1,320
Views
4
CrossRef citations to date
0
Altmetric
Review

Dried Meat Products Obtained by Different Methods from Past to Present

References

  • Aykın-Dinçer, E.; Erbaş, M. Drying Kinetics, Adsorption Isotherms and Quality Characteristics of Vacuum-dried Beef Slices with Different Salt Contents. Meat Sci. 2018, 145, 114–120. DOI: 10.1016/j.meatsci.2018.06.007.
  • Başlar, M.; Kiliçli, M.; Toker, O. S.; Sağdiç, O.; Arici, M. Ultrasonic Vacuum Drying Technique as a Novel Process for Shortening the Drying Period for Beef and Chicken Meats. Innov. Food Sci. Emerg. 2014, 26, 182–190. DOI: 10.1016/j.ifset.2014.06.008.
  • Başlar, M.; Kiliçli, M.; Yalinkiliç, B. Dehydration Kinetics of Salmon and Trout Fillets Using Ultrasonic Vacuum Drying as a Novel Technique. Ultrason. Sonochem. 2015, 27, 495–502. DOI: 10.1016/j.ultsonch.2015.06.018.
  • Petit, T.; Caro, Y.; Petit, A. S.; Santchurn, S. J.; Collignan, A. Physicochemical and Microbiological Characteristics of Biltong, a Traditional Salted Dried Meat of South Africa. Meat Sci. 2014, 96(3), 1313–1317. DOI: 10.1016/j.meatsci.2013.11.003.
  • Heldman, D. R.; Lund, D. B.; Sabliov, C. Handbook of Food Engineering; CRC press: New York, U.S, 2006.
  • Pirasteh, G.; Saidur, R.; Rahman, S. M. A.; Rahim, N. A. A Review on Development of Solar Drying Applications. Renew. Sust. Energ. Rev. 2014, 31, 133–148. DOI: 10.1016/j.rser.2013.11.052.
  • Wernecke, R.; Wernecke, J. . Industrial Moisture and Humidity Measurement: A Practical Guide; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2014.
  • Ahmat, T.; Barka, M.; Aregba, A. W.; Bruneau, D. Convective Drying Kinetics of Fresh Beef: An Experimental and Modeling Approach. J. Food Process. Pres. 2015, 39(6), 2581–2595. DOI: 10.1111/jfpp.12508.
  • Aykın, E.; Erbaş, M. Quality Properties and Adsorption Behavior of Freeze-dried Beef Meat from the Biceps Femoris and Semimembranosus Muscles. Meat Sci. 2016, 121, 272–277. DOI: 10.1016/j.meatsci.2016.06.030.
  • Aykın Dinçer, E.; Erbaş, M. Quality Properties of Dried Meat Products. J. Food. 2019, 44(3), 472–482.
  • Toldrá, F.;. Improving the Sensory Quality of Cured and Fermented Meat Products. In Processed Meats Improving Safety, Nutrition and Quality; Kerry, J.P., Kerry, J.F., Eds.; Woodhead: Oxford, 2011; pp 508–520.
  • Toldrá, F.;. The Role of Muscle Enzymes in Dry-cured Meat Products with Different Drying Conditions. Trends Food Sci. Tech. 2006, 17(4), 164–168. DOI: 10.1016/j.tifs.2005.08.007.
  • Campbell-Platt, G.;. Fermented meats—A World Perspective. In Fermented Meats; Campbell-Platt, G., Cook, P.E., Eds.; Springer: Boston, 1995; pp 39–52.
  • Kaban, G.;. Changes in the Composition of Volatile Compounds and in Microbiological and Physicochemical Parameters during Pastırma Processing. Meat Sci. 2009, 82(1), 17–23. DOI: 10.1016/j.meatsci.2008.11.017.
  • Li, M.; Wang, H.; Zhao, G.; Qiao, M.; Li, M.; Sun, L.; Gao, X.; Zhang, J. Determining the Drying Degree and Quality of Chicken Jerky by LF-NMR. J. Food Eng. 2014, 139, 43–49. DOI: 10.1016/j.jfoodeng.2014.04.015.
  • Huang, T. C.; Nip, W. K. Intermediate-moisture Meat and Dehydrated Meat. In Meat Science and Applications; Hui, Y.H., Nip, W.K., Rogers, R.W., Young, O.A., Eds.; Marcel Dekker Inc: New York, U.S., 2001; pp 403–442.
  • Norman, G. A.; Corte, O. O. Dried Salted Meats: Charque and Carne-de-sol. FAO Animal Production and Health Paper 51, Rome, 1985.
  • Bennani, L.; Zenati, Y.; Faid, M.; Ettayebi, M. Physico-chemical and Microbiological Characteristics of a Dried Salted Meat Product (Kaddid) in Morocco. Z.Lebensm. Unters. For. 1995, 201(6), 528–532. DOI: 10.1007/BF01201577.
  • Ogunsola, O. O.; Omojola, A. B. Qualitative Evaluation of Kilishi Prepared from Beef and Pork. Afr. J. Biotechnol. 2008, 7(11), 1753–1758. DOI: 10.5897/AJB08.354.
  • Lorenzo, J. M.; Fonseca, S.; Gómez, M.; Domínguez, R. Influence of the Salting Time on Physico-chemical Parameters, Lipolysis and Proteolysis of Dry-cured Foal “Cecina”. LWT—Food Sci. Technol. 2015, 60(1), 332–338. DOI: 10.1016/j.lwt.2014.07.023.
  • Lim, D. G.; Lee, S. S.; Seo, K. S.; Nam, K. C. Effects of Different Drying Methods on Quality Traits of Hanwoo Beef Jerky from Low-valued Cuts during Storage. Korean J. Food Sci. An. 2012, 32(5), 531–539. DOI: 10.5851/kosfa.2012.32.5.531.
  • Sobukola, O. P.; Olatunde, S. O. Effect of Salting Techniques on Salt Uptake and Drying Kinetics of African Catfish (Clarias Gariepinus). Food Bioprod. Process. 2011, 89(3), 170–177. DOI: 10.1016/j.fbp.2010.06.002.
  • Diler, A.; Güner, A.; Altun, S.; Ekici, S. Effect of Drying at Different Temperature and Air Current Rate on Chemical, Microbiological and Organoleptical Characteristics of Fillet of Stizostedion Lucioperca. Eurasian J.Vet. Sci. 2008, 24(1), 77–86.
  • Nathakaranakule, A.; Kraiwanichkul, W.; Soponronnarit, S. Comparative Study of Different Combined Superheated-steam Drying Techniques for Chicken Meat. J. Food Eng. 2007, 80(4), 1023–1030. DOI: 10.1016/j.jfoodeng.2006.04.067.
  • Ponwiboon, N.; Rojanakorn, T. Desorption Isotherms and Drying Characteristics of Nile Tilapia Fish Sheet. Int. Food Res. J. 2017, 24(3), 1292–1300.
  • Kilic, A.;. Mathematical Modeling of Low Temperature High Velocity (LTHV) Drying in Foods. J. Food Process Eng. 2017, 40(2), e12378. DOI: 10.1111/jfpe.12378.
  • Fu, X.; Lin, Q.; Xu, S.; Wang, Z. Effect of Drying Methods and Antioxidants on the Flavor and Lipid Oxidation of Silver Carp Slices. LWT—Food Sci. Technol. 2015, 61(1), 251–257. DOI: 10.1016/j.lwt.2014.10.035.
  • Li, X.; Xie, X.; Zhang, C. H.; Zhen, S.; Jia, W. Role of Mid-and Far-infrared for Improving Dehydration Efficiency in Beef Jerky Drying. Dry. Technol. 2018, 36(3), 283–293. DOI: 10.1080/07373937.2017.1326129.
  • Deng, Y.; Wang, Y.; Yue, J.; Liu, Z.; Zheng, Y.; Qian, B.; Zhong, Y.; Zhao, Y. Thermal Behavior, Microstructure and Protein Quality of Squid Fillets Dried by Far-infrared Assisted Heat Pump Drying. Food Control. 2014, 36(1), 102–110. DOI: 10.1016/j.foodcont.2013.08.006.
  • Deng, Y.; Luo, Y.; Wang, Y.; Zhao, Y. Effect of Different Drying Methods on the Myosin Structure, Amino Acid Composition, Protein Digestibility and Volatile Profile of Squid Fillets. Food Chem. 2015, 171, 168–176. DOI: 10.1016/j.foodchem.2014.09.002.
  • Sun, D.; Cao, C.; Li, B.; Chen, H.; Cao, P.; Li, J.; Liu, Y. Study on Combined Heat Pump Drying with Freeze‐drying of Antarctic Krill and Its Effects on the Lipids. J. Food Process. Eng. 2017, 40(6), e12577. DOI: 10.1111/jfpe.12577.
  • Teng, X.; Zhang, M.; Bhandari, B.; Xu, J.; Liu, Y. A Comparative Study on Hygroscopic and Physiochemical Properties of Chicken Powders Obtained by Different Drying Methods. Dry. Technol. 2020, 38(14), 1929–1942.
  • Aksoy, A.; Karasu, S.; Akcicek, A.; Kayacan, S. Effects of Different Drying Methods on Drying Kinetics, Microstructure, Color, and the Rehydration Ratio of Minced Meat. Foods. 2019, 8(6), 216–230. DOI: 10.3390/foods8060216.
  • Pankyamma, V.; Mokam, S. Y.; Debbarma, J. Rao BM Effects of Microwave Vacuum Drying and Conventional Drying Methods on the Physicochemical and Microstructural Properties of Squid Shreds. J. Sci. Food Agr. 2019, 99(13), 5778–5783. DOI: 10.1002/jsfa.9846.
  • Chen, F.; Zhang, M.; Mujumdar, A. S.; Jiang, H.; Wang, L. Production of Crispy Granules of Fish: A Comparative Study of Alternate Drying Techniques. Drying Technol. 2014, 32(12), 1512–1521. DOI: 10.1080/07373937.2014.903410.
  • Jiang, N.; Xu, B.; Zhao, L.; Huang, M.; Zhou, G. Effects of High-temperature–short Time (HTST) Drying Process on Proteolysis, Lipid Oxidation and Sensory Attributes of Chinese Dry-cured Chicken. CyTA—J. Food. 2016, 14(3), 440–448.
  • Kumar, D.; Tarafdar, A.; Kumar, Y.; Badgujar, P. C. Intelligent Modeling and Detailed Analysis of Drying, Hydration, Thermal, and Spectral Characteristics for Convective Drying of Chicken Breast Slices. J. Food Process Eng. 2019, 42(5), e13087. DOI: 10.1111/jfpe.13087.
  • Djendoubi, N.; Boudhrioua, N.; Bonazzi, C.; Kechaou, N. Drying of Sardine Muscles: Experimental and Mathematical Investigations. Food Bioprod. Process. 2009, 87(2), 115–123. DOI: 10.1016/j.fbp.2008.07.003.
  • Tsotsas, E.; Mujumdar, A. S. Modern Drying Technology, Volume 3, Product Quality and Formulation; John Wiley & Sons, 2011.
  • Aykın-Dinçer, E.; Kılıç-Büyükkurt, Ö.; Erbaş, M. Influence of Drying Techniques and Temperatures on Drying Kinetics and Quality Characteristics of Beef Slices. Heat Mass Transfer. 2020, 56(1), 315–320. DOI: 10.1007/s00231-019-02712-z.
  • Ran, X. L.; Zhang, M.; Wang, Y.; Liu, Y. Vacuum Radio Frequency Drying: A Novel Method to Improve the Main Qualities of Chicken Powders. J. Food Sci. Technol. 2019, 56(10), 4482–4491. DOI: 10.1007/s13197-019-03933-0.
  • Tao, Y.; Sun, D. W. Enhancement of Food Processes by Ultrasound: A Review. Crit. Rev. Food Sci. 2015, 55(4), 570–594. DOI: 10.1080/10408398.2012.667849.
  • Morbiato, G.; Zambon, A.; Toffoletto, M.; Poloniato, G.; Dall’Acqua, S.; de Bernard, M.; Spilimbergo, S. Supercritical Carbon Dioxide Combined with High Power Ultrasound as Innovate Drying Process for Chicken Breast. J. Supercrit. Fluids. 2019, 147, 24–32. DOI: 10.1016/j.supflu.2019.02.004.
  • Söbeli, C.; Kayaardı, S. Optimization of Primary Freeze Drying Conditions for Powdered Chicken Meat Hydrolysate from Mechanically Deboned Chicken Residues. Dry. Technol. 2020, 38(10), 1356–1366. DOI: 10.1080/07373937.2019.1640723.
  • Cumhur, Ö.; Şeker, M.; Sadıkoğlu, H. Freeze Drying of Turkey Breast Meat: Mathematical Modeling and Estimation of Transport Parameters. Dry. Technol. 2016, 34(5), 584–594. DOI: 10.1080/07373937.2015.1064945.
  • Chen, X. D.; Mujumdar, A. S. Drying Technologies in Food Processing; Blackwell Publishing Ltd, 2009.
  • Ma, Y.; Wu, X.; Zhang, Q.; Giovanni, V.; Meng, X. Key Composition Optimization of Meat Processed Protein Source by Vacuum Freeze-drying Technology. Saudi J. Biol. Sci. 2018, 25(4), 724–732. DOI: 10.1016/j.sjbs.2017.09.013.
  • Babić, J.; Cantalejo, M. J.; Arroqui, C. The Effects of Freeze-drying Process Parameters on Broiler Chicken Breast Meat. LWT—Food Sci. Technol. 2009, 42(8), 1325–1334. DOI: 10.1016/j.lwt.2009.03.020.
  • Laopoolkit, P.; Suwannaporn, P. Effect of Pretreatments and Vacuum Drying on Instant Dried Pork Process Optimization. Meat Sci. 2011, 88(3), 553–558. DOI: 10.1016/j.meatsci.2011.02.011.
  • Cantalejo, M. J.; Zouaghi, F.; Pérez-Arnedo, I. Combined Effects of Ozone and Freeze-drying on the Shelf-life of Broiler Chicken Meat. LWT-Food Sci. Technol. 2016, 68, 400–407. DOI: 10.1016/j.lwt.2015.12.058.
  • Xie, H. K.; Zhou, D. Y.; Liu, Z. Y.; Li, D. Y.; Tan, Z. F.; Dong, X. F.; Liu, X. Y.; Shahidi, F.; Zhu, B. W. Effects of Natural Phenolics on Shelf Life and Lipid Stability of Freeze-dried Scallop Adductor Muscle. Food Chem. 2019, 295, 423–431. DOI: 10.1016/j.foodchem.2019.05.133.
  • Zouaghi, F.; Cantalejo, M. J. Study of Modified Atmosphere Packaging on the Quality of Ozonated Freeze-dried Chicken Meat. Meat Sci. 2016, 119, 123–131. DOI: 10.1016/j.meatsci.2016.04.032.
  • Messina, V.; Pieniazek, F.; Sancho, A. Effect of Different Freeze Drying Cycle in Semimembranous and Gluteus Medius Bovine Muscles: Changes on Microstructure, Color, Texture and Physicochemical Parameters. Int. J. Food Sci. Technol. 2016, 51(5), 1268–1275. DOI: 10.1111/ijfs.13082.
  • Liapis, A. I.; Bruttini, R. Freeze Drying. In Handbook of Industrial Drying, Fourth Edition ed.; Mujumdar, A.S., Ed.; CRC press, 2015; pp 259–282.
  • Kilic, A.;. Low Temperature and High Velocity (LTHV) Application in Drying: Characteristics and Effects on the Fish Quality. J. Food Eng. 2009, 91(1), 173–182. DOI: 10.1016/j.jfoodeng.2008.08.023.
  • Lewicki, P. P.;. Design of Hot Air Drying for Better Foods. Trends Food Sci. Tech. 2006, 17(4), 153–163. DOI: 10.1016/j.tifs.2005.10.012.
  • Kilic, A.;. LTHV (Low Temperature and High Velocity) Drying Characteristics and Mathematical Modeling of Anchovy (Engraulis Encrasicolus). J. Food. 2017, 42(6), 654–665.
  • Zhang, Z.; Liu, Q.; Wang, P.; Liu, F.; Gao, X. The Rheological Properties and Structural Changes of Abalone Meat with Different Drying Methods. J. Aquat. Food Prod. Technol. 2017, 26(2), 205–214. DOI: 10.1080/10498850.2014.979383.
  • Aykın-Dinçer, E.; Erbaş, M. Cold Dryer as Novel Process for Producing a Minimally Processed and Dried Meat. Innov. Food Sci. Emerg. 2019, 57, 102113. DOI: 10.1016/j.ifset.2019.01.006.
  • Aykın-Dinçer, E.; Erbaş, M. Quality Characteristics of Cold-dried Beef Slices. Meat Sci. 2019, 155, 36–42. DOI: 10.1016/j.meatsci.2019.05.001.
  • Schiffmann, R. F.;. Microwave and Dielectric Drying. In Handbook of Industrial Drying, Fourth Edition ed.; Mujumdar, A.S., Ed.; CRC press, 2015; pp 284–301.
  • Elmas, F.; Bodruk, A.; Köprüalan, Ö.; Arıkaya, Ş.; Koca, N.; Serdaroğlu, F. M.; Kaymak-Ertekin, F.; Koç, M. Drying Kinetics Behavior of Turkey Breast Meat in Different Drying Methods. J. Food Process. Eng. 2020, 43(10), e13487.
  • Kipcak, A. S.; Ismail, O. Microwave Drying of Fish, Chicken and Beef Samples. J. Food Sci. Technol. 2020. In press https://doi.org/10.1007/s13197-020-04540-0
  • Półtorak, A.; Wyrwisz, J.; Moczkowska, M.; Marcinkowska-Lesiak, M.; Stelmasiak, A. U.; Rafalska, U.; Wierzbicka, A.; Sun, D. W. Microwave Vs. Convection Heating of Bovine Gluteus Medius Muscle: Impact on Selected Physical Properties of Final Product and Cooking Yield. Int. J. Food Sci. Technol. 2015, 50(4), 958–965. DOI: 10.1111/ijfs.12729.
  • Qin, J.; Wang, Z.; Wang, X.; Shi, W. Effects of Microwave Time on Quality of Grass Carp Fillets Processed through Microwave Combined with Hot‐air Drying. Food Sci. Nutr. 2020, 8(8), 4159–4171. DOI: 10.1002/fsn3.1708.
  • Özbay-Doğu, S.; Determination of Effect of Pre-treatments Applying to Round of Meat (M. semitendinosus) on microwave drying. Master thesis of Selçuk University (in Turkish), 2016.
  • Çarkcıoğlu, E.; Combined Effect of Microwave Drying with Salting and Tray Drying on the Quality Characteristics of Beef. Ph. D. thesis of Ankara University (in Turkish), 2017.
  • Chaijan, M.; Panpipat, W.; Nisoa, M. Chemical Deterioration and Discoloration of Semi-dried Tilapia Processed by Sun Drying and Microwave Drying. Dry. Technol. 2017, 35(5), 642–649. DOI: 10.1080/07373937.2016.1199565.
  • Bhat, Z. F.; Morton, J. D.; Mason, S. L.; Bekhit, A. E. D. A. Current and Future Prospects for the Use of Pulsed Electric Field in the Meat Industry. Crit. Rev. Food Sci. 2019, 59(10), 1660-1674.
  • Astráin-Redín, L.; Raso, J.; Cebrián, G.; Álvarez, I. Potential of Pulsed Electric Fields for the Preparation of Spanish Dry-cured Sausages. Sci. Rep.UK. 2019, 9(1), 1–11.
  • O’Dowd, L. P.; Arimi, J. M.; Noci, F.; Cronin, D. A.; Lyng, J. G. An Assessment of the Effect of Pulsed Electrical Fields on Tenderness and Selected Quality Attributes of Post Rigour Beef Muscle. Meat Sci. 2013, 93(2), 303–309. DOI: 10.1016/j.meatsci.2012.09.010.
  • Gómez, B.; Munekata, P. E.; Gavahian, M.; Barba, F. J.; Martí-Quijal, F. J.; Bolumar, T.; Campagnol, P. C. B.; Tomasevic, I.; Lorenzo, J. M. Application of Pulsed Electric Fields in Meat and Fish Processing Industries: An Overview. Food Res. Int. 2019, 123, 95–105. DOI: 10.1016/j.foodres.2019.04.047.
  • Gudmundsson, M.; Hafsteinsson, H. Effect of Electric Field Pulses on Microstructure of Muscle Foods and Roes. Trends Food Sci. Tech. 2001, 12(3–4), 122–128. DOI: 10.1016/S0924-2244(01)00068-1.
  • Klonowski, I.; Heinz, V.; Toepfl, S.; Gunnarsson, G.; Þorkelsson, G. Applications of Pulsed Electric Field Technology for the Food Industry. Report 06-6, Icelandic Fisheries Laboratories, 2006.
  • Faridnia, F.; Bremer, P.; Burritt, D. J.; Oey, I. Effects of Pulsed Electric Fields on Selected Quality Attributes of Beef outside Flat (Biceps Femoris). In 1st World Congress on Electroporation and Pulsed Electric Fields in Biology, Medicine and Food and Environmental Technologies (WC 2015); Jarm, T., Kramar, P., Eds.; IFMBE Proceedings: Springer, Singapore, 2016; pp 51–54.
  • Toepfl, S.; Heinz, V. Application of Pulsed Electric Fields to Improve Mass Transfer in Dry Cured Meat Products. Fleischwirtschaft Int.: J.Meat Prod. Meat Process. 2007, 22(1), 62.
  • Mungure, T. E.; Bekhit, A. E. D.; Birch, J.; Kanokruangrong, S.; Carne, A.; Farouk, M. F. Impact of Ageing Method and PEF Treatment on the Meat Quality and Stability of Conjugated Linoleic Acid in Venison. 63rd International Congress of Meat Science and Technology, Cork, Ireland. 2017, August.
  • Mungure, T. E.; Farouk, M. M.; Birch, E. J.; Carne, A.; Staincliffe, M.; Stewart, I.; Bekhit, A. E. D. A. Effect of PEF Treatment on Meat Quality Attributes, Ultrastructure and Metabolite Profiles of Wet and Dry Aged Venison Longissimus Dorsi Muscle. Innov. Food Sci. Emerg. 2020, 65, 102457. DOI: 10.1016/j.ifset.2020.102457.
  • Li, M.; Wu, Y.; Ge, Y.; Ling, C. Pulse Vacuum Pretreatment Technology and Neural Network Optimization in Drying of Tilapia Fillets with Heat Pump. J. Food Process. Pres. 2019, 43(12), e14258. DOI: 10.1111/jfpp.14258.
  • Uthpala, T. G. G.; Navaratne, S. B.; Thibbotuwawa, A. Review on Low‐temperature Heat Pump Drying Applications in Food Industry: Cooling with Dehumidification Drying Method. J. Food Process. Eng. 2020, 43(10), e13502.
  • Shi, Q.; Tian, Y.; Zhu, L.; Zhao, Y. Effects of Sodium Alginate‐based Coating Pretreatment on Drying Characteristics and Quality of Heat Pump Dried Scallop Adductors. J. Sci. Food Agr. 2019, 99(10), 4781–4792. DOI: 10.1002/jsfa.9728.
  • Wang, Y.; Yue, J.; Liu, Z.; Zheng, Y.; Deng, Y.; Zhao, Y.; Liu, Z.; Huang, H. Impact of Far-infrared Radiation Assisted Heat Pump Drying on Moisture Distribution and Rehydration Kinetics of Squid Fillets during Rehydration. J. Aquat. Food Prod. Technol. 2016, 25(2), 147–155. DOI: 10.1080/10498850.2013.832453.
  • Li, M.; Wu, Y. Y.; Guan, Z. Q. Effect of Physical Osmosis Methods on Quality of Tilapia Fillets Processed by Heat Pump Drying. Pol. J. Food Nutr. Sci. 2017, 67(2), 145–150. DOI: 10.1515/pjfns-2016-0016.
  • Li, M.; Guan, Z.; Ge, Y.; Zhang, X.; Ling, C. Effect of Pretreatment on Water Migration and Volatile Components of Heat Pump Dried Tilapia Fillets. Dry. Technol. 2020, 38(14), 1828–1842.
  • Gao, R.; Yuan, L.; Yu, M.; Liu, W. Effects of Heat Pump Drying Parameters on the Volatile Flavor Compounds in Silver Carp. J. Aquat. Food Prod. Technol. 2016, 25(5), 735–744. DOI: 10.1080/10498850.2014.923082.
  • Zhang, M.; Chen, H.; Mujumdar, A. S.; Tang, J.; Miao, S.; Wang, Y. Recent Developments in High-quality Drying of Vegetables, Fruits, and Aquatic Products. Crit. Rev. Food Sci. 2017, 57(6), 1239–1255. DOI: 10.1080/10408398.2014.979280.
  • Tsotsas, E.; Mujumdar, A. S. Modern Drying Technology, Volume 4, Energy Savings; John Wiley & Sons, 2012.
  • Baeghbali, V.; Niakousari, M. A Review on Mechanism, Quality Preservation and Energy Efficiency in Refractance Window Drying: A Conductive Hydro-drying Technique. J.Nutr., Food Res. Technol. 2018, 1(2), 50–54. DOI: 10.30881/jnfrt.00011.
  • Caparino, O. A.; Tang, J.; Nindo, C. I.; Sablani, S. S.; Powers, J. R.; Fellman, J. K. Effect of Drying Methods on the Physical Properties and Microstructures of Mango (Philippine ‘Carabao’ Var.). powder. J.Food Eng. 2012, 111(1), 135–148. DOI: 10.1016/j.jfoodeng.2012.01.010.
  • Nindo, C. I.; Tang, J. Refractance Window Dehydration Technology: A Novel Contact Drying Method. Dry. Technol. 2007, 25(1), 37–48. DOI: 10.1080/07373930601152673.
  • Aghaei, Z.; Jafari, S. M.; Dehnad, D.; Ghorbani, M.; Hemmati, K. Refractance‐window as an Innovative Approach for the Drying of Saffron Petals and Stigma. J. Food Process Eng. 2018, 41(7), e12863. DOI: 10.1111/jfpe.12863.
  • Rostami, H.; Dehnad, D.; Jafari, S. M.; Tavakoli, H. R. Evaluation of Physical, Rheological, Microbial, and Organoleptic Properties of Meat Powder Produced by Refractance Window Drying. Dry. Technol. 2018, 36(9), 1076–1085. DOI: 10.1080/07373937.2017.1377224.
  • van‘t Land, M.; Raes, K. Refractance Window Drying of Fish silage—An Initial Investigation into the Effects of Physicochemical Properties on Drying Efficiency and Nutritional Quality. LWT—Food Sci. Technol. 2019, 102, 71–74. DOI: 10.1016/j.lwt.2018.12.001.
  • Franco, S.; Jaques, A.; Pinto, M.; Fardella, M.; Valencia, P.; Núñez, H.; Ramírez, C.; Simpson, R. Dehydration of Salmon (Atlantic Salmon), Beef, and Apple (Granny Smith) Using Refractance Window™: Effect on Diffusion Behavior, Texture, and Color Changes. Innov. Food Sci. Emerg. Technol. 2019, 52, 8–16. DOI: 10.1016/j.ifset.2018.12.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.