306
Views
2
CrossRef citations to date
0
Altmetric
Review

Aminoglycosides in Food: Recent Updates on the Pretreatment and Analysis Methods

, ORCID Icon, , , & ORCID Icon

References

  • Farouk, F.; Azzazy, H. M.; Niessen, W. M. Challenges in the Determination of Aminoglycoside Antibiotics, a Review. Anal. Chim. Acta. 2015, 890, 21. DOI: 10.1016/j.aca.2015.06.038.
  • Tian, Y.-F.; Chen, G.-H.; Guo, L.-H.; Guo, X.; Mei, X.-Y. Methodology Studies on Detection of Aminoglycoside Residues. Food Anal. Methods.)2015, 8(7), 1842–1857.
  • Bailey, J.; Line, E. In Ovo Gentamicin and Mucosal Starter Culture to Control Salmonella in Broiler Production. J. Appl. Poult. Res. 2001, 10(4), 376. DOI: 10.1093/japr/10.4.376.
  • Hoelzer, K.; Wong, N.; Thomas, J.; Talkington, K.; Jungman, E.; Coukell, A. Antimicrobial Drug Use in Food-producing Animals and Associated Human Health Risks: What, and How Strong, Is the Evidence? BMC Vet. Res. 2017, 13(1), 1–38.
  • Veterinary Medicines Directorate. Product Information Database. http://www.vmd.defra.gov.uk/ProductInformationDatabase
  • Giguère, S.; Prescott, J. F.; Dowling, P. M., Antimicrobial Therapy in Veterinary Medicine: John Wiley & Sons, 2013.
  • Lappin, M.; Blondeau, J.; Boothe, D.; Breitschwerdt, E.; Guardabassi, L.; Lloyd, D.; Papich, M.; Rankin, S.; Sykes, J. E.; Turnidge, J. Antimicrobial Use Guidelines for Treatment of Respiratory Tract Disease in Dogs and Cats: Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Diseases. Journal of Veterinary Internal Medicine. 2017, 31(2), 279. DOI: 10.1111/jvim.14627.
  • Barnard, N.; Foster, A. Pseudomonasotitis in Dogs: A General practitioner’s Guide to Treatment. In Practice. 2017, 39(9), 386. DOI: 10.1136/inp.j892.
  • Van Duijkeren, E.; Schwarz, C.; Bouchard, D.; Catry, B.; Pomba, C.; Baptiste, K. E.; Moreno, M. A.; Rantala, M.; Ružauskas, M.; Sanders, P. The Use of Aminoglycosides in Animals within the EU: Development of Resistance in Animals and Possible Impact on Human and Animal Health: A Review. J. Antimicrob. Chemother. 2019, 74(9), 2480. DOI: 10.1093/jac/dkz161.
  • Norwegian Medicines Agency 2012. Bruk Av Antibakterielle Midler Til Pro-duksjonsdyr. https://legemiddelverket.no/Documents/Veterin%C3%A6rmedisin/Terapianbefalinger/Terapianbefaling_bruk%20av%20antibakteriellt%20midler%20til%20produks.pdf.
  • Prescott, J. F.; Baggot, J. D., Antimicrobial Therapy in Veterinary Medicine: Blackwell scientific publications, 1988).
  • Hughes, P.; Heritage, J., Antibiotic Growth-promoters in Food Animals. FAO Animal Production and Health Paper, (2004):129.
  • Young, T. E.;. Aminoglycoside Therapy in Neonates: With Particular Reference to Gentamicin. Neoreviews. 2002, 3(12), e243. DOI: 10.1542/neo.3-12-e243.
  • Selimoglu, E.;. Aminoglycoside-induced Ototoxicity. Curr. Pharm. Des. 2007, 13(1), 119. DOI: 10.2174/138161207779313731.
  • Fiekers, J. F.;. Effects of the Aminoglycoside Antibiotics, Streptomycin and Neomycin, on Neuromuscular Transmission. I. Presynaptic Considerations. J. Pharmacol. Exp. Ther. 1983, 225(487).
  • Childs-Kean, L. M.; Shaeer, K. M.; Varghese Gupta, S.; Cho, J. C. Aminoglycoside Allergic Reactions. Pharmacy. 2019, 7(3), 124. DOI: 10.3390/pharmacy7030124.
  • Aronson, J.; Reynolds, D. ABC of Monitoring Drug Therapy. Aminoglycoside Antibiotics. BMJ: British Medical Journal. 1992, 305(6866), 1421.
  • Winter, C. K.; Jara, E. A. Pesticide Food Safety Standards as Companions to Tolerances and Maximum Residue Limits. J. Integr. Agric. 2015, 14(11), 2358. DOI: 10.1016/S2095-3119(15)61117-0.
  • Moreno-Gonzalez, D.; Lara, F. J.; Jurgovska, N.; Gamiz-Gracia, L.; Garcia-Campana, A. M. Determination of Aminoglycosides in Honey by Capillary Electrophoresis Tandem Mass Spectrometry and Extraction with Molecularly Imprinted Polymers. Analytica Chimica Acta. 2015, 891, 321. DOI: 10.1016/j.aca.2015.08.003.
  • Ji, S.; Zhang, F.; Luo, X.; Yang, B.; Jin, G.; Yan, J.; Liang, X. Synthesis of Molecularly Imprinted Polymer Sorbents and Application for the Determination of Aminoglycosides Antibiotics in Honey. Journal of Chromatography A. 2013, 1313, 113. DOI: 10.1016/j.chroma.2013.08.072.
  • Xu, X.; Liu, Z.; Zhao, X.; Su, R.; Zhang, Y.; Shi, J.; Zhao, Y.; Wu, L.; Ma, Q.; Zhou, X.; et al. Ionic Liquid-based Microwave-assisted Surfactant-improved Dispersive Liquid-liquid Microextraction and Derivatization of Aminoglycosides in Milk Samples. Journal of Separation Science. 2013, 36(3), 585. DOI: 10.1002/jssc.201200801.
  • Berrada, H.; Molto, J. C.; Manes, J.; Font, G. Determination of Aminoglycoside and Macrolide Antibiotics in Meat by Pressurized Liquid Extraction and LC-ESI-MS. Journal of Separation Science. 2010, 33(4–5), 522. DOI: 10.1002/jssc.200900682.
  • Gbylik, M.; Posyniak, A.; Mitrowska, K.; Bladek, T.; Zmudzki, J. Multi-residue Determination of Antibiotics in Fish by Liquid Chromatography-tandem Mass Spectrometry. Food Additives & Contaminants: Part A. 2013, 30(6), 940. DOI: 10.1080/19440049.2013.780210.
  • Piatkowska, M.; Jedziniak, P.; Zmudzki, J. Multiresidue Method for the Simultaneous Determination of Veterinary Medicinal Products, Feed Additives and Illegal Dyes in Eggs Using Liquid Chromatography-tandem Mass Spectrometry. Food Chem. 2016, 197, 571.
  • Wang, R.; Fan, S.; Wang, R.; Wang, R. U. I.; Dou, H.; Wang, L. Determination of Aminoglycoside Antibiotics by a Colorimetric Method Based on the Aggregation of Gold Nanoparticles. Nano. 2013, 08(4), 1350037. DOI: 10.1142/S1793292013500379.
  • Caglayan, M. O.;. Aptamer-based Ellipsometric Sensor for Ultrasensitive Determination of Aminoglycoside Group Antibiotics from Dairy Products. Journal of the Science of Food and Agriculture. 2020, 100(8), 3386. DOI: 10.1002/jsfa.10372.
  • Bilandžić, N.; Kolanović, B. S.; Varenina, I.; Scortichini, G.; Annunziata, L.; Brstilo, M.; Rudan, N. Veterinary Drug Residues Determination in Raw Milk in Croatia. Food Control. 2011, 22(12), 1941–1948.
  • Caglayan, M. G.; Onur, F. Silver Nanoparticle Based Analysis of Aminoglycosides. Spectrosc. Lett. 2014, 47(10), 771. DOI: 10.1080/00387010.2013.845577.
  • Yan, S.; Lai, X.; Wang, Y.; Ye, N.; Xiang, Y. Label Free Aptasensor for Ultrasensitive Detection of Tobramycin Residue in Pasteurized Cow’s Milk Based on Resonance Scattering Spectra and Nanogold Catalytic Amplification. Food Chemistry. 2019, 295, 36. DOI: 10.1016/j.foodchem.2019.05.110.
  • Bousova, K.; Senyuva, H.; Mittendorf, K. Multiresidue Automated Turbulent Flow Online LC-MS/MS Method for the Determination of Antibiotics in Milk. Food Addit. Contam Part A Chem. Anal. Control Expo. Risk Assess. 2012, 29(12), 1901–1921.
  • Ma, Q.; Wang, Y.; Jia, J.; Xiang, Y. Colorimetric Aptasensors for Determination of Tobramycin in Milk and Chicken Eggs Based on DNA and Gold Nanoparticles. Food Chemistry. 2018, 249, 98. DOI: 10.1016/j.foodchem.2018.01.022.
  • Gupta, V. K.; Yola, M. L.; Özaltın, N.; Atar, N.; Üstündağ, Z.; Uzun, L. Molecular Imprinted Polypyrrole Modified Glassy Carbon Electrode for the Determination of Tobramycin. Electrochim. Acta. 2013, 112, 37. DOI: 10.1016/j.electacta.2013.08.132.
  • Martos, P. A.; Jayasundara, F.; Dolbeer, J.; Jin, W.; Spilsbury, L.; Mitchell, M.; Varilla, C.; Shurmer, B. Multiclass, Multiresidue Drug Analysis, Including Aminoglycosides, in Animal Tissue Using Liquid Chromatography Coupled to Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry. 2010, 58(10), 5932. DOI: 10.1021/jf903838f.
  • Bousova, K.; Senyuva, H.; Mittendorf, K. Quantitative Multi-residue Method for Determination Antibiotics in Chicken Meat Using Turbulent Flow Chromatography Coupled to Liquid Chromatography–tandem Mass Spectrometry. J. Chromatogr. A. 2013, 1274, 19. DOI: 10.1016/j.chroma.2012.11.067.
  • Arsand, J. B.; Jank, L.; Martins, M. T.; Hoff, R. B.; Barreto, F.; Pizzolato, T. M.; Sirtori, C. Determination of Aminoglycoside Residues in Milk and Muscle Based on a Simple and Fast Extraction Procedure Followed by Liquid Chromatography Coupled to Tandem Mass Spectrometry and Time of Flight Mass Spectrometry. Talanta. 2016, 154, 38. DOI: 10.1016/j.talanta.2016.03.045.
  • Beloglazova, N. V.; Shmelin, P. S.; Eremin, S. A. Sensitive Immunochemical Approaches for Quantitative (FPIA) and Qualitative (Lateral Flow Tests) Determination of Gentamicin in Milk. Talanta. 2016, 149, 217. DOI: 10.1016/j.talanta.2015.11.060.
  • Wang, J.; Zhang, H.; Sheng, W.; Liu, W.; Zheng, L.; Zhang, X.; Wang, S. Determination of Streptomycin Residues in Animal-derived Foods by a Reliable and Accurate Enzyme-linked Immunosorbent Assay. Anal. Methods. 2013, 5(17), 4430–4435.
  • Li, Y.; Zhang, Y.; Cao, X.; Wang, Z.; Shen, J.; Zhang, S. Development of a Chemiluminescent Competitive Indirect ELISA Method Procedure for the Determination of Gentamicin in Milk. Anal. Methods. 2012, 4(7), 2151. DOI: 10.1039/c2ay25141h.
  • Moreno-Gonzalez, D.; Hamed, A. M.; Garcia-Campana, A. M.; Gamiz-Gracia, L. Evaluation of Hydrophilic Interaction Liquid Chromatography-tandem Mass Spectrometry and Extraction with Molecularly Imprinted Polymers for Determination of Aminoglycosides in Milk and Milk-based Functional Foods. Talanta. 2017, 171, 74. DOI: 10.1016/j.talanta.2017.04.062.
  • Bohm, D. A.; Stachel, C. S.; Gowik, P. Validation of a Method for the Determination of Aminoglycosides in Different Matrices and Species Based on an In-house Concept. Food Additives & Contaminants: Part A. 2013, 30(6), 1037. DOI: 10.1080/19440049.2013.775709.
  • Saluti, G.; Diamanti, I.; Giusepponi, D.; Pucciarini, L.; Rossi, R.; Moretti, S.; Sardella, R.; Galarini, R. Simultaneous Determination of Aminoglycosides and Colistins in Food. Food Chemistry. 2018, 266, 9. DOI: 10.1016/j.foodchem.2018.05.113.
  • Kumar, P.; Rubies, A.; Companyo, R.; Centrich, F. Hydrophilic Interaction Chromatography for the Analysis of Aminoglycosides. Journal of Separation Science. 2012, 35(4), 498. DOI: 10.1002/jssc.201100860.
  • Kumar, P.; Rubies, A.; Companyo, R.; Centrich, F. Determination of Aminoglycoside Residues in Kidney and Honey Samples by Hydrophilic Interaction Chromatography-tandem Mass Spectrometry. Journal of Separation Science. 2012, 35(20), 2710. DOI: 10.1002/jssc.201200344.
  • Tao, Y.; Chen, D.; Yu, H.; Huang, L.; Liu, Z.; Cao, X.; Yan, C.; Pan, Y.; Liu, Z.; Yuan, Z. Simultaneous Determination of 15 Aminoglycoside(s) Residues in Animal Derived Foods by Automated Solid-phase Extraction and Liquid Chromatography-tandem Mass Spectrometry. Food Chemistry. 2012, 135(2), 676. DOI: 10.1016/j.foodchem.2012.04.086.
  • Savoy, M. C.; Woo, P. M.; Ulrich, P.; Tarres, A.; Mottier, P.; Desmarchelier, A. Determination of 14 Aminoglycosides by LC-MS/MS Using Molecularly Imprinted Polymer Solid Phase Extraction for Clean-up. Food Additives & Contaminants: Part A. 2018, 35(4), 674. DOI: 10.1080/19440049.2018.1433332.
  • Wang, Y.; Li, S.; Zhang, F.; Lu, Y.; Yang, B.; Zhang, F.; Liang, X. Study of Matrix Effects for Liquid Chromatography-electrospray Ionization Tandem Mass Spectrometric Analysis of 4 Aminoglycosides Residues in Milk. Journal of Chromatography A. 2016, 1437, 8. DOI: 10.1016/j.chroma.2016.02.003.
  • Dasenaki, M. E.; Michali, C. S.; Thomaidis, N. S. Analysis of 76 Veterinary Pharmaceuticals from 13 Classes Including Aminoglycosides in Bovine Muscle by Hydrophilic Interaction Liquid Chromatography-tandem Mass Spectrometry. Journal of Chromatography A. 2016, 1452, 67. DOI: 10.1016/j.chroma.2016.05.031.
  • Alechaga, E.; Moyano, E.; Galceran, M. T. Mixed-mode Liquid Chromatography Coupled to Tandem Mass Spectrometry for the Analysis of Aminoglycosides in Meat. Analytical and Bioanalytical Chemistry. 2014, 406(20), 4941. DOI: 10.1007/s00216-014-7912-7.
  • Feng, J.; She, X.; He, X.; Zhu, J.; Li, Y.; Deng, C. Synthesis of Magnetic Graphene/mesoporous Silica Composites with Boronic Acid-functionalized Pore-walls for Selective and Efficient Residue Analysis of Aminoglycosides in Milk. Food Chemistry. 2018, 239, 612. DOI: 10.1016/j.foodchem.2017.06.052.
  • Gremilogianni, A. M.; Megoulas, N. C.; Koupparis, M. A. Hydrophilic Interaction Vs Ion Pair Liquid Chromatography for the Determination of Streptomycin and Dihydrostreptomycin Residues in Milk Based on Mass Spectrometric Detection. Journal of Chromatography A. 2010, 1217(43), 6646. DOI: 10.1016/j.chroma.2010.04.059.
  • Liu, Q.; Li, J.; Song, X.; Zhang, M.; Li, E.; Gao, F.; He, L. Simultaneous Determination of Aminoglycoside Antibiotics in Feeds Using High Performance Liquid Chromatography with Evaporative Light Scattering Detection. RSC Adv. 2017, 7(3), 1251. DOI: 10.1039/C6RA26581B.
  • Young, M. S.; Van Tran, K.; Goh, E.; Shia, J. C. A Rapid SPE-based Analytical Method for UPLC/MS/MS Determination of Aminoglycoside Antibiotic Residues in Bovine Milk, Muscle, and Kidney. Journal of AOAC INTERNATIONAL. 2014, 97(6), 1737. DOI: 10.5740/jaoacint.13-153.
  • Zhang, L.; Zhu, C.; Chen, C.; Zhu, S.; Zhou, J.; Wang, M.; Shang, P. Determination of Kanamycin Using a Molecularly Imprinted SPR Sensor. Food Chemistry. 2018, 266, 170. DOI: 10.1016/j.foodchem.2018.05.128.
  • Tölgyesi, Á.; Barta, E.; Sohn, M.; Sharma, V. K. Determination of Antimicrobial Residues in Honey by Liquid Chromatography Tandem Mass Spectrometry. Food Anal. Methods. 2018, 11(8), 2043. DOI: 10.1007/s12161-018-1166-5.
  • Wang, C.; Li, H.; Wang, N.; Li, H.; Fang, L.; Dong, Z.; Du, H.; Guan, S.; Zhu, Q.; Chen, Z.; et al. Simultaneous Analysis of Kasugamycin and validamycin-A in Fruits and Vegetables Using Liquid Chromatography-tandem Mass Spectrometry and Consecutive Solid-phase Extraction. Anal. Methods. 2017, 9(4), 634. DOI: 10.1039/C6AY02921C.
  • El Hawari, K.; Daher, Z.; Verdon, E.; Al Iskandarani, M. Impact of Ion-pairs for the Determination of Multiclass Antimicrobials Residues in Honey by LC-MS/MS. Food Additives & Contaminants: Part A. 2017, 34(12), 2131. DOI: 10.1080/19440049.2017.1372641.
  • Park, E.-K.; Ryu, Y.-J.; Cha, C.-N.; Yoo, C.-Y.; Kim, S.; Lee, H.-J. Analysis of Antibiotic Residues in Milk from Healthy Dairy Cows Treated with Bovine Mastitis Ointment Using Ultra-performance Liquid Chromatography Coupled with Electrospray Tandem Mass Spectrometry. Korean Journal of Veterinary Research. 2016, 56(4), 233. DOI: 10.14405/kjvr.2016.56.4.233.
  • Gbylik-Sikorska, M.; Posyniak, A.; Sniegocki, T.; Zmudzki, J. Liquid Chromatography-tandem Mass Spectrometry Multiclass Method for the Determination of Antibiotics Residues in Water Samples from Water Supply Systems in Food-producing Animal Farms. Chemosphere. 2015, 119, 8. DOI: 10.1016/j.chemosphere.2014.04.105.
  • Lehotay, S. J.; Lightfield, A. R. Simultaneous Analysis of Aminoglycosides with Many Other Classes of Drug Residues in Bovine Tissues by Ultrahigh-performance Liquid Chromatography-tandem Mass Spectrometry Using an Ion-pairing Reagent Added to Final Extracts. Analytical and Bioanalytical Chemistry. 2018, 410(3), 1095. DOI: 10.1007/s00216-017-0688-9.
  • Diez, C.; Guillarme, D.; Staub Sporri, A.; Cognard, E.; Ortelli, D.; Edder, P.; Rudaz, S. Aminoglycoside Analysis in Food of Animal Origin with a Zwitterionic Stationary Phase and Liquid Chromatography-tandem Mass Spectrometry. Analytica Chimica Acta. 2015, 882, 127. DOI: 10.1016/j.aca.2015.03.050.
  • Kaufmann, A.; Butcher, P.; Maden, K. Determination of Aminoglycoside Residues by Liquid Chromatography and Tandem Mass Spectrometry in a Variety of Matrices. Analytica Chimica Acta. 2012, 711, 46. DOI: 10.1016/j.aca.2011.10.042.
  • Li, J.; Song, X.; Zhang, M.; Li, E.; He, L. Simultaneous Determination of Aminoglycoside Residues in Food Animal Muscles by Mixed-Mode Liquid Chromatography-Tandem Mass Spectrometry. Food Anal. Methods. 2018, 11(6), 1690–1700.
  • Zhu, Z.; Liu, G.; Wang, F.; Sasanya, J. J.; Cannavan, A. Development of a Liquid Chromatography Tandem Mass Spectrometric Method for Simultaneous Determination of 15 Aminoglycoside Residues in Porcine Tissues. Food Anal. Methods. 2016, 9(9), 2587. DOI: 10.1007/s12161-016-0446-1.
  • Chen, Y.; Hu, X.; Xiao, X. Sample Preparation for Determination of Neomycin in Swine Tissues by Liquid Chromatography-fluorescence Detection. Anal. Lett. 2010, 43(16), 2496. DOI: 10.1080/00032711003725599.
  • Asakawa, D.; Uemura, M.; Sakiyama, T.; Yamano, T. Sensitivity Enhancement of Aminoglycosides in Hydrophilic Interaction Liquid Chromatography with Tandem Mass Spectrometry by Post-column Addition of Trace Sodium Acetate in Methanol. Food Additives & Contaminants: Part A. 2018, 35(6), 1116. DOI: 10.1080/19440049.2017.1388543.
  • Wang, Y.; Ji, S.; Zhang, F.; Zhang, F.; Yang, B.; Liang, X. A Polyvinyl Alcohol-functionalized Sorbent for Extraction and Determination of Aminoglycoside Antibiotics in Honey. Journal of Chromatography A. 2015, 1403, 32. DOI: 10.1016/j.chroma.2015.05.032.
  • Hung, S. H.; Yu, M. J.; Wang, N. H.; Hsu, R. Y.; Wei, G. J.; Her, G. R. An Integrated Electrophoretic Mobility Control Device with Split Design for Signal Improvement in Liquid Chromatography-electrospray Ionization Mass Spectrometry Analysis of Aminoglycosides Using a Heptafluorobutyric Acid Containing Mobile Phase. Analytica Chimica Acta. 2016, 933, 156. DOI: 10.1016/j.aca.2016.05.039.
  • Wang, X.; Yang, S.; Li, Y.; Zhang, J.; Jin, Y.; Zhao, W.; Zhang, Y.; Huang, J.; Wang, P.; Wu, C.; et al. Optimization and Application of Parallel Solid-phase Extraction Coupled with Ultra-high Performance Liquid Chromatography-tandem Mass Spectrometry for the Determination of 11 Aminoglycoside Residues in Honey and Royal Jelly. Journal of Chromatography A. 2018, 1542, 28. DOI: 10.1016/j.chroma.2018.02.029.
  • Liu, H.; Li, N.; Liu, X.; Qian, Y.; Qiu, J.; Wang, X. Poly(N-acryloyl-glucosamine-co-methylenebisacrylamide)-based Hydrophilic Magnetic Nanoparticles for the Extraction of Aminoglycosides in Meat Samples. Journal of Chromatography A. 2020, 1609, 460517. DOI: 10.1016/j.chroma.2019.460517.
  • Lou, X.; Tang, Y.; Fang, C.; Kong, C.; Yu, H.; Shi, Y.; Huang, D.; Guo, Y.; Xiao, D. Simultaneous Determination of Ten Aminoglycoside Antibiotics in Aquatic Feeds by High-performance Liquid Chromatography Quadrupole-orbitrap Mass Spectrometry with Pass-through Cleanup. Chirality. 2020, 32(3), 324. DOI: 10.1002/chir.23159.
  • Wang, J.; Zhao, Q.; Jiang, N.; Li, W.; Chen, L.; Lin, X.; Xie, Z.; You, L.; Zhang, Q. Urea-formaldehyde Monolithic Column for Hydrophilic In-tube Solid-phase Microextraction of Aminoglycosides. Journal of Chromatography A. 2017, 1485, 24. DOI: 10.1016/j.chroma.2017.01.027.
  • Chen, L.; Mei, M.; Huang, X. Development of Multiple Monolithic Fiber Solid-phase Microextraction and Liquid Chromatography-tandem Mass Spectrometry Method for the Sensitive Monitoring of Aminoglycosides in Honey and Milk Samples. Journal of Separation Science. 2017, 40(21), 4203. DOI: 10.1002/jssc.201700795.
  • Wang, L.; Yang, B.; Zhang, X.; Zheng, H. Novel Two-Dimensional Liquid Chromatography–Tandem Mass Spectrometry for the Analysis of Twenty Antibiotics Residues in Dairy Products. Food Anal. Methods. 2017, 10(6), 2001–2010.
  • Amelin, V.; Korotkov, A.; Andoralov, A. Identification and Determination of 492 Contaminants of Different Classes in Food and Feed by High-Resolution Mass Spectrometry Using the Standard Addition Method. J. AOAC Int. 2016, 99(6), 1600–1618.
  • Liu, H.; Lin, T.; Lin, X.; Shao, J.; Li, Q. QuEChERS with Magnetic Hydrophilic–Lipophilic Balanced Adsorbent and Its Application in Multi-Class Veterinary Residues in Milk by Ultra High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Chromatographia. 2017, 81(2), 265. DOI: 10.1007/s10337-017-3433-9.
  • Zhu, G.; Bao, C.; Liu, W.; Yan, X.; Liu, L.; Xiao, J.; Chen, C. Rapid Detection of AGs Using Microchip Capillary Electrophoresis Contactless Conductivity Detection. Curr. Pharm. Anal. 2018, 15(1), 9. DOI: 10.2174/1573412913666170918160004.
  • El-Attug, M. N.; Hoogmartens, J.; Adams, E.; Van Schepdael, A. Optimization of Capillary Electrophoresis Method with Contactless Conductivity Detection for the Analysis of Tobramycin and Its Related Substances. Journal of Pharmaceutical and Biomedical Analysis. 2012, 58, 49. DOI: 10.1016/j.jpba.2011.09.032.
  • El-Attug, M. N.; Adams, E.; Van Schepdael, A. Development and Validation of a Capillary Electrophoresis Method with Capacitively Coupled Contactless Conductivity Detection (CE-C4D) for the Analysis of Amikacin and Its Related Substances. Electrophoresis. 2012, 33(17), 2777. DOI: 10.1002/elps.201100688.
  • Almeida, J. M.; Toloza, C. A.; Machado, B. S.; Da Silva, A. R.; Aucelio, R. Q. Determination of Gentamicin Sulfate by Batch-injection Amperometry after Solid-phase Extraction Using a Kanamycin-template Imprinted Polymer. Microchem. J. 2019, 145, 187. DOI: 10.1016/j.microc.2018.10.041.
  • Tuzimiski, T.; Petruczynil, A. Review of Chromatographic Method Coupled with Modern Detection Techniques Applied in the Therapeutic Drugs Monitoring (TDM). Molecules. 2020, 25(17), 4026. DOI: 10.3390/molecules25174026.
  • Velusamy, V.; Arshak, K.; Korostynska, O.; Oliwa, K.; Adley, C. An Overview of Foodborne Pathogen Detection: In the Perspective of Biosensors. Biotechnol. Adv. 2010, 28, 232.
  • Krejcova, L.; Michalek, P.; Rodrigo, M. M.; Heger, Z.; Krizkova, S.; Vaculovicova, M.; Hynek, D.; Adam, V.; Kizek, R. Nanoscale Virus Biosensors: State of the Art. Nanobiosensors in Disease Diagnosis. 2015, 4, 47.
  • Ahmed, S.; Ning, J.; Cheng, G.; Ahmad, I.; Li, J.; Mingyue, L.; Qu, W.; Iqbal, M.; Shabbir, M.; Yuan, Z. Receptor-based Screening Assays for the Detection of Antibiotics Residues–a Review. Talanta. 2017, 166, 176. DOI: 10.1016/j.talanta.2017.01.057.
  • Justino, C. I.; Freitas, A. C.; Pereira, R.; Duarte, A. C.; Santos, T. A. R. Recent Developments in Recognition Elements for Chemical Sensors and Biosensors. TrAC Trends Anal. Chem. 2015, 68, 2. DOI: 10.1016/j.trac.2015.03.006.
  • Yu, X.; Yang, Y.-P.; Dikici, E.; Deo, S. K.; Daunert, S. Beyond Antibodies as Binding Partners: The Role of Antibody Mimetics in Bioanalysis. Annu. Rev. Anal. Chem. 2017, 10(1), 293. DOI: 10.1146/annurev-anchem-061516-045205.
  • Kiran, B. R.; Kale, K.; Transformed, E. Coli JM109 as a Biosensor for Penicillin. Indian J. Pharm. Sci. 2002, 64, 205.
  • Gaudin, V.;. Advances in Biosensor Development for the Screening of Antibiotic Residues in Food Products of Animal origin–A Comprehensive Review. Biosens. Bioelectron. 2017, 90, 363. DOI: 10.1016/j.bios.2016.12.005.
  • Groff, K.; Brown, J.; Clippinger, A. J. Modern Affinity Reagents: Recombinant Antibodies and Aptamers. Biotechnol. Adv. 2015, 33(8), 1787-1798.
  • Van Dorst, B.; Mehta, J.; Bekaert, K.; Rouah-Martin, E.; De Coen, W.; Dubruel, P.; Blust, R.; Robbens, J. Recent Advances in Recognition Elements of Food and Environmental Biosensors: A Review. Biosens. Bioelectron. 2010, 26(4), 1178. DOI: 10.1016/j.bios.2010.07.033.
  • de-los-Santos-Álvarez, N.; Lobo-Castañón, M. J.; Miranda-Ordieres, A. J.; Tuñón-Blanco, P. SPR Sensing of Small Molecules with Modified RNA Aptamers: Detection of Neomycin B. Biosens. Bioelectron. 2009, 24(2547), 2547–2553. DOI: 10.1016/j.bios.2009.01.011.
  • D’souza, S.;. Microbial Biosensors. Biosens. Bioelectron. 2001, 16(6), 337. DOI: 10.1016/S0956-5663(01)00125-7.
  • Pohanka, M.; Skládal, P. Electrochemical Biosensors--principles and Applications. J. Appl. Biomed. 2008, 6(2), 57–64. DOI: 10.32725/jab.2008.008.
  • Yasmin, J.; Ahmed, M. R.; Cho, B.-K. Biosensors and Their Applications in Food Safety: A Review. Journal of Biosystems Engineering. 2016, 41(3), 240. DOI: 10.5307/JBE.2016.41.3.240.
  • Bai, X.; Hou, H.; Zhang, B.; Tang, J. Label-free Detection of Kanamycin Using Aptamer-based Cantilever Array Sensor. Biosens. Bioelectron. 2014, 56, 112. DOI: 10.1016/j.bios.2013.12.068.
  • Chavada, V. D.; Bhatt, N. M.; Sanyal, M.; Shrivastav, P. S. Surface Plasmon Resonance Based Selective and Sensitive Colorimetric Determination of Azithromycin Using Unmodified Silver Nanoparticles in Pharmaceuticals and Human Plasma. Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2017, 170, 97. DOI: 10.1016/j.saa.2016.07.011.
  • Miranda-Andrades, J. R.; Pérez-Gramatges, A.; Pandoli, O.; Romani, E. C.; Aucélio, R. Q.; Da Silva, A. R. Spherical Gold Nanoparticles and Gold Nanorods for the Determination of Gentamicin. Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2017, 172, 126. DOI: 10.1016/j.saa.2016.04.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.