito-oligosaccharides with Different Degrees of Polymerization. Eur. J. Plant Pathol. 2015, 141, 147–158.
  • Choi, B.-K.; Kim, K.-Y.; Yoo, Y.-J.; Oh, S.-J.; Choi, J.-H.; Kim, C.-Y. In Vitro Antimicrobial Activity of a Chitooligosaccharide Mixture against Actinobacillus Actinomycetemcomitans and Streptococcus Mutans. Int. J. Antimicrob. Agents. 2001, 18, 553–557.
  • Mourya, V.; Inamdar, N.; Choudhari, Y. M. Chitooligosaccharides: Synthesis, Characterization and Applications. Polym. Sci. Ser. A. 2011, 53, 583–612.
  • Struszczyk, M.; Peter, M.; Loth, F. Progress on Chemistry and Application of Chitin and Its Derivatives. Polish Chitin Society. 1999.
  • Einbu, A.; Grasdalen, H.; Vårum, K. M. Kinetics of Hydrolysis of Chitin/Chitosan Oligomers in Concentrated Hydrochloric Acid. Carbohydr. Res. 2007, 342, 1055–1062.
  • Wolfrom, M. L.; Tipson, R. S. Advances in Carbohydrate Chemistry; Academic Press, Cambridge, Massachusetts, United States, 1959.
  • de Assis, C. F.; Araujo, N.; Pagnoncelli, M. G. B.; Pedrini, M. R. D. S.; de Macedo, G. Chitooligosaccharides Enzymatic Production by Metarhizium Anisopliae. Bioproc. Biosyst. Eng. 2010, 33, 893–899.
  • Santos-Moriano, P.; Fernandez-Arrojo, L.; Mengibar, M.; Belmonte-Reche, E.; Peñalver, P.; Acosta, F. N.; Ballesteros, A. O.; Morales, J. C.; Kidibule, P.; Fernandez-Lobato, M.;; et al. Enzymatic Production of Fully Deacetylated Chitooligosaccharides and Their Neuroprotective and Anti-inflammatory Properties. Biocatal. Biotransformation. 2018, 36, 57–67.
  • Choi, Y. J.; Kim, E. J.; Piao, Z.; Yun, Y. C.; Shin, Y. C. Purification and Characterization of Chitosanase from Bacillus Sp Strain KCTC 0377BP and Its Application for the Production of Chitosan Oligosaccharides. Appl. Environ. Microb. 2004, 70, 4522–4531.
  • Roncal, T.; Oviedo, A.; de Armentia, I. L.; Fernandez, L.; Villaran, M. C. High Yield Production of Monomer-Free Chitosan Oligosaccharides by Pepsin Catalyzed Hydrolysis of a High Deacetylation Degree Chitosan. Carbohyd. Res. 2007, 342, 2750–2756.
  • Zhou, Y.; Li, S. Y.; Li, D. D.; Wang, S.; Zhao, W. D.; Lv, Z.; Li, X.; Li, H.; Han, Y. Enzymatic Preparation of Chitooligosaccharides and Their Anti-obesity Application. Biosci. Biotech. Bioch. 2020, 84, 1460–1466.
  • Kurakake, M.; Yo-u, S.; Nakagawa, K.; Sugihara, M.; Komaki, T. Properties of Chitosanase from Bacillus Cereus S1. Curr. Microbol. 2000, 40, 6–9.
  • Xu, S.; Xu, F.; Ma, Y.; Rong, H.; Chen, X. Preparation of Environmentally Friendly Chitooligosaccharide via Enzymatic Hydrolysis Using Response Surface Methodology. IOP Conf. Ser. Mater. Sci. Eng. 2020, 768, 022074.
  • Choi, B.-K.; Kim, K.-Y.; Yoo, Y.-J.; Oh, S.-J.; Choi, J.-H.; Kim, C.-Y. In Vitro Antimicrobial Activity of a Chitooligosaccharide Mixture against Actinobacillus Actinomycetemcomitans and Streptococcus Mutans. Int. J. Antimicro. Agents. 2001, 18, 553–557.
  • Luo, S.; Qin, Z.; Chen, Q. M.; Fan, L. Q.; Jiang, L. H.; Zhao, L. M. High Level Production of a Bacillus Amlyoliquefaciens Chitosanase in Pichia Pastoris Suitable for Chitooligosaccharides Preparation. Int. J. Biol. Macromol. 2020, 149, 1034–1041.
  • Ismail, S. A.; El-Sayed, H. S.; Fayed, B. Production of Prebiotic Chitooligosaccharide and Its Nano/Microencapsulation for the Production of Functional Yoghurt. Carbohyd. Polym. 2020, 234, 115941.
  • Boonviset, P.; Pirak, T. Physicochemical and Sensory Characteristics of Reduced Fat-low Sugar Chinese Pork Sausage as Produced by Chitooligosaccharide Using Commercial Pectinase Hydrolysis. Int. J. Food Prop. 2020, 23, 22–33.
  • Popa-Nita, S.; Lucas, J. M.; Ladaviere, C.; David, L.; Domard, A. Mechanisms Involved during the Ultrasonically Induced Depolymerization of Chitosan: Characterization and Control. Biomacromolecules. 2009, 10, 1203–1211.
  • Yang, Y.; Xing, R. E.; Liu, S.; Qin, Y. K.; Li, K. C.; Yu, H. Pengcheng, Li. Immunostimulatory Effects of Chitooligosaccharides on RAW 264.7 Mouse Macrophages via Regulation of the MAPK and PI3K/Akt Signaling Pathways. Mar. Drugs. 2019, 17, 36.
  • Hai, N. T. T.; Thu, L. H.; Nga, N. T. T.; Hoa, T. T.; Tuan, L. N. A.; Phu, D. V.; Hein, N. Q. Preparation of Chitooligosaccharide by Hydrogen Peroxide Degradation of Chitosan and Its Effect on Soybean Seed Germination. J. Polym. Environ. 2019, 27, 2098–2104.
  • Tian, F.; Liu, Y.; Hu, K.; Zhao, B. Y. The Depolymerization Mechanism of Chitosan by Hydrogen Peroxide. J. Mater. Sci. 2003, 38, 4709–4712.
  • Tian, M.; Chen, F.; Ren, D. W.; Yu, X. X.; Zhang, X. H.; Zhong, R.; Wan, C. Preparation of a Series of Chitooligomers and Their Effect on Hepatocytes. Carbohyd. Polym. 2010, 79, 137–144.
  • Trombotto, S.; Ladaviere, C.; Delolme, F.; Domard, A. Chemical Preparation and Structural Characterization of a Homogeneous Series of Chitin/Chitosan Oligomers. Biomacromolecules. 2008, 9, 1731–1738.
  • Lee, M.-Y.; Var, F.; Shin-ya, Y.; Kajiuchi, T.; Yang, J.-W. Optimum Conditions for the Precipitation of Chitosan Oligomers with DP 5–7 in Concentrated Hydrochloric Acid at Low Temperature. Process Biochem. 1999, 34, 493–500.
  • Horowitz, S. T.; Roseman, S.; Blumenthal, H. J. The Preparation of Glucosamine Oligosaccharides. I. Separation1, 2. J. Am. Chem. Soc. 1957, 79, 5046–5049.
  • Jia, Z. S.; Shen, D. F. Effect of Reaction Temperature and Reaction Time on the Preparation of Low-molecular-weight Chitosan Using Phosphoric Acid. Carbohyd. Polym. 2002, 49, 393–396.
  • Xing, R.; Liu, S.; Yu, H.; Guo, Z.; Wang, P.; Li, C.; Li, Z.; Salt-Assisted Acid, L. P. Hydrolysis of Chitosan to Oligomers under Microwave Irradiation. Carbohydr. Res. 2005, 340, 2150–2153.
  • Omari, K. W.; Besaw, J. E.; Kerton, F. M. Hydrolysis of Chitosan to Yield Levulinic Acid and 5-Hydroxymethylfurfural in Water under Microwave Irradiation. Green Chem. 2012, 14, 1480–1487.
  • Yoksan, R.; Akashi, M.; Miyata, M.; Chirachanchai, S. Optimal γ-Ray Dose and Irradiation Conditions for Producing Low-Molecular-Weight Chitosan that Retains Its Chemical Structure. Radiat. Res. 2004, 161, 471–480.
  • Ulański, P.; Rosiak, J. Preliminary Studies on Radiation-Induced Changes in Chitosan. Int. J. Radiat. Appl. 1992, 39, 53–57.
  • Hai, L.; Diep, T. B.; Nagasawa, N.; Yoshii, F.; Kume, T. Radiation Depolymerization of Chitosan to Prepare Oligomers. Nucl. Instrum. Methods Phys. Res., B. 2003, 208, 466–470.
  • Zhong, X.; Yu, L.; Zhao, W.; Zhang, Y.; Sun, J. Estimation of the Radiation Induced Damage in Ptfe by Depression of the Melting and Crystallization Temperatures. Polym. Degrad. Stab. 1993, 41, 223–227.
  • Wu, T.; Zivanovic, S.; Hayes, D. G.; Weiss, J. Efficient Reduction of Chitosan Molecular Weight by High-Intensity Ultrasound: Underlying Mechanism and Effect of Process Parameters. J. Agric. Food Chem. 2008, 56, 5112–5119.
  • Popa-Nita, S.; Lucas, J.-M.; Ladavière, C.; David, L.; Domard, A. Mechanisms Involved during the Ultrasonically Induced Depolymerization of Chitosan: Characterization and Control. Biomacromolecules. 2009, 10, 1203–1211.
  • Jeon, Y.-J.; Park, P.-J.; Kim, S.-K. Antimicrobial Effect of Chitooligosaccharides Produced by Bioreactor. Carbohydr. Polym. 2001, 44, 71–76.
  • Kuroiwa, T.; Ichikawa, S.; Hiruta, O.; Sato, S.; Mukataka, S. Factors Affecting the Composition of Oligosaccharides Produced in Chitosan Hydrolysis Using Immobilized Chitosanases. Biotechnol. Prog. 2002, 18, 969–974.
  • Ichikawa, S.; Takano, K.; Kuroiwa, T.; Hiruta, O.; Sato, S.; Mukataka, S. Immobilization and Stabilization of Chitosanase by Multipoint Attachment to Agar Gel Support. J. Biosci. Bioeng. 2002, 93, 201–206.
  • Sakai, K.; Katsumi, R.; Isobe, A.; Nanjo, F. Purification and Hydrolytic Action of a Chitosanase from Nocardia Orientalis. Biochim. Biophys. Acta Protein Struct. Molec. Enzym. 1991, 1079, 65–72.
  • Fukamizo, T.; Honda, Y.; Goto, S.; Boucher, I.; Brzezinski, R. Reaction Mechanism of Chitosanase from Streptomyces Sp. N174. Biochem. J. 1995, 311, 377–383.
  • Roncal, T.; Oviedo, A.; de Armentia, I. L.; Fernández, L.; Villarán, M. C. High Yield Production of Monomer-Free Chitosan Oligosaccharides by Pepsin Catalyzed Hydrolysis of a High Deacetylation Degree Chitosan. Carbohydr. Res. 2007, 342, 2750–2756.
  • Lee, D.-X.; Xia, W.-S.; Zhang, J.-L. Enzymatic Preparation of Chitooligosaccharides by Commercial Lipase. Food Chem. 2008, 111, 291–295.
  • Rokhati, N.; Widjajanti, P.; Pramudono, B.; Susanto, H. Performance Comparison of α- and β-Amylases on Chitosan Hydrolysis. Int Sch Res Notices . 2013, 2013, 186159.
  • Pan, S.; Wu, S. Preparation of Water-Soluble Chitosan by Hydrolysis with Commercial Glucoamylase Containing Chitosanase Activity. Eur. Food Res. Technol. 2011, 233, 325–329.
  • Gohi, B. F. C. A.; Zeng, H.-Y.; Pan, A. D.; Han, J.; Yuan, J. pH Dependence of Chitosan Enzymolysis. Polym. 2017, 9, 174.
  • Hamed, I.; Özogul, F.; Regenstein, J. M. Industrial Applications of Crustacean by-Products (Chitin, Chitosan, and Chitooligosaccharides): A Review. Trends Food Sci. Technol. 2016, 48, 40–50.
  • Mao, L.; Wu, T. Gelling Properties and Lipid Oxidation of Kamaboko Gels from Grass Carp (Ctenopharyngodon Idellus) Influenced by Chitosan. J. Food Eng. 2007, 82, 128–134.
  • Olatunde, O. O.; Benjakul, S. Natural Preservatives for Extending the Shelf‐Life of Seafood: A Revisit. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1595–1612.
  • Olatunde, O. O.; Benjakul, S.; Vongkamjan, K. Combined Effect of Ethanolic Coconut Husk Extract and Modified Atmospheric Packaging (MAP) in Extending the Shelf Life of Asian Sea Bass Slices. J. Aquat. Food Prod. Technol. 2019, 28, 689–702.
  • Singh, A.; Benjakul, S. The Combined Effect of Squid Pen Chitooligosaccharides and High Voltage Cold Atmospheric Plasma on the Shelf-Life Extension of Asian Sea Bass Slices Stored at 4°C. Innov. Food Sci. Emerg. Technol. 2020, 64, 102339.
  • Singh, A.; Benjakul, S.; Prodpran, T. Effect of Chitooligosaccharide from Squid Pen on Gel Properties of Sardine Surimi Gel and Its Stability during Refrigerated Storage. Int. J. Food Sci. Technol. 2019, 54, 2831–2838.
  • Singh, A.; Mittal, A.; Benjakul, S. Full Utilization of Squid Meat and Its Processing by-Products: Revisit. Food Rev. Int. 2020, 1–25. DOI: 10.1080/87559129.2020.1734611.
  • Senphan, T.; Benjakul, S. Antioxidative Activities of Hydrolysates from Seabass Skin Prepared Using Protease from Hepatopancreas of Pacific White Shrimp. J. Funct. Foods. 2014, 6, 147–156.
  • Tomida, H.; Fujii, T.; Furutani, N.; Michihara, A.; Yasufuku, T.; Akasaki, K.; Maruyama, T., .; Otagiri, M.; Gebicki, J. M.; Anraku, M. Antioxidant Properties of Some Different Molecular Weight Chitosans. Carbohydr. Res. 2009, 344, 1690–1696.
  • Kim, K. W.; Thomas, R. L. Antioxidative Activity of Chitosans with Varying Molecular Weights. Food Chem. 2007, 101, 308–313.
  • Tharanathan, R. N.; Kittur, F. S. Chitin — The Undisputed Biomolecule of Great Potential. Crit. Rev. Food Sci. Nutr. 2003, 43, 61–87.
  • Rong, C.; Qi, L.; Bang-zhong, Y.; Lan-lan, Z. Combined Effect of Ozonated Water and Chitosan on the Shelf-Life of Pacific Oyster (Crassostrea Gigas). Innov. Food Sci. Emerg. Technol. 2010, 11, 108–112.
  • Singh, A.; Benjakul, S.; Huda, N.; Xu, C.; Wu, P. Preparation and Characterization of Squid Pen Chitooligosaccharide–Epigallocatechin Gallate Conjugates and Their Antioxidant and Antimicrobial Activities. RSC Adv. 2021, 10, 33196–33204.
  • Singh, A.; Benjakul, S.; Peng, Z.; Zhang, B.; Deng, S. Effect of Squid Pen Chitooligosaccharide and Epigallocatechin Gallate on Discoloration and Shelf-Life of Yellowfin Tuna Slices during Refrigerated Storage. Food Chem. 2021, 351, 129296.
  • Singh, A.; Benjakul, S.; Zhang, B.; Deng, S.; Mittal, A. Effect of Squid Pen Chitooligosaccharide on Discoloration and Shelf-Life of Yellowfin Tuna Slices Packed under Different Modified Atmospheric Packaging during Refrigerated Storage. Food Control. 2021. DOI: 10.1016/j.foodcont.2021.108013.
  • Liu, H.; Du, Y.; Wang, X.; Sun, L. Chitosan Kills Bacteria through Cell Membrane Damage. Int. J. Food Microbiol. 2004, 95, 147–155.
  • Qin, C.; Li, H.; Xiao, Q.; Liu, Y.; Zhu, J.; Du, Y. Water-Solubility of Chitosan and Its Antimicrobial Activity. Carbohydr. Polym. 2006, 63, 367–374.
  • Je, J.-Y.; Kim, S.-K.; Byun, H.-G.; Moon, S.-H. Antimicrobial Activity of Hetero-Chitosans and Their Cligosaccharides with Different Molecular Weights. J. Microbiol. Biotechnol. 2004, 14, 317–323.
  • Rhoades, J.; Roller, S. Antimicrobial Actions of Degraded and Native Chitosan against Spoilage Organisms in Laboratory Media and Foods. Appl. Environ. Microbiol. 2000, 66, 80–86.
  • Knill, C.; Kennedy, J.; Mistry, J.; Miraftab, M.; Smart, G.; Groocock, M.; Williams, H. Alginate Fibres Modified with Unhydrolysed and Hydrolysed Chitosans for Wound Dressings. Carbohydr. Polym. 2004, 55, 65–76.
  • No, H. K.; Park, N. Y.; Lee, S. H.; Meyers, S. P. Antibacterial Activity of Chitosans and Chitosan Oligomers with Different Molecular Weights. Int. J. Food Microbiol. 2002, 74, 65–72.
  • Gerasimenko, D. V.; Avdienko, I. D.; Bannikova, G. E.; Zueva, O.; Varlamov, V. P. Antibacterial Effects of Water-Soluble Low-Molecular-Weight Chitosans on Different Microorganisms. Prikl Biokhim Mikrobiol. 2004, 40, 301–306.
  • Park, P.-J.; Lee, H.-K.; Kim, S.-K. Preparation of Hetero-Chitooligosaccharides and Their Antimicrobial Activity on Vibrio Parahaemolyticus. J. Microbiol. Biotechnol. 2004, 14, 41–47.
  • Younes, I.; Sellimi, S.; Rinaudo, M.; Jellouli, K.; Nasri, M. Influence of Acetylation Degree and Molecular Weight of Homogeneous Chitosans on Antibacterial and Antifungal Activities. Int. J. Food Microbiol. 2014, 185, 57–63.
  • Amiza, M.; Kang, W. Effect of Chitosan on Gelling Properties, Lipid Oxidation, and Microbial Load of Surimi Gel Made from African Catfish (Clarias Gariepinus). Int. Food Res. J. 2013, 20, 1585.
  • Aşik, E.; Candoğan, K. Effects of Chitosan Coatings Incorporated with Garlic Oil on Quality Characteristics of Shrimp. J. Food Qual. 2014, 37, 237–246.
  • Singh, A.; Benjakul, S.; Olatunde, O. O.; Yesilsu, A. F. The Combined Effect of Squid Pen Chitooligosaccharide and High Voltage Cold Atmospheric Plasma on the Quality of Asian Sea Bass Slices Inoculated with Pseudomonas Aeruginosa. Turkish J. Fish. Aquat. Sci. 2021, 21, 41–50.
  • Falguera, V.; Quintero, J. P.; Jiménez, A.; Muñoz, J. A.; Ibarz, A. Edible Films and Coatings: Structures, Active Functions and Trends in Their Use. Trends Food Sci. Technol. 2011, 22, 292–303.
  • Nilsuwan, K.; Guerrero, P.; Caba, K. Fish Gelatin Films Laminated with Emulsified Gelatin Film or Poly(Lactic) Acid Film: Properties and Their Use as Bags for Storage of Fried Salmon Skin. Food Hydrocoll. 2021, 111, 106199.
  • Nilsuwan, K.; Guerrero, P.; de la Caba, K.; Benjakul, S.; Prodpran, T. Properties and Application of Bilayer Films Based on Poly (Lactic Acid) and Fish Gelatin Containing Epigallocatechin Gallate Fabricated by Thermo-Compression Molding. Food Hydrocoll. 2020, 105, 105792.
  • Suyatma, N. E.; Tighzert, L.; Copinet, A.; Coma, V. Effects of Hydrophilic Plasticizers on Mechanical, Thermal, and Surface Properties of Chitosan Films. J. Agric. Food Chem. 2005, 53, 3950–3957.
  • El Ghaouth, A.; Arul, J.; Ponnampalam, R.; Boulet, M. Chitosan Coating Effect on Storability and Quality of Fresh Strawberries. J. Food Sci. 1991, 56, 1618–1620.
  • Zhang, D.; Quantick, P. C. Effects of Chitosan Coating on Enzymatic Browning and Decay during Postharvest Storage of Litchi (Litchi Chinensis Sonn.). Fruit. Postharvest Biol. Technol. 1997, 12, 195–202.
  • Darmadji, P.; Izumimoto, M. Effect of Chitosan in Meat Preservation. Meat Sci. 1994, 38, 243–254.
  • Ouattara, B.; Simard, R. E.; Piette, G.; Bégin, A.; Holley, R. A. Inhibition of Surface Spoilage Bacteria in Processed Meats by Application of Antimicrobial Films Prepared with Chitosan. Int. J. Food Microbiol. 2000, 62, 139–148.
  • Jeon, Y.-J.; Kamil, J. Y.; Shahidi, F. Chitosan as an Edible Invisible Film for Quality Preservation of Herring and Atlantic Cod. J. Agric. Food Chem. 2002, 50, 5167–5178.
  • Chen, C.-S.; Liau, W.-Y.; Tsai, G.-J. Antibacterial Effects of N-Sulfonated and N-Sulfobenzoyl Chitosan and Application to Oyster Preservation. J. Food Prot. 1998, 61, 1124–1128.
  • Mi, F.-L.; Huang, C.-T.; Liang, H.-F.; Chen, M.-C.; Chiu, Y.-L.; Chen, C.-H.; Sung, H.-W. Physicochemical, Antimicrobial, and Cytotoxic Characteristics of a Chitosan Film Cross-Linked by a Naturally Occurring Cross-Linking Agent, Aglycone Geniposidic Acid. J. Agric. Food Chem. 2006, 54, 3290–3296.
  • Nešić, A.; Cabrera-Barjas, G.; Dimitrijević-Branković, S.; Davidović, S.; Radovanović, N.; Delattre, C. Prospect of Polysaccharide-based Materials as Advanced Food Packaging. Molecules. 2020, 25, 135.
  • Li, B.; Kennedy, J.; Peng, J.; Yie, X.; Xie, B. Preparation and Performance Evaluation of Glucomannan–Chitosan–Nisin Ternary Antimicrobial Blend Film. Carbohydr. Polym. 2006, 65, 488–494.
  • Pranoto, Y.; Rakshit, S.; Salokhe, V. Enhancing Antimicrobial Activity of Chitosan Films by Incorporating Garlic Oil, Potassium Sorbate and Nisin. LWT-Food Sci. Technol. 2005, 38, 859–865.
  • Umaraw, P.; Munekata, P. E.; Verma, A. K.; Barba, F. J.; Singh, V. P.; Kumar, P.;; et al. Edible Films/coating with Tailored Properties for Active Packaging of Meat, Fish and Derived Products. Trends Food Sci. Technol. 2020, 98, 10–24.
  • Dutta, P. K.; Tripathi, S.; Mehrotra, G. K.; Dutta, J. Perspectives for Chitosan Based Antimicrobial Films in Food Applications. Food Chem. 2009, 114, 1173–1182.
  • Muzzarelli, R. A. A.; Muzzarelli, C. Chitosan Chemistry: Relevance to the Biomedical Sciences. In Polysaccharides I: Advances in Polymer Science, Heinze, T., Ed.; Springer, Berlin, Heidelberg: 2005; Vol. 136, pp 151–209.
  • Alak, G.;. The Effect of Chitosan Prepared in Different Solvents on the Quality Parameters of Brown Trout Fillets (Salmo Trutta Fario). Food Nutri Sci. 2012, 3, 1303.
  • Bazargani-Gilani, B.; Aliakbarlu, J.; Tajik, H. Effect of Pomegranate Juice Dipping and Chitosan Coating Enriched with Zataria Multiflora Boiss Essential Oil on the Shelf-life of Chicken Meat during Refrigerated Storage. Innov. Food Sci. Emerg. Technol. 2015, 29, 280–287.
  • Cardoso, G. P.; Dutra, M. P.; Fontes, P. R.; Ramos, A. D. L. S.; de Miranda Gomide, L. A.; Ramos, E. M. Selection of a Chitosan Gelatin-based Edible Coating for Color Preservation of Beef in Retail Display. Meat Sci. 2016, 114, 85–94.
  • Hassanzadeh, P.; Tajik, H.; Rohani, S. M. R.; Moradi, M.; Hashemi, M.; Aliakbarlu, J. Effect of Functional Chitosan Coating and Gamma Irradiation on the Shelf-life of Chicken Meat during Refrigerated Storage. Radiat. Phys. Chem. 2017, 141, 103–109.
  • Zhou, K.; Xia, W.; Zhang, C.; Yu, L. L. In Vitro Binding of Bile Acids and Triglycerides by Selected Chitosan Preparations and Their Physico-Chemical Properties. LWT-Food Sci. Technol. 2006, 39, 1087–1092.
  • Zhao, D.; Huang, J.; Hu, S.; Mao, J.; Mei, L. Biochemical Activities of N, O-Carboxymethyl Chitosan from Squid Cartilage. Carbohydr. Polym. 2011, 85, 832–837.
  • Panith, N.; Wichaphon, J.; Lertsiri, S.; Niamsiri, N. Effect of Physical and Physicochemical Characteristics of Chitosan on Fat-Binding Capacities under in Vitro Gastrointestinal Conditions. LWT-Food Sci. Technol. 2016, 71, 25–32.
  • Helgason, T.; Weiss, J.; McClements, D. J.; Gislason, J.; Einarsson, J. M.; Thormodsson, F. R.; Kristbergsson, K. Examination of the Interaction of Chitosan and Oil-in-Water Emulsions under Conditions Simulating the Digestive System Using Confocal Microscopy. J. Aquat. Food Prod. Technol. 2008, 17(3), 216–233. DOI: 10.1080/10498850802179784.
  • Luo, Y.; Wang, Q. Recent Development of Chitosan-Based Polyelectrolyte Complexes with Natural Polysaccharides for Drug Delivery. Int. J. Biol. Macromol. 2014, 64, 353–367. DOI: 10.1016/j.ijbiomac.2013.12.017.
  • Mourya, V.;. Carboxymethyl Chitosan and Its Applications. Adv. Mater. Lett. 2010, 1(1), 11–33. DOI: 10.5185/amlett.2010.3108.
  • Anitha, A.; Deepa, N.; Chennazhi, K.; Nair, S.; Tamura, H.; Jayakumar, R. Development of Mucoadhesive Thiolated Chitosan Nanoparticles for Biomedical Applications. Carbohydr. Polym. 2011, 83(1), 66–73. DOI: 10.1016/j.carbpol.2010.07.028.
  • Heras, A.;. N-Methylene Phosphonic Chitosan: A Novel Soluble Derivative. Carbohydr. Polym. 2001, 44(1), 1–8. DOI: 10.1016/S0144-8617(00)00195-8.
  • Zhu, D.; Yao, K.; Bo, J.; Zhang, H.; Liu, L.; Dong, X.; Song, L.; Leng, X. Hydrophilic/Lipophilic N-Methylene Phosphonic Chitosan as a Promising Non-Viral Vector for Gene Delivery. J. Mater. Sci. Mater. Med. 2010, 21(1), 223–229. DOI: 10.1007/s10856-009-3849-3.
  • Kim, T. H.; Ihm, J. E.; Choi, Y. J.; Nah, J. W.; Cho, C. S. Efficient Gene Delivery by Urocanic Acid-Modified Chitosan. J. Control Release. 2003, 93, 389–402.
  • Mansouri, S.; Cuie, Y.; Winnik, F.; Shi, Q.; Lavigne, P.; Benderdour, M.; Beaumont, E.; Fernandes, J. C. Characterization of Folate-Chitosan-DNA Nanoparticles for Gene Therapy. Biomaterials. 2006, 27, 2060–2065.
  • Cho, Y. S.; Kim, S. K.; Ahn, C. B.; Je, J. Y. Preparation, Characterization, and Antioxidant Properties of Gallic Acid-grafted-chitosans. Carbohyd. Polym. 2011, 83, 1617–1622.
  • Lee, D. S.; Je, J. Y. Gallic Acid-Grafted-Chitosan Inhibits Foodborne Pathogens by a Membrane Damage Mechanism. J. Agr. Food. Chem. 2013, 61, 6574–6579.
  • Queiroz, M. F.; Melo, K. R. T.; Sabry, D. A.; Sassaki, G. L.; Rocha, H. A. O.; Costa, L. S. Gallic Acid-Chitosan Conjugate Inhibits the Formation of Calcium Oxalate Crystals. Molecules. 2019, 24, 2074.
  • Liu, J.; Lu, J. F.; Kan, J.; Jin, C. H. Synthesis of cChitosan-gallic Acid Conjugate: Structure Characterization and in Vitro Anti-diabetic Potential. Int. J. Biol. Macromol. 2013, 62, 321–329.
  • Curcio, M.; Puoci, F.; Iemma, F.; Parisi, O. I.; Cirillo, G.; Spizzirri, U. G.; Picci, N. Covalent Insertion of Antioxidant Molecules on Chitosan by a Free Radical Grafting Procedure. J. Agric. Food Chem. 2009, 57, 5933–5938.
  • Zhang, X.; Liu, J.; Qian, C. L.; Kan, J.; Jin, C. H. Effect of Grafting Method on the Physical Property and Antioxidant Potential of Chitosan Film Functionalized with Gallic Acid. Food Hydrocoll. 2019, 89, 1–10.
  • Pasanphan, W.; Chirachanchai, S. Conjugation of Gallic Acid onto Chitosan: An Approach for Green and Water-Based Antioxidant. Carbohydr. Polym. 2008, 72, 169–177.
  • Xie, M. H.; Hu, B.; Wang, Y.; Zeng, X. X. Grafting of Gallic Acid onto Chitosan Enhances Antioxidant Activities and Alters Rheological Properties of the Copolymer. J. Agr. Food Chem. 2014, 62, 9128–9136.
  • Wang, Y. Y.; Xie, M. H.; Ma, G. X.; Fang, Y.; Yang, W. J.; Ma, N.; Fang, D.; Hu, Q.; Pei, F. The Antioxidant and Antimicrobial Activities of Different Phenolic Acids Grafted onto Chitosan. Carbohyd. Polym. 2019, 225, 115238.
  • Yu, S.-H.; Mi, F.-L.; Pang, J.-C.; Jiang, S.-C.; Kuo, T.-H.; Wu, S.-J.; Shyu, -S.-S. Preparation and Characterization of Radical and pH-responsive Chitosan–gallic Acid Conjugate Drug Carriers. Carbohyd. Polym. 2011, 84, 794–802.
  • Lei, F.; Wang, X.; Liang, C.; Yuan, F.; Gao, Y. Preparation and Functional Evaluation of Chitosan‐EGCG Conjugates. J. Appl. Polym. Sci. 2014, 131. DOI: 10.1002/app.39732.
  • Moreno-Vasquez, M. J.; Valenzuela-Buitimea, E. L.; Plascencia-Jatomea, M.; Encinas-Encinas, J. C. Graciano-Verdugo, Functionalization of Chitosan by a Free Radical Reaction: Characterization, Antioxidant and Antibacterial Potential. Carbohyd. Polym. 2017, 155, 117–127.
  • Singh, A.; Benjakul, S.; Huda, N.; Xu, C.; Wu, P. Preparation and Characterization of Squid Pen Chitooligosaccharide–epigallocatechin Gallate Conjugates and Their Antioxidant and Antimicrobial Activities. RSC Adv. 2020, 10, 33196–33204.
  • Jing, Y. J.; Diao, Y. J.; Yu, X. Q. Free Radical-Mediated Conjugation of Chitosan with Tannic Acid: Characterization and Antioxidant Capacity. React. Funct. Polym. 2019, 135, 16–22.
  • Wei, Z.; Gao, Y. Evaluation of Structural and Functional Properties of Chitosan-Chlorogenic Acid Complexes. Int. J. Biol. Macromol. 2016, 86, 376–382.
  • Rui, L. Y.; Xie, M. H.; Hu, B.; Zhou, L.; Saeeduddin, M.; Zeng, X. X. Enhanced Solubility and Antioxidant Activity of Chlorogenic Acid-Chitosan Conjugates Due to the Conjugation of Chitosan with Chlorogenic Acid. Carbohyd. Polym. 2017, 170, 206–216.
  • Diao, Y.; Yu, X.; Zhang, C.; Jing, Y. Quercetin-Grafted Chitosan Prepared by Free Radical Grafting: Characterization and Evaluation of Antioxidant and Antibacterial Properties. J. Food Sci. Technol-Mysore. 2020, 57, 2259–2268.
  • Woo, J. Y.; Je, J. Y. Antioxidant and Tyrosinase Inhibitory Activities of a Novel Chitosan–Phloroglucinol Conjugate. Int. J. Food Sci. Technol. 2013, 48, 1172–1178.
  • Chatterjee, N. S.; Panda, S. K.; Navitha, M.; Asha, K.; Anandan, R.; Mathew, S. Vanillic Acid and Coumaric Acid Grafted Chitosan Derivatives: Improved Grafting Ratio and Potential Application in Functional Food. J. Food Sci. Technol. 2015, 52, 7153–7162.
  • Chung, Y.-C.; Kuo, C.-L.; Chen, -C.-C. Preparation and Important Functional Properties of Water-Soluble Chitosan Produced through Maillard Reaction. Bioresour. Technol. 2005, 96, 1473–1482.
  • Zhang, H.; Yang, J.; Zhao, Y. High Intensity Ultrasound Assisted Heating to Improve Solubility, Antioxidant and Antibacterial Properties of Chitosan-Fructose Maillard Reaction Products. LWT-Food Sci. Technol. 2015, 60, 253–262.
  • Miralles, B.; Martínez-Rodríguez, A.; Santiago, A.; van de Lagemaat, J.; Heras, A. The Occurrence of a Maillard-Type Protein-Polysaccharide Reaction between Β-lactoglobulin and Chitosan. Food Chem. 2007, 100, 1071–1075.
  • Li, X.; Shi, X.; Wang, M.; Du, Y. Xylan Chitosan Conjugate-a Potential Food Preservative. Food Chem. 2011, 126, 520–525.
  • Park, -H.-H.; Ko, S.-C.; Oh, G.-W.; Jang, Y.-M.; Kim, Y.-M.; Park, W. S.; Choi, W.-I.; Jung, W.-K. Characterization and Biological Activity of Pva Hydrogel Containing Chitooligosaccharides Conjugated with Gallic Acid. Carbohydr. Polym. 2018, 198, 197–205.
  • Eom, T.-K.; Ryu, B.; Lee, J.-K.; Byun, H.-G.; Park, S.-J.; Kim, S.-K. β-Secretase Inhibitory Activity of Phenolic Acid Conjugated Chitooligosaccharides. J. Enzyme Inhib. Med. Chem. 2013, 28, 214–217.
  • Eom, T.-K.; Senevirathne, M.; Kim, S.-K. Synthesis of Phenolic Acid Conjugated Chitooligosaccharides and Evaluation of Their Antioxidant Activity. Environ. Toxicol. Pharmacol. 2012, 34, 519–527.
  • Lee, D.-S.; Je, J.-Y. Gallic Acid-Grafted-Chitosan Inhibits Foodborne Pathogens by a Membrane Damage Mechanism. J. Agric. Food Chem. 2013, 61, 6574–6579.
  • Liu, J.; Lu, J.-F.; Kan, J.; Jin, C.-H. Synthesis of Chitosan-Gallic Acid Conjugate: Structure Characterization and in Vitro Anti-Diabetic Potential. Int. J. Biol. Macromol. 2013, 62, 321–329.
  • Woranuch, S.; Yoksan, R. Preparation, Characterization and Antioxidant Property of Water-Soluble Ferulic Acid Grafted Chitosan. Carbohydr. Polym. 2013, 96, 495–502.
  • Woranuch, S.; Yoksan, R.; Akashi, M. Ferulic Acid-Coupled Chitosan: Thermal Stability and Utilization as an Antioxidant for Biodegradable Active Packaging Film. Carbohydr. Polym. 2015, 115, 744–751.
  • Chiang, E.-P. I.; Tsai, S.-Y.; Kuo, Y.-H.; Pai, M.-H.; Chiu, H.-L.; Rodriguez, R. L.; Tang, F.-Y. Caffeic Acid Derivatives Inhibit the Growth of Colon Cancer: Involvement of the Pi3-K/Akt and Ampk Signaling Pathways. PloS One. 2014, 9, e99631.
  • Božič, M.; Gorgieva, S.; Kokol, V. Laccase-Mediated Functionalization of Chitosan by Caffeic and Gallic Acids for Modulating Antioxidant and Antimicrobial Properties. Carbohydr. Polym. 2012, 87, 2388–2398.
  • Zhu, W.; Zhang, Z. Preparation and Characterization of Catechin-Grafted Chitosan with Antioxidant and Antidiabetic Potential. Int. J. Biol. Macromol. 2014, 70, 150–155.
  • Brzonova, I.; Steiner, W.; Zankel, A.; Nyanhongo, G. S.; Guebitz, G. M. Enzymatic Synthesis of Catechol and Hydroxyl-Carboxic Acid Functionalized Chitosan Microspheres for Iron Overload Therapy. Eur. J. Pharm. Biopharm. 2011, 79, 294–303.
  • Lei, F.; Liu, F.; Yuan, F.; Gao, Y. Impact of Chitosan–EGCG Conjugates on Physicochemical Stability of Β-carotene Emulsion. Food Hydrocoll. 2014, 39, 163–170.
  • Liu, J.; Pu, H. M.; Liu, S.; Kan, J.; Jin, C. H. Synthesis, Characterization, Bioactivity and Potential Application of Phenolic Acid Grafted Chitosan: A Review. Carbohydr. Polym. 2017, 174, 999–1017.
  • Aljawish, A.; Chevalot, I.; Piffaut, B.; Rondeau-Mouro, C.; Girardin, M.; Jasniewski, J.; Scher, J.; Muniglia, L. Functionalization of Chitosan by Laccase-Catalyzed Oxidation of Ferulic Acid and Ethyl Ferulate under Heterogeneous Reaction Conditions. Carbohydr. Polym. 2012, 87, 537–544.
  • Atasoy, A. D.; Yesilnacar, M. I.; Atasoy, A. F. 2 - Essential Element Contents of Turkish Black Tea. In Non-Alcoholic Beverages, Grumezescu, A.M., Holban, A.M., Eds.; Woodhead Publishing, Sawston, United Kingdom: 2019; Vol. 6, pp 63–72.
  • Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant Polyphenols: Chemical Properties, Biological Activities, and Synthesis. Angew. Chemie Int. Ed. 2011, 50, 586–621.
  • Cho, Y.-S.; Kim, S.-K.; Ahn, C.-B.; Je, J.-Y. Preparation, Characterization, and Antioxidant Properties of Gallic Acid-Grafted-Chitosans. Carbohydr. Polym. 2011, 83, 1617–1622.
  • Lei, F.; Liu, F.; Yuan, F.; Gao, Y. Impact of Chitosan–EGCG Conjugates on Physicochemical Stability of β-Carotene Emulsion. Food Hydrocoll. 2014, 39, 163–170.
  • Gahruie, H. H.; Niakousari, M. Antioxidant, Antimicrobial, Cell Viability and Enzymatic Inhibitory of Antioxidant Polymers as Biological Macromolecules. Int. J. Biol. Macromol. 2017, 104, 606–617.
  • Mittal, A.; Singh, A.; Benjakul, S. Use of Nanoliposome Loaded with Chitosan-Epigallocatechin Gallate Conjugate for Shelf-life Extension of Refrigerated Asian Sea Bass (Lates Calcarifer) Slices. Int. J. Food Sci. Technol. 2021. DOI: 10.1111/ijfs.14995.
  • Qin, Y.; Li, P. Antimicrobial Chitosan Conjugates: Current Synthetic Strategies and Potential Applications. Int. J. Mol. Sci. 2020, 21(2), 499.
  • Mu, H.; Liu, Q.; Niu, H.; Sun, Y.; Duan, J. Gold Nanoparticles Make Chitosan–Streptomycin Conjugates Effective Towards Gram-Negative Bacterial Biofilm. RSC Adv. 2016, 6, 8714–8721.
  • Lee, D. S.; Woo, J. Y.; Ahn, C. B.; Je, J. Y. Chitosan–Hydroxycinnamic Acid Conjugates: Preparation, Antioxidant and Antimicrobial Activity. Food Chem. 2014, 148, 97–104.
  • Yang, C.; Zhou, Y.; Zheng, Y.; Li, C.; Sheng, S.; Wang, J.; Wu, F. Enzymatic Modification of Chitosan by Cinnamic Acids: Antibacterial Activity against Ralstonia Solanacearum. Int. J. Biol. Macromol. 2016, 87, 577–585.
  • Kerch, G.; Chitosan Films and Coatings Prevent Losses of Fresh Fruit Nutritional Quality: A Review. Trends Food Sci. Technol. 2015, 46, 159–166.
  • Schreiber, S. B.; Bozell, J. J.; Hayes, D. G.; Zivanovic, S. Introduction of Primary Antioxidant Activity to Chitosan for Application as a Multifunctional Food Packaging Material. Food Hydrocoll. 2013, 33, 207–214.
  • Riaz, A.; Lei, S.; Akhtar, H. M. S.; Wan, P.; Chen, D.; Jabbar, S.; Abid, M.; Hashim, M. M.; Zeng, X. Preparation and Characterization of Chitosan-Based Antimicrobial Active Food Packaging Film Incorporated with Apple Peel Polyphenols. Int. J. Biol. Macromol. 2018, 114, 547–555.
  • Kumar, S.; Mukherjee, A.; Dutta, J. Chitosan Based Nanocomposite Films and Coatings: Emerging Antimicrobial Food Packaging Alternatives. Trends Food Sci. Technol. 2020, 97, 196–209.
  • Wang, Y. Y.; Du, H. J.; Xie, M. H.; Ma, G. X.; Yang, W. J.; Hu, Q. H.; Pei, F. Characterization of the Physical Properties and Biological Activity of Chitosan Films Grafted with Gallic Acid and Caffeic Acid: A Comparison Study. Food Packag. Shelf Life. 2019, 22, 100401.
  • Sun, L.; Sun, J.; Chen, L.; Niu, P.; Yang, X.; Guo, Y. Preparation and Characterization of Chitosan Film Incorporated with Thinned Young Apple Polyphenols as an Active Packaging Material. Carbohydr. Polym. 2017, 163, 81–91.
  • Liu, J.; Liu, S.; Chen, Y.; Zhang, L.; Kan, J.; Jin, C. Physical, Mechanical and Antioxidant Properties of Chitosan Films Grafted with Different Hydroxybenzoic Acids. Food Hydrocoll. 2017, 71, 176–186.
  • Hu, F.; Sun, T.; Xie, J.; Xue, B.; Li, X.; Gan, J.; Li, L.; Shao, Z. Functional Properties and Preservative Effect on Penaeus Vannamei of Chitosan Films with Conjugated or Incorporated Chlorogenic Acid. Int. J. Biol. Macromol. 2020, 159, 333–340.
  • Dehghani, S.; Hosseini, S. V.; Regenstein, J. M. Edible Films and Coatings in Seafood Preservation: A Review. Food Chem. 2018, 240, 505–513.
  • Liu, J.;. Effect of Protocatechuic Acid-Grafted-Chitosan Coating on the Postharvest Quality of Pleurotus Eryngii. J. Agric. Food Chem. 2016, 64, 7225–7233.
  • Jiao, W.; Shu, C.; Li, X.; Cao, J.; Fan, X.; Jiang, W. Preparation of a Chitosan-Chlorogenic Acid Conjugate and Its Application as Edible Coating in Postharvest Preservation of Peach Fruit. Postharvest Biol. Technol. 2019, 154, 129–136.
  • Jing, Y.; Huang, J.; Yu, X. Maintenance of the Antioxidant Capacity of Fresh-Cut Pineapple by Procyanidin-Grafted Chitosan. Postharvest Biol. Technol. 2019, 154, 79–86.
  • Wu, C.; Fu, S.; Xiang, Y.; Yuan, C.; Hu, Y.; Chen, S.; Liu, D.; Ye, X. Effect of Chitosan Gallate Coating on the Quality Maintenance of Refrigerated (4°C) Silver Pomfret (Pampus Argentus). Food Bioproc. Tech. 2016, 9, 1835–1843.
  • Zheng, M.; Zhang, C.; Zhou, Y.; Lu, Z.; Zhao, H.; Bie, X.; Lu, F. Preparation of Gallic Acid-grafted Chitosan Using Recombinant Bacterial Laccase and Its Application in Chilled Meat Preservation. Front. Microbiol. 2018, 9, 1729.
  • Lan, W.; Liu, J.; Wang, M.; Xie, J. Effects of Apple Polyphenols and Chitosan‐based Coatings on Quality and Shelf Life of Large Yellow Croaker (Pseudosciaena Crocea) as Determined by Low Field Nuclear Magnetic Resonance and Fluorescence Spectroscopy. J. Food Saf. 2021, e12887. DOI: 10.1111/jfs.12887.
  • Singh, A.; Mittal, A.; Benjakul, S. Chitosan Nanoparticles: Preparation, Food Applications and Health Benefits. Sci. Asia. 2021, 47, 1–10.
  • Akbari-Alavijeh, S.; Shaddel, R.; Jafari, S. M. Encapsulation of Food Bioactives and Nutraceuticals by Various Chitosan-based Nanocarriers. Food Hydrocoll. 2020, 105, 105774.
  • Hasheminejad, N.; Khodaiyan, F.; Safari, M. Improving the Antifungal Activity of Clove Essential Oil Encapsulated by Chitosan Nanoparticles. Food Chem. 2019, 275, 113–122.
  • Jamil, B.; Abbasi, R.; Abbasi, S.; Imran, M.; Khan, S.U.; Ihsan, A.; Javed, S. and Bokhari, H. Encapsulation of Cardamom Essential Oil in Chitosan Nano-composites: In-vitro Efficacy on Antibiotic-resistant Bacterial Pathogens and Cytotoxicity Studies. Front. Microbiol. 2016, 7, 1580.
  • Maghami, M.; Motalebi, A. A.; Anvar, S. A. A. Influence of Chitosan Nanoparticles and Fennel Essential Oils (Foeniculum Vulgare) on the Shelf Life of Huso Huso Fish Fillets during the Storage. Food Sci. Nutr. 2019, 7, 3030–3041.
  • Wang, Y.; Zhang, R.; Qin, W.; Dai, J.; Zhang, Q.; Lee, K.; Liu, Y. Physicochemical Properties of Gelatin Films Containing Tea Polyphenol-loaded Chitosan Nanoparticles Generated by Electrospray. Mater. Des. 2020, 185, 108277.
  • Chatterjee, N. S.; Anandan, R.; Navitha, M.; Asha, K. K.; Kumar, K. A.; Mathew, S.; Ravishankar, C. N. Development of Thiamine and Pyridoxine Loaded Ferulic Acid-Grafted Chitosan Microspheres for Dietary Supplementation. J. Food Sci. Technol. 2016, 53, 551–560.
  • Mittal, A.; Singh, A.; Benjakul, S. Use of Nanoliposome Loaded with Chitosan‐epigallocatechin Gallate Conjugate for Shelf‐life Extension of Refrigerated Asian Sea Bass (Lates Calcarifer) Slices. Int. J. Food. Sci. Technol. 2021. DOI: 10.1111/ijfs.14995.
  • Vishnu, K. V.; Chatterjee, N. S.; Ajeeshkumar, K. K.; Lekshmi, R. G. K.; Tejpal, C. S.; Mathew, S.; Ravishankar, C. N. Microencapsulation of Sardine Oil: Application of Vanillic Acid Grafted Chitosan as a Bio-Functional Wall Material. Carbohydr. Polym. 2017, 174, 540–548.
  • Agulló, E.; Rodriguez, M. S.; Ramos, V.; Albertengo, L. Present and Future Role of Chitin and Chitosan in Food. Macromol. Biosci. 2003, 3, 521–530.
  • Lei, F.; Liu, F.; Yuan, F.; Gao, Y. Impact of Chitosan-EGCG Conjugates on Physicochemical Stability of B-Carotene Emulsion. Food Hydrocoll. 2014, 39, 163–170.
  • Ding, J.; Xu, Z. J.; Qi, B.; Cui, S.; Wang, T.; Jiang, L.; Zhang, Y.; Sui, X. Fabrication and Characterization of Soybean Oil Bodies Encapsulated in Maltodextrin and Chitosan-EGCG Conjugates: An in Vitro Digestibility Study. Food Hydrocoll. 2019, 94, 519–527.
  • Fu, Y.; Liu, J.; Zhang, W.; Wæhrens, S. S.; Tøstesen, M.; Hansen, E. T.; Bredie, L. P. W.; Lametsch, R. Exopeptidase Treatment Combined with Maillard Reaction Modification of Protein Hydrolysates Derived from Porcine Muscle and Plasma: Structure–Taste Relationship. Food Chem. 2020, 306, 125613.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.