266
Views
0
CrossRef citations to date
0
Altmetric
Review

Milk Fat Modification Strategies for Technological Application on a Macro, Micro and Nanoscale: A Review

, ORCID Icon, &

References

  • MacGibbon, A. K. H.; Taylor, M. W. Composition and Structure of Bovine Milk Lipids. In Advanced Dairy Chemistry, 3rd ed.; Fox, P.F., McSweeney, P.L.H., Eds.; Lipids. Springer: New York, 2006; Vol. 2, pp 1–35.
  • Jensen, R. G.;. The Composition of Bovine Milk Lipids: January 1995 to December 2000. J. Dairy Sci. 2002, 85, 295–350.
  • Walstra, P.; Wouters, J. T. M.; Geurts, T. J. Dairy Science and Technology; 2nd; Taylor & Francis Group: New York, 2006; pp 739.
  • O’Brien, R. D.;. Fats and Oils: Formulating and Processing for Applications;3rd; CRC Press: Boca Raton, 2009; pp 744.
  • Fredrick, E.; De Walle, D. V.; Walstra, P.; Zijtveld, J. H.; Fischer, S.; Der Meeren, P. V.; Dewettinck, K. Isothermal Crystallization Behavior of Milk Fat in Bulk and Emulsified State. Int. Dairy J. 2011, 21(9), 685–695. DOI: 10.1016/j.idairyj.2010.11.007.
  • Karabulut, I.; Turan, S.; Ergin, G. Effects of Chemical Interesterification on Solid Fat Content and Slip Melting Point of Fat/oil Blends. Eur. Food Res. Technol. 2004, 218(3), 214–229. DOI: 10.1007/s00217-003-0847-4.
  • Truong, T.; Morgan, G. P.; Bansal, N.; Palmer, M.; Bhandari, B. Crystal Structures and Morphologies of Fractionated Milk Fat in Nanoemulsions. Food Chem. 2015, 171, 157–167. DOI: 10.1016/j.foodchem.2014.08.113.
  • Cisneros, A.; Mazzanti, G.; Campos, R.; Marangoni, A. G. Polymorphic Transformation in Mixtures of High- and Low-Melting Fractions of Milk Fat. J. Agric. Food Chem. 2006, 54(16), 6030–6033. DOI: 10.1021/jf0600814.
  • Lopez, C.; Bourgaux, C.; Lesieur, P.; Riaublanc, A.; Ollivon, M. Milk Fat and Primary Fractions Obtained by Dry Fractionation. 1. Chemical Composition and Crystallization Properties. Chem. Phys. Lipids. 2006, 144, 17–33.
  • Queirós, M. S.; Grimaldi, R.; Gigante, M. L. Addition of Olein from Milk Fat Positively Affects the Firmness of Butter. Food Res. Int. 2016, 2016(84), 69–75. DOI: 10.1016/j.foodres.2016.03.017.
  • Lee, J.; Martini, S. Modifying the Physical Properties of Butter Using High-intensity Ultrasound. J. Dairy. Sci. 2019, 102, 1918-1926.
  • Rodrigues, J. N.; Gioielli, L. A. Chemical Interesterification of Milkfat and Milkfat-corn Oil Blends. Food Res. Int. 2003, 36(2), 149–159. DOI: 10.1016/S0963-9969(02)00130-8.
  • Danthine, S.;. Physicochemical and Structural Properties of Compound Dairy Fat Blends. Food Res. Int. 2012, 48(1), 187–195. DOI: 10.1016/j.foodres.2012.03.004.
  • Viriato, R. L. S.; Queirós, M. S.; Da Gama, M. A. S.; Ribeiro, A. P. B.; Gigante, M. L. Milk Fat as a Structuring Agent of Plastic Lipid Bases. Food Res. Int. 2018, 111, 120–129. DOI: 10.1016/j.foodres.2018.05.015.
  • Viriato, R. L. S.; Queirós, M. S.; Neves, M. I. L.; Ribeiro, A. P. B.; Gigante, M. L. Improvement in the Functionality of Spreads Based on Milk Fat by the Addition of Low Melting Triacylglycerols. Food Res. Int. 2019, 120, 432–440. DOI: 10.1016/j.foodres.2018.10.082.
  • Neves, M. I. L.;. Modificação Da Gordura Do Leite E Produção De Micropartículas Lipídicas. 2018. 108p. Masters Dissertation; Faculty of Food Engineering, State University of Campinas: Campinas, Brazil.
  • Shen, Z.; Birkett, A.; Augustin, M. A.; Dungey, S.; Versteeg, C. Melting Behavior of Blends of Milk Fat with Hydrogenated Coconut and Cottonseed Oils. J. Am. Oil Chem. Soc. 2001, 78(4), 387–394. DOI: 10.1007/s11746-001-0273-4.
  • Kerr, R. M.; Tombokan, X.; Ghosh, S.; Martini, S. Crystallization Behavior of Anhydrous Milk Fat-Sunflower Oil Wax Blends. J. Agric. Food Chem. 2011, 59(6), 2689–2695. DOI: 10.1021/jf1046046.
  • Ribeiro, A. P. B.; Basso, R. C.; Kieckbusch, T. G. Effect of the Addition of Hardfats on the Physical Properties of Cocoa Butter. Eur. J. Lipid Sci. Technol. 2013, 115(3), 301–312. DOI: 10.1002/ejlt.201200170.
  • Oliveira, G. M.; Ribeiro, A. P. B.; Kieckbusch, T. G. Hard Fats Improve Technological Properties of Palm Oil for Applications in Fat-based Products. LWT-Food Sci. Technol. 2015, 63(2), 1155–1162. DOI: 10.1016/j.lwt.2015.04.040.
  • Queirós, M. S.; Viriato, R. L. S.; Ribeiro, A. P. B.; Gigante, M. L. Processo De Obtenção De Gordura Anidra Do Leite Totalmente Hidrogenada, Gordura Anidra Do Leite Totalmente Hidrogenada Assim Obtida E Uso Da Mesma. In Unicamp (Ed.), INPI - Instituto Nacional da Propriedade Industrial, Patent BR 10 2019 00044282, 2019.
  • Patton, S.; Keenan, T. W. The Milk Fat Globule Membrane. Biochim. Biophys. Acta. 1975, 415(3), 273–309. DOI: 10.1016/0304-4157(75)90011-8.
  • Mazzanti, G.; Marangoni, A. G.; Idziak, S. H. J. Synchrotron Study on Crystallization Kinetics of Milk Fat under Shear Flow. Food Res. Int. 2009, 42(5–6), 682–694. DOI: 10.1016/j.foodres.2009.02.009.
  • Shingfield, K. J.; Bonnet, M.; Scollan, N. D. Recent Developments in Altering the Fatty Acid Composition of Ruminant-derived Foods. Animal. 2013, 7, 132–162. DOI: 10.1017/S1751731112001681.
  • Bauman, D. E.; Griinari, J. M. Nutritional Regulation of Milk Fat Synthesis. Annu. Rev. Nutr. 2003, 23, 203–227. DOI: 10.1146/annurev.nutr.23.011702.073408.
  • Zou, X.; Huang, J.; Jin, Q.; Guo, Z.; Liu, Y.; Cheong, L.; Xu, X.; Wang, X. Lipid Composition Analysis of Milk Fats from Different Mammalian Species: Potential for Use as Human Milk Fat Substitutes. J. Agric. Food Chem. 2013, 61(29), 7070–7080. DOI: 10.1021/jf401452y.
  • Rye, G. G.; Litwinenko, J. W.; Marangoni, A. G. Fat Crystals Network. In Bailey’s Industrial Oil and Fat Products; 6th Edition, Shahidi, F.Ed. John Wiley & Sons: New Jersey, Inc: 2005, Vol. 1, 121–160
  • Wright, A. J.; Marangoni, A. G.; Hartel, R. W.; Lipids, M. Rheological Properties and Their Modification. In Encyclopedia of Dairy Sciences, Fuquay, J.W. Ed.; Academic Press: Massachusetts, 2011; pp 704–710.
  • Tzompa-Sosa, D. A.; Van Valenberg, H. J. F.; Van Aken, G. A.; Bovenhuis, H. Milk Fat Triacylglycerols and Their Relations with Milk Fatty Acid Composition, DGAT1 K232A Polymorphism, and Milk Production Traits. J. Dairy Sci. 2016, 99(5), 3624–3631. DOI: 10.3168/jds.2015-10592.
  • Rønholt, S.; Kirkensgaard, J. J. K.; Mortensen, K.; Knudsen, J. C. Effect of Cream Cooling Rate and Water Content on Butter Microstructure during Four Weeks of Storage. Food Hydrocolloids. 2014, 34, 169–176. DOI: 10.1016/j.foodhyd.2012.10.018.
  • Woodrow, I. L.; DeMan, J. M. Polymorphism in Milk Fat Shown by X-ray Diffraction and Infrared Spectroscopy. J. Dairy Sci. 1968, 51(7), 996–1000. DOI: 10.3168/jds.S0022-0302(68)87112-7.
  • Lavigne, F.; Polymorphisme Et Transitions De Phases Des Triglycérides. Applications Aux Propriétés Thermiques Et Structurales De La Matiére Grasse Laitie‘re Anhydre Et De Ses Fractions. PhD. thesis. 1995. Univ. Paris. VII, Paris XI et E.N.S.I.A., Paris, France.
  • Mazzanti, G.; Guthrie, S. E.; Sirota, E. B.; Marangoni, A. G.; Idziak, S. H. J. Effect of Minor Components and Temperature Profiles on Polymorphism in Milk Fat. Cryst. Growth Des. 2004, 4(6), 1303–1309. DOI: 10.1021/cg0497602.
  • Wright, A. J.; Hartel, R. W.; Narine, S. S.; Marangoni, A. G. The Effect of Minor Components on Milk Fat Crystallization. J. Am. Oil Chem. Soc. 2000, 77(5), 463–466. DOI: 10.1007/s11746-000-0075-8.
  • Kaylegian, K. E.; Hartel, R. W.; Lindsay, R. C. Applications of Modified Milk Fat in Food Products. J. Dairy Sci. 1993, 76, 1782–1796.
  • Fearon, A. M.;. Butter and Butter Products. In Dairy Ingredients for Food Processing; Chandan, R.C., Kilara, A., Eds.; Wiley-Blackwell: New Jersey, 2011; pp 199–223.
  • Mortensen, B. K.;. Butter and Other Milk Fat Products | The Product and Its Manufacture. Encyclopedia of Dairy Sciences, Fuquay, J.W. Ed.; Academic Press: Massachusetts, 2nd ed.; 492-499a, 2011.
  • Mortensen, B. K.;. Butter and Other Milk Fat Products | Anhydrous Milk Fat/butter Oil and Ghee. Encyclopedia of Dairy Sciences, Fuquay, J.W. Ed.; Academic Press: Massachusetts, 2nd ed.; 515-521b, 2011.
  • Vanhoutte, B.; Dewettinck, K.; Vanlerberghe, B.; Huyghebaert, A. Monitoring Milk Fat Fractionation: Effect of Agitation, Temperature, and Residence Time on Physical Properties. J. Am. Oil Chem. Soc. 2002, 79(12), 1169–1176. DOI: 10.1007/s11746-002-0622-3.
  • Bobe, G.; Hammond, E. G.; Freeman, A. E.; Lindberg, G. L.; Beitz, D. C. Texture of Butter from Cows with Different Milk Fatty Acid Compositions. J. Dairy Sci. 2003, 86(10), 3122–3127. DOI: 10.3168/jds.S0022-0302(03)73913-7.
  • Tzompa-Sosa, D. A.; Van Aken, G. A.; Van Hooijdonk, A. C. M.; Van Valenberg, H. J. F. Influence of C16:0 and Long-chain Saturated Fatty Acids on Normal Variation of Bovine Milk Fat Triacylglycerol Structure. J. Dairy Sci. 2014, 97(7), 4542–4551. DOI: 10.3168/jds.2014-7937.
  • Baldin, M.; De Souza, J.; Ticiani, E.; Sandri, E. C.; Dresch, R.; Batistel, F.; Oliveira, D. E. Milk Fat Response to Calcium Salts of Palm or Soybean in a Normal or Milk Fat Depression Scenario in Dairy Ewes. Livestock Sci. 2017, 206, 109–112. DOI: 10.1016/j.livsci.2017.10.018.
  • Chilliard, Y.; Toral, P. G.; Shingfield, K. J.; Rouel, J.; Leroux, C.; Bernard, L. Effects of Diet and Physiological Factors on Milk Fat Synthesis, Milk Fat Composition and Lipolysis in the Goat: A Short Review. Small Ruminant Res. 2014, 122(1–3), 31–37. DOI: 10.1016/j.smallrumres.2014.07.014.
  • Fougère, H.; Delavaud, C.; Bernard, L. Diets Supplemented with Starch and Corn Oil, Marine Algae, or Hydrogenated Palm Oil Differentially Modulate Milk Fat Secretion and Composition in Cows and Goats: A Comparative Study. J. Dairy Sci. 2018, 101(9), 1–17. DOI: 10.3168/jds.2018-14483.
  • Bayourthe, C.; Enjalbert, F.; Moncoulon, R. Effects of Different Forms of Canola Oil Fatty Acid Plus Canola Meal on Milk Composition and Physical Properties of Butter. J. Dairy Sci. 2000, 83(4), 690–696. DOI: 10.3168/jds.S0022-0302(00)74930-7.
  • Krishna, D.; Hakimji, B.; Patel, M.; Sharma, A.; Desai, D.; Kumar T, H. Plastic Fats and Margarines through Fractionation, Blending and Interesterification of Milk Fat. Eur. J. Lipid Sci. Technol. 2007, 109(1), 32–37. DOI: 10.1002/ejlt.200600079.
  • Viriato, R. L. S.; Queirós, M. S.; Ribeiro, A. P. B.; Gigante, M. L. Milk Fat Crystal Network as a Strategy for Delivering Vegetable Oils High in Omega-9, −6, and −3 Fatty Acids. Food Res. Int. 2020, 128, 1–11. 108780 DOI: 10.1016/j.foodres.2019.108780.
  • Rousseau, D.; Forestiere, K.; Hill, A. R.; Marangoni, A. G. Restructuring Butterfat Thought Blending and Chemical Interesterification. 1. Melting Behavior and Triacylglycerol Modifications. J. Am. Oil Chem. Soc. 1996, 73(8), 963–972. DOI: 10.1007/BF02523403.
  • Rousseau, D.; Hill, A. R.; Marangoni, A. G. Restructuring Butterfat Thought Blending and Chemical Interesterification. 2. Microstructure and Polymorphism Modifications. J. Am. Oil Chem. Soc. 1996, 73(8), 973–981. DOI: 10.1007/BF02523404.
  • Rodrigues, J. N.; Anton, C.; Gioielli, L. A. Cristalização De Lipídios Estruturados Obtidos a Partir De Gordura Do Leite E Óleo De Milho. Rev. Bras. Cienc. Farm. 2003, 39(1), 93–103. DOI: 10.1590/S1516-93322003000100010.
  • Rodrigues, J. N.; Gioielli, L. A.; Anton, C. Propriedades Físicas De Lipídios Estruturados Obtidos De Misturas De Gordura Do Leite E Óleo De Milho. Cienc. Tecnol. Aliment. (Campinas, Braz.). 2003, 23, 226–233.
  • Rodrigues-Ract, J. N.; Otting, L. N.; Poltronieri, T. P.; Silva, R. C.; Gioielli, L. A. Comportamento De Cristalização De Lipídios Estruturados Obtidos a Partir De Gordura Do Leite E Óleo De Girassol. Cienc. Tecnol. Aliment. (Campinas, Braz.). 2010, 30, 258–267.
  • Mba, O.; Dumont, M. J.; Ngadi, M. O. Influence of Palm Oil, Canola Oil and Blends on Characteristics of Fried Plantain Crisps. Br. Food J. 2015, 117,1793–1807.
  • Patterson, H. B. W.;. Bleaching of Important Fats and Oils. In Bleaching and Purifying Fats and Oils: Theory and Practice, 2nd ed.; List, G., Ed.; AOCS Press: Champaign, 2010; pp 97–151.
  • Zeb, A.; Murkovic, M. Pro-oxidant Effects of β-carotene during Thermal Oxidation of Edible Oils. J. Am. Oil Chem. Soc. 2013, 90(6), 881–889. DOI: 10.1007/s11746-013-2221-4.
  • Kowalska, M.; Zbikowska, A.; Tarnowska, K. Stability of Emulsions Containing Interesterified Fats Based on Mutton Tallow and Walnut Oil. J. Am. Oil Chem. Soc. 2015, 92(7), 993–1002. DOI: 10.1007/s11746-015-2659-7.
  • Masuchi, M. H.; Gandra, K. M.; Marangoni, A. L.; Perenha, C. S.; Ming, C. C.; Grimaldi, R.; Gonçalves, L. A. G. Fats from Chemically Interesterified High-Oleic Sunflower Oil and Fully Hydrogenated Palm Oil. J. Am. Oil Chem. Soc. 2014, 91, 859–866.
  • Augustin, M. A.; Versteeg, C. Milk Fat: Physical, Chemical and Enzymatic Modification. In Advanced Dairy Chemistry. Lipids, 3rd ed.; Fox, P.F., McSweeney, P.L.H., Eds.; Springer: New York, 2006; Vol. 2, pp 293–332.
  • Moran, D. P. J.; Rajah, K. K. Fats in Food Products; 1st; Chapman & Hall: London, 1994; pp 415.
  • Ribeiro, A. P. B.; Gonçalves, L. A. G.; Gioielli, L. A.; Basso, R. C. Interesterification: Alternative for Obtaining Zero Trans Fat Bases for Food Applications. In Advances in Food Science and Technology; Haghi, A.K., Ed.; Nova Science Publishers: Nova York, 2010; pp 10–92.
  • Lason, E.; Ogonowski, J. Solid Lipid Nanoparticles – Characteristics, Application and Obtaining. Chemik. 2011, 65, 964–967.
  • Shishir, M. R. I.; Xie, L.; Sun, C.; Zheng, X.; Chen, W. Advances in Micro and Nano-encapsulation of Bioactive Compounds Using Biopolymer and Lipid-based Transporters. Trends Food Sci. Technol. 2018, 78, 34–60.
  • SIMOVIC, S.; BARNES, T. J.; TAN, A.; PRESTIDGE, C. A. Assembling Nanoparticle Coatings to Improve the Drug Delivery Performance of Lipid-based Colloids. Nanoscale. 2012, 4(4), 1220–1230. DOI: 10.1039/C1NR11273B.
  • Ilic, I.; Dreu, R.; Burjak, M.; Homar, M.; Kerč, J.; Srčič, S. Microparticle Size Control and Glimepiride Microencapsulation Using Spray Congealing Technology. Int. J. Pharm. 2009, 381(2), 176–183. DOI: 10.1016/j.ijpharm.2009.05.011.
  • Gouin, S.;. Microencapsulation: Industrial Appraisal of Existing Technologies and Trends. Trends Food Sci. Technol. 2004, 15(7–8), 330–347. DOI: 10.1016/j.tifs.2003.10.005.
  • Abbas, S.; Da Wei, C.; Hayat, K.; Xiaoming, Z. Ascorbic Acid: Microencapsulation Techniques and Trends - a Review. Food Rev. Int. 2012, 28(4), 343–374. DOI: 10.1080/87559129.2011.635390.
  • Windhab, E. J.;. New Developments in Crystallization Processing. J. Therm. Anal. Calorim. 1999, 57(1), 171–180. DOI: 10.1023/A:1010103105425.
  • Metin, S.; Hartel, R. W. Crystallization of Fats and Oils. In Bailey’s Industrial Oil and Fat Products, 6th ed.; SHAHIDI, F., Ed.; John Wiley & Sons: New Jersey, 2005; Vol. 1, pp 45–76.
  • Gwie, C. G.; Griffiths, R. J.; Cooney, D. T.; Johns, M. L.; Wilson, D. I. Microstructures Formed by Spray Freezing of Food Fats. J. Am. Oil Chem. Soc. 2006, 83(12), 1053–1062. DOI: 10.1007/s11746-006-5162-3.
  • Pore, M.; Seah, H. H.; Glover, J. W. H.; Holmes, D. J.; Johns, M. L.; Wilson, D. I.; Moggridge, G. D. In-situ X-ray Studies of Cocoa Butter Droplets Undergoing Simulated Spray Freezing. J. Am. Oil Chem. Soc. 2009, 86(3), 215–225. DOI: 10.1007/s11746-009-1349-8.
  • Consoli, L.; Grimaldi, R.; Sartori, T.; Menegalli, F. C.; Hubinger, M. D. Gallic Acid Microparticles Produced by Spray Chilling Technique: Production and Characterization. LWT-Food Sci. Technol. 2016, 65, 79–87. DOI: 10.1016/j.lwt.2015.07.052.
  • Passerini, N.; Qi, S.; Albertini, B.; Grassi, M.; Rodriguez, L.; Craig, D. Q. Solid Lipid Microparticles Produced by Spray Congealing: Influence of the Atomizer on Microparticle Characteristics and Mathematical Modeling of the Drug Release. J. Pharm. Sci. 2009, 99(2), 916–931. DOI: 10.1002/jps.21854.
  • Lopes, J. D.; Grosso, C. R. F.; De Andrade Calligaris, G.; Cardoso, L. P.; Basso, R. C.; Ribeiro, A. P. B.; Efraim, P. Solid Lipid Microparticles of Hardfats Produced by Spray Cooling as Promising Crystallization Modifiers in Lipid Systems. Eur. J. Lipid Sci. Technol. 2015, 117, 1733–1744.
  • Matos-Jr, F. E.; Di Sabatino, M.; Passerini, N.; Favaro-Trindade, C. S.; Albertini, B. Development and Characterization of Solid Lipid Microparticles Loaded with Ascorbic Acid and Produced by Spray Congealing. Food Res. Int. 2015, 67, 52–59. DOI: 10.1016/j.foodres.2014.11.002.
  • Gavory, C.; Abderrahmen, R.; Bordes, C.; Chaussy, D.; Belgacem, M. N.; Fessi, H.; Briançon, S. Encapsulation of a Pressure Sensitive Adhesive by Spray-cooling: Optimum Formulation and Processing Conditions. Adv. Powder Technol. 2014, 25(1), 292–300. DOI: 10.1016/j.apt.2013.05.004.
  • Zaky, A.; Elbakry, A.; Ehmer, A.; Breunig, M.; Goepferich, A. The Mechanism of Protein Release from Triglyceride Microspheres. J. Controlled Release. 2010, 174(2), 202–210. DOI: 10.1016/j.jconrel.2010.07.110.
  • Silva, M. P.; Tulini, F. L.; Matos-Jr, F. E.; Oliveira, M. G.; Thomazini, M.; Fávaro-Trindade, C. S. Application of Spray Chilling and Electrostatic Interaction to Produce Lipid Microparticles Loaded with Probiotics as an Alternative to Improve Resistance under Stress Conditions. Food Hydrocolloids. 2018, 83, 109–117. DOI: 10.1016/j.foodhyd.2018.05.001.
  • Carvalho, J. D. S.; Oriani, V. B.; Oliveira, G. M.; Hubinger, M. D. Characterization of Ascorbic Acid Microencapsulated by the Spray Chilling Technique Using Palm Oil and Fully Hydrogenated Palm Oil. LWT - Food Sci. Technol. 2019, 101, 306–314. DOI: 10.1016/j.lwt.2018.11.043.
  • Mojahedian, M. M.; Daneshamouz, S.; Samani, S. M.; Zargaran, A. A Novel Method to Produce Solid Lipid Nanoparticles Using N-butanol as an Additional Co-surfactant according to the O/w Microemulsion Quenching Technique. Chem. Phys. Lipids. 2013, 174, 32–38. DOI: 10.1016/j.chemphyslip.2013.05.001.
  • Okuro, P. K.; Thomazini, M.; Balieiro, J. C.; Liberal, R. D.; Favaro- Trindade, C. S. Co-encapsulation of Lactobacillus Acidophilus with Inulin or Polydextrose in Solid Lipid Microparticles Provides Protection and Improves Stability. Food Res. Int. 2013, 53(1), 96–103. DOI: 10.1016/j.foodres.2013.03.042.
  • Pedroso, D. L.; Dogenski, M.; Thomazini, M.; Heinemann, R. J. B.; Favaro-Trindade, C. S. Microencapsulation of Bifidobacterium Animalis Subsp. Lactis and Lactobacillus Acidophilus in Cocoa Butter Using Spray Chilling Technology. Braz. J. Microbiol. 2013, 44(3), 777–783. DOI: 10.1590/S1517-83822013000300017.
  • Queirós, M. S.; Viriato, R. L. S.; Ribeiro, A. P. B.; Gigante, M. L. Dairy-based Solid Lipid Microparticles: A Novel Approach. Food Res. Int. 2020, 131(109009), 1–8. DOI: 10.1016/j.foodres.2020.109009.
  • Timms, R. E.;. Physical Properties of Oils and Mixture. J. Am. Oil Chem. Soc. 1985, 62(2), 241–248. DOI: 10.1007/BF02541385.
  • Lee, J. Y.; Sohn, K. H.; Rhee, S. H.; Hwang, D. Saturated Fatty Acids, but Not Unsaturated Fatty Acids, Induce the Expression of Cyclooxygenase-2 Mediated through Toll-like Receptor 4. J. Biol. Chem. 2001, 276(20), 16683–16689. DOI: 10.1074/jbc.M011695200.
  • Milanski, M.; Degasperi, G.; Coope, A.; Morari, J.; Denis, R.; Cintra, D. E.; Tsukumo, D. M. L.; Anhe, G.; Amaral, M. E.; Takahashi, H. K.; et al. Saturated Fatty Acids Produce an Inflammatory Response Predominantly through the Activation of TLR4 Signaling in Hypothalamus: Implications for the Pathogenesis of Obesity. J. Neurosci. 2009, 29(2), 359–370. DOI: 10.1523/JNEUROSCI.2760-08.2009.
  • Portovedo, M.; Ignacio-Souza, L. M.; Bombassaro, B.; Coope, A.; Reginato, A.; Razolli, D. S.; Torsoni, M. A.; Torsoni, A. S.; Leal, R. F.; Velloso, L. A.; et al. Saturated Fatty Acids Modulate Autophagy’s Proteins in the Hypothalamus. Plos One. 2015, 10(3), 1–16. DOI: 10.1371/journal.pone.0119850.
  • Villafuerte, L. R.; García, B. F.; Garzón, M. L. S.; Hernández, L. A.; Vázquez, M. L. R. Nanopartículas Lipídicas Sólidas. Rev. Mex. Cienc. Farm. 2008, 39, 38–52
  • Ekambaram, P.; Sathali, A. H.; Priyanka, K. Solid Lipid Nanoparticles: A Review. Sci. Rev. Chem. Commun. 2012, 2, 80–102
  • Tamjidi, F.;. Nanostructured Lipid Carriers (NLC): A Potential Delivery System for Bioactive Food Molecules. Innovative Food Sci. Emerging Technol. 2013, 19, 29–43. DOI: 10.1016/j.ifset.2013.03.002.
  • Müller, R. H.; Radtke, M.; Wissing, S. A. Nanostructured Lipid Matrices for Improved Microencapsulation of Drugs. Int. J. Pharm. 2002, 242(1–2), 121–128. DOI: 10.1016/S0378-5173(02)00180-1.
  • Souto, E. B.; Severino, P.; Santana, M. H.; Pinho, S. C. Nanopartículas De Lipídios Sólidos: Métodos Clássicos De Produção Laboratorial. Quim. Nova. 2011(34), 1762–1769.
  • Yoon, G.; Park, J. W.; Yoon, I. Solid Lipid Nanoparticles (Slns) and Nanostructured Lipid Carriers (Nlcs): Recent Advances in Drug Delivery. J. Pharm. Invest. 2013, 43(5), 353–362. DOI: 10.1007/s40005-013-0087-y.
  • Salminen, H.; Helgason, T.; Aulbach, S.; Kristinsson, B.; Kristbergsson, K.; Weiss, J. Influence of Co-surfactants on Crystallization and Stability of Solid Lipid Nanoparticles. J. Colloid Interface Sci. 2014, 426, 256–263. DOI: 10.1016/j.jcis.2014.04.009.
  • Soleimanian, Y.; Goli, S. A. H.; Varshosaz, J.; Sahafi, S. M. Formulation and Characterization of Novel Nanostructured Lipid Carriers Made from Beeswax, Propolis Wax and Pomegranate Seed Oil. Food Chemistry. 2018, 244, 83–92. DOI: 10.1016/j.foodchem.2017.10.010.
  • Shtay, R.; Tan, C. P.; Schwarz, K. Development and Characterization of Solid Lipid Nanoparticles (Slns) Made of Cocoa Butter: A Factorial Design Study. J. Food Eng. 2018, 231, 30–41. DOI: 10.1016/j.jfoodeng.2018.03.006.
  • Awad, T. S.; Helgason, T.; Kristbergsson, K.; Decker, E. A.; Weiss, J.; McClements, D. J. Effect of Cooling and Heating Rates on Polymorphic Transformations and Gelation of Tripalmitin Solid Lipid Nanoparticle (SLN) Suspensions. Food Biophys. 2008, 3(2), 155–162. DOI: 10.1007/s11483-008-9057-8.
  • Chinsriwongkul, A.; Chareanputtakhun, P.; Ngawhirunpat, T.; Rojanarata, T.; Sila-On, W.; Ruktanonchai, U.; Opanasopit, P. Nanostructured Lipid Carriers (NLC) for Parenteral Delivery of an Anticancer Drug. AAPS Pharm. Sci. Tech. 2011, 13(1), 150–158. DOI: 10.1208/s12249-011-9733-8.
  • Hejri, A.; Khosravi, A.; Gharanjig, K.; Hejazi, M. Optimization of the Formulation of β-carotene Loaded Nanostructured Lipid Carriers Prepared by Solvent Diffusion Method. Food Chem. 2013, 141(1), 117–123. DOI: 10.1016/j.foodchem.2013.02.080.
  • Wang, J.; Dong, X. Y.; Wei, F.; Zhong, J.; Liu, B.; Yao, M. H.; Yang, M.; Zheng, C.; Quek, S. Y.; Chen, H. Preparation and Characterization of Novel Lipid Carriers Containing Microalgae Oil for Food Applications. J. Food Sci. 2014, 79(2), 169–177. DOI: 10.1111/1750-3841.12334.
  • Samtlebe, M.; Yucel, U.; Weiss, J.; Coupland, J. N. Stability of Solid Lipid Nanoparticles in the Presence of Liquid Oil Emulsions. J. Am. Oil Chem. Soc. 2012, 89(4), 609–617. DOI: 10.1007/s11746-011-1944-3.
  • Madureira, A. R.; Campos, D. A.; Fonte, P.; Nunes, S.; Reis, F.; Gomes, A. M.; Bruno Sarmento, B.; Pintado, M. M. Characterization of Solid Lipid Nanoparticles Produced with Carnauba Wax for Rosmarinic Acid Oral Delivery. RSC Adv. 2015, 5(29), 22665–22673. DOI: 10.1039/C4RA15802D.
  • Singh, M. N.; Hemant, K. S. Y.; Ram, M.; Shivakumar, H. G. Microencapsulation: A Promising Technique for Controlled Drug Delivery. Res. Pharm. Sci. 2010, 5, 65–77.
  • Mehrad, B.; Ravanfar, R.; Licker, J.; Regenstein, J. M.; Abbaspourrad, A. Enhancing the Physicochemical Stability of β-carotene Solid Lipid Nanoparticle (SLNP) Using Whey Protein Isolate. Food Res. Int. 2018, 105, 962–969. DOI: 10.1016/j.foodres.2017.12.036.
  • Relkin, P.; Shukat, R.; Moulin, G. Encapsulation of Labile Compounds in Heat- and High-pressure Treated Protein and Lipid Nanoparticles. Food Res. Int. 2014, 63, 9–15. DOI: 10.1016/j.foodres.2014.03.038.
  • Zhang, L.; Hayes, D. G.; Chen, G.; Zhong, Q. Transparent Dispersions of Milk-Fat-Based Nanostructured Lipid Carriers for Delivery of β‑Carotene. J. Agric. Food Chem. 2013, 61(39), 9435–9443. DOI: 10.1021/jf403512c.
  • Tan, S. W.; Bill, N.; Roberts, C. R.; Burley, J. C. Surfactant Effects on the Physical Characteristics of Amphotericin B-containing Nanostructured Lipid Carriers. Colloids Surf., A. 2010, 372(1–3), 73–79. DOI: 10.1016/j.colsurfa.2010.09.030.
  • Serra, M. L. G.; Vázquez, R.; Villafuerte, M. L.; García F. B., R. L.; Hernández, L. A. Efecto De Los Componentes De La Formulación Em Las Propriedades De Las Nanopartículas Sólidas. Rev. Mex. Cienc. Farm. 2009, 40, 26–40
  • Zheng, K.; Falkeborg, M.; Zheng, Y.; Yang, T.; Xu, X. Formulation and Characterization of Nanostructured Lipid Carriers Containing a Mixed Lipids Core. Colloids Surf., A. 2013, 430, 76–84. DOI: 10.1016/j.colsurfa.2013.03.070.
  • Asumadu-Mensah, A.; Smith, K. W.; Ribeiro, H. S. Solid Lipid Dispersions: Potential Delivery System for Functional Ingredients in Foods. J. Food Sci. 2013, 78(7), 1000–1008. DOI: 10.1111/1750-3841.12162.
  • Grompone, M. A.;. Sunflower Oil. In Bailey’s Industrial Oil and Fat Products, 6th ed.; Shahidi, F., Ed.; John Wiley & Sons: New Jersey, 2005; Vol. 2, pp 655–730.
  • Gunstone, F. D.;. Vegetable Oils. In Bailey’s Industrial Oil and Fat Products. Edible Oil and Fat Products: Chemistry, Chemical Properties, and Health Effects; 6th. Shahidi, F. John Wiley & Sons: New Jersey, 2005
  • McKeon, T. A.;. Transgenic Oils. In Bailey’s Industrial Oil and Fat Products, 6th ed.; Shahidi, F., Ed.; John Wiley & Sons: New Jersey, 2005; Vol. 3, pp 154–174.
  • Helgason, T.; Awad, T. S.; Kristbergsson, K.; McClements, D. J.; Weiss, J. Effect of Surfactant Surface Coverage on Formation of Solid Lipid Nanoparticles (SLN). J. Colloid Interface Sci. 2009, 334(1), 75–81. DOI: 10.1016/j.jcis.2009.03.012.
  • McClements, D. J.;. Protein-stabilized Emulsions. Curr. Opin. Colloid Interface Sci. 2004, 9(5), 305–313. DOI: 10.1016/j.cocis.2004.09.003.
  • Kuhn, K. R.; Silva, F. G. D.; Netto, F. M.; Cunha, R. L. Assessing the Potential of Flaxseed Protein as an Emulsifier Combined with Whey Protein Isolate. Food Res. Int. 2014, 59, 89–97. DOI: 10.1016/j.foodres.2014.01.006.
  • Chevallier, M.; Riaublanc, A.; Lopez, C.; Hamon, P.; Rousseau, F.; Croguennec, T. Aggregated Whey Proteins and Trace of Caseins Synergistically Improve the Heat Stability of Whey Protein-rich Emulsions. Food Hydrocolloids. 2016, 61, 487–495. DOI: 10.1016/j.foodhyd.2016.06.009.
  • Ruttarattanamongkol, K.; Afizah, M. N.; Rizvi, S. S. H. Stability and Rheological Properties of Corn Oil and Butter Oil Emulsions Stabilized with Texturized Whey Proteins by Supercritical Fluid Extrusion. J. Food Eng. 2015, 166, 139–147. DOI: 10.1016/j.jfoodeng.2015.06.005.
  • Amine, C.; Dreher, J.; Helgason, T.; Tadros, T. Investigation of Emulsifying Properties and Emulsion Stability of Plant and Milk Proteins Using Interfacial Tension and Interfacial Elasticity. Food Hydrocolloids. 2014, 39, 180–186. DOI: 10.1016/j.foodhyd.2014.01.001.
  • Hebishy, E.; Buffaa, M.; Guamisa, B.; Blasco-Moreno, A.; Trujillo, A. J. Physical and Oxidative Stability of Whey Protein Oil-in-water Emulsions Produced by Conventional and Ultra-high-pressure Homogenization: Effects of Pressure and Protein Concentration on Emulsion Characteristics. Innovative Food Sci. Emerging Technol. 2015, 32, 79–90. DOI: 10.1016/j.ifset.2015.09.013.
  • Kuhn, K. R.; Cunha, R. L. Flaxseed Oil – Whey Protein Isolate Emulsions: Effect of High-pressure Homogenization. J. Food Eng. 2012, 111(2), 449–457. DOI: 10.1016/j.jfoodeng.2012.01.016.
  • Mantovani, R.; Cavallieri, A.; Netto, F.; Cunha, R. Stability and in Vitro Digestibility of Emulsions Containing Lecithin and Whey Proteins. Food Funct. 2013, 4(9), 1322–1331. DOI: 10.1039/c3fo60156k.
  • Teo, A.; Goh, K. K. T.; Wen, J.; Oey, I.; Ko, S.; Kwak, H. S.; Lee, S. J. Physicochemical Properties of Whey Protein, Lactoferrin and Tween 20 Stabilized Nanoemulsions: Effect of Temperature, pH and Salt. Food Chem. 2016, 197, 297–306. DOI: 10.1016/j.foodchem.2015.10.086.
  • Wu, J.; Shi, M.; Li, W.; Zhao, L.; Wang, Z.; Yan, X.; Norde, W.; Li, Y. Pickering Emulsions Stabilized by Whey Protein Nanoparticles Prepared by Thermal Cross-linking. Colloids Surf. 2015, 127(B), 96–104. DOI: 10.1016/j.colsurfb.2015.01.029.
  • Furtado, G. F.; Mantovani, R. A.; Consoli, L.; Hubinger, M. D.; Cunha, R. L. Structural and Emulsifying Properties of Sodium Caseinate and Lactoferrin Influenced by Ultrasound Process. Food Hydrocolloids. 2017, 63, 178–188. DOI: 10.1016/j.foodhyd.2016.08.038.
  • Huck-Iriart, C.; Montes-De-Oca-Ávalos, J.; Herrera, M. L.; Candal, R. J.; Pinto-De-Oliveira, C. L.; Linares-Torriani, I. New Insights about Flocculation Process in Sodium Caseinate-stabilized Emulsions. Food Res. Int. 2016, 89, 338–346. DOI: 10.1016/j.foodres.2016.08.026.
  • Perrechil, F. A.; Cunha, R. L. Oil-in-water Emulsions Stabilized by Sodium Caseinate: Influence of pH, High-pressure Homogenization and Locust Bean Gum Addition. J. Food Eng. 2010, 97(4), 441–448. DOI: 10.1016/j.jfoodeng.2009.10.041.
  • Ries, D.; Ye, A.; Haisman, D.; Singh, H. Antioxidant Properties of Caseins and Whey Proteins in Model Oil-in-water Emulsions. Int. Dairy J. 2010, 20(2), 72–78. DOI: 10.1016/j.idairyj.2009.09.001.
  • Vazquez-Solorio, S. C.; Vega-Mendez, D. D.; Sosa-Herrera, M. G.; Martinez-Padilla, L. P. Rheological Properties of Emulsions Containing Milk Proteins Mixed with Xanthan Gum. Procedia Food Sci. 2011, 1, 335–339. DOI: 10.1016/j.profoo.2011.09.052.
  • Wei, Z.; Gao, Y. Physicochemical Properties of B-carotene Bilayer Emulsions Coated by Milk Proteins and chitosan-EGCG Conjugates. Food Hydrocolloids. 2016, 52, 590–599. DOI: 10.1016/j.foodhyd.2015.08.002.
  • Ye, A.;. Interfacial Composition and Stability of Emulsions Made with Mixtures of Commercial Sodium Caseinate and Whey Protein Concentrate. Food Chem. 2008, 110(4), 946–952. DOI: 10.1016/j.foodchem.2008.02.091.
  • Oliveira, D. R. B.; Furtado, G. F.; Cunha, R. L. Solid Lipid Nanoparticles Stabilized by Sodium Caseinate and Lactoferrin. Food Hydrocolloids. 2019, 90, 321–329. DOI: 10.1016/j.foodhyd.2018.12.025.
  • Mehnert, W.; Mader, K. Solid Lipid Nanoparticles: Production, Characterization and Applications. Adv. Drug Delivery Rev. 2012, 64, 83–101. DOI: 10.1016/j.addr.2012.09.021.
  • Ganesan, P.; Narayanasamy, D. Lipid Nanoparticles: Different Preparation Techniques, Characterization, Hurdles, and Strategies for the Production of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Oral Drug Delivery. Sustainable Chem. Pharm. 2017, 6, 37–56. DOI: 10.1016/j.scp.2017.07.002.
  • Severino, P.; Santana, M. H. A.; Souto, E. B.; Optimizing, S. L. N. NLC by 22 Full Factorial Design: Effect of Homogenization Technique. Mater. Sci. Eng. 2012, 2, 1375–1379. DOI: 10.1016/j.msec.2012.04.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.