338
Views
2
CrossRef citations to date
0
Altmetric
Review

A Comprehensive Review of Eugenia Pyriformis Cambess: Reported Bioactivities and Health Effects

, , , &

References

  • Pereira-Netto, A. B. Tropical Fruits as Natural, Exceptionally Rich, Sources of Bioactive Compounds. Int. J. Fruit Sci. 2018, 18, 231–242. DOI: 10.1080/15538362.2018.1444532.
  • Nimse, S. B.; Pal, D. Free Radicals, Natural Antioxidants, and Their Reaction Mechanisms Satish. R. Soc. Chem. 2015, 5, 27986–28006. DOI: 10.1039/C4RA13315C.
  • Clerici, M. T. P. S.; Carvalho-Silva, L. B. Nutritional Bioactive Compounds and Technological Aspects of Minor Fruits Grown in Brazil. Food Res. Int. 2011, 44, 1658–1670. DOI: 10.1016/j.foodres.2011.04.020.
  • Coradin, L.; Siminski, A.; Reis, A. Espécies Nativas Da Flora Brasileira De Valor Econômico Atual Ou Potencial: Plantas Pra O Futuro; Ministério do meio ambiente: Brazil, 2011.
  • Landrum, L. R.; Kawasaki, M. L. The Genera of Myrtaceae in Brazil: An Illustrated Synoptic Treatment and Identification Keys. Brittonia. 1997, 49, 508–536. DOI: 10.2307/2807742.
  • Andrade, R. N. B.; Ferreira, A. G. Germinação E Armazenamento De Sementes De Uvaia (Eugenia Pyriformis Camb.) – Myrtaceae. Rev Bras Sementes. 2000, 22, 118–125. DOI: 10.17801/0101-3122/rbs.v22n2p118-125.
  • Araújo, F. F.; Neri-Numa, I. A.; Farias, D. P.; da Cunha, G. R. M. C.; Pastore, G. M. Wild Brazilian Species of Eugenia Genera (Myrtaceae) as an Innovation Hotspot for Food and Pharmacological Purposes. Food Res. Int. 2019, 121, 57–72. DOI:10.1016/j.foodres.2019.03.018.
  • Donadio, L. C. Study of Some Brazilian Myrtaceae in Jaboticabal-sp. Acta Hortic. 1997, 452, 181–183. DOI: 10.17660/ActaHortic.1997.452.24.
  • Shahidi, F. Extraction and Analysis of Phenolics in Food. J. Chromatogr. A. 2004, 1054, 95–111. DOI: 10.1016/j.chroma.2004.08.059.
  • Shahidi, F.; Ambigaipalan, P. Phenolics and Polyphenolics in Foods, Beverages and Spices: Antioxidant Activity and Health Effects - A Review. J. Funct. Foods. 2015, 18, 820–897. DOI: 10.1016/j.jff.2015.06.018.
  • Jacomino, A. P.; Silva, A. P. G.; Freitas, T. P.; Morais, P. V. S. Uvaia— Eugenia Pyriformis Cambess. Exotic Fruits. 2018, 435–438. DOI:10.1016/B978-0-12-803138-4.00058-7.
  • Sartori, S.; Donadio, L. C.; Martins, A. B. G.; Moro, F. V. Uvaia (Série Frutas Nativas); Funep: São Paulo, SP, 2010.
  • Silva, C. V.; Bilia, D. A. C.; Barbedo, C. J. Fracionamento E Germinação De Sementes De Eugenia. Rev Bras Sementes. 2005, 27, 86–92. DOI: 10.1590/s0101-31222005000100011.
  • Scalon, S. P. Q.; Scalon, F. H.; Rigoni, M. R. Armazenamento E Germinação De Sementes De Uvaia Eugenia Uvalha Cambess. Ciênc. Agrotec. 2004, 28, 1228–1234. DOI: 10.1590/s1413-70542004000600002.
  • Lorenzi, H. Árvores Brasileiras. Plantarum: Viçosa, MG, 2002; pp 321–323.
  • Silva, C. V.; Bilia, D. A. C.; Barbedo, C. J. Fracionamento E Germinação De Sementes De Eugenia. Rev. Bras. Bot. 2005, 27, 86–92.
  • Sobral, M.; Proença, C.; Souza, M.; Mazine, F.; Lucas, E. Myrtaceae in Lista De Espécies Da Flora Do Brasil.Jardim Botânico do Rio de Janeiro: São Paulo, SP, 2003.
  • Delgado, L. F.; Barbedo, C. J. Tolerância a Dessecacão De Sementes De Espécies De Eugenia. Pesqui. Agropecu. Bras. 2007, 42, 265–272. DOI: 10.1590/S0100-204X2007000200016.
  • Silva, N. A.; Rodrigues, E.; Mercadante, A. Z.; Rosso, V. V. Phenolic Compounds and Carotenoids from Four Fruits Native from the Brazilian Atlantic Forest. J. Agric. Food Chem. 2014, 62, 5072–5084. DOI: 10.1021/jf501211p.
  • Rufino, M. S. M.; Alves, R. E.; Brito, E. S.; Pérez-Jiménez, J.; Saura-Calixto, F.; Mancini-Filho, J. Bioactive Compounds and Antioxidant Capacities of 18 Non-traditional Tropical Fruits from Brazil. Food Chem. 2010, 121, 996–1002. DOI:10.1016/j.foodchem.2010.01.037.
  • Pereira, M. C.; Steffens, R. S.; Jablonski, A.; Hertz, P. F.; De O. Rios, A.; Vizzotto, M.; Flôres, S. H. Characterization and Antioxidant Potential of Brazilian Fruits from the Myrtaceae Family. J. Agric. Food Chem. 2012, 60, 3061–3067. DOI:10.1021/jf205263f.
  • Silva, A. P. G.; Tokairini, T. O.; Alencar, S. M.; Jacomino, A. P. Characteristics of the Fruits of Two Uvaia Populations Grown in Salesópolis, SP, Brazil. Rev Bras Frutic. 2018, 40. DOI: 10.1590/0100-29452018511.
  • Pereira, E. S.; Vinholes, J.; Franzon, R. C.; Dalmazo, G.; Vizzotto, M.; Nora, L. Psidium Cattleianum Fruits: A Review on Its Composition and Bioactivity. Food Chem. 2018, 258, 95–103. DOI:10.1016/j.foodchem.2018.03.024.
  • Silva, A. P. G.; Spricigo, P. C.; Purgatto, E.; Alencar, S. M. D.; Sartori, S. F.; Jacomino, A. P. Chemical Composition, Nutritional Value and Bioactive Compounds in Six Uvaia Accessions. Food Chem. 2019, 294, 547–556. DOI:10.1016/j.foodchem.2019.04.121.
  • Cardoso, L. M.; Martino, H. S. D.; Moreira, A. V. B.; Ribeiro, S. M. R.; Pinheiro-Sant’Ana, H. M. Cagaita (Eugenia Dysenterica DC.) Of the Cerrado of Minas Gerais, Brazil: Physical and Chemical Characterization, Carotenoids and Vitamins. Food Res. Int. 2011, 44, 2151–2154. DOI:10.1016/j.foodres.2011.03.005.
  • Lima, T. B.; Silva, O. N.; Oliveira, J. T. A.; Vasconcelos, I. M.; Scalabrin, F. B.; Rocha, T. L.; Grossi-de-Sá, M. F.; Silva, L. P.; Guadagnin, R. V.; Quirino, B. F. Identification of E. Dysenterica Laxative Peptide: A Novel Strategy in the Treatment of Chronic Constipation and Irritable Bowel Syndrome. Peptides 2010, 31, 1426–1433. DOI:10.1016/j.peptides.2010.05.003.
  • Wu, G. Amino Acids: Metabolism, Functions, and Nutrition. Amino Acids. 2009, 37, 1–17. DOI: 10.1007/s00726-009-0269-0.
  • Hewett, E. W. An Overview of Preharvest Factors Influencing Postharvest Quality of Horticultural Products. Int J Postharvest Technol Innov. 2016, 1, 4–15. DOI: 10.1504/IJPTI.2006.009178.
  • Luzia, D. M. M.; Jorge, N. Composição Centesimal, Potencial Antioxidante E Perfil Dos Ácidos Graxos De Sementes De Jambolão (Syzygium Cumini L.). Rev Cienc Agron. 2009, 40, 219–223.
  • Koba, K.; Yanagita, T. Health Benefits of Conjugated Linoleic Acid (CLA). Obes. Res. Clin. Pract. 2014, 8, 525–532. DOI: 10.1016/j.orcp.2013.10.001.
  • Alpert, P. T. The Role of Vitamins and Minerals on the Immune System. Home Heal Care Manag Pract. 2017, 29, 199–202. DOI: 10.1177/1084822317713300.
  • Soetan, K. O.; Olaiya, C. O.; Oyewole, O. E. The Importance of Mineral Elements for Humans, Domestic Animals and Plants: A Review. African J Food Sci. 2016, 4, 1–23.
  • Franco, G. Tabela De Composição Química Dos Alimentos; Atheneu: São Paulo, 2008; pp 9.
  • Langlois, L. P.; Lamontagne, F. Vitamin C for the Critically Ill: Is the Evidence Strong Enough? Nutrition. 2019, 60, 185–190. DOI: 10.1016/J.NUT.2018.10.009.
  • Teng, J.; Pourmand, A.; Mazer-Amirshahi, M. Vitamin C: The Next Step in Sepsis Management? J Crit Care. 2018, 43, 230–234. DOI: 10.1016/J.JCRC.2017.09.031.
  • Nisar, N.; Li, L.; Lu, S.; Khin, N.; Pogson, B. Carotenoid Metabolism in Plants. Mol. Plant. 2015, 8, 68–82. DOI: 10.1016/j.molp.2014.12.007.
  • Freitas, T. P.; Spricigo, P. C.; Purgatto, E.; Jacomino, A. P. Aroma and Soluble Solid Contents of the Uvaia—a Native Atlantic Rainforest Fruit—are Negatively Affected by Early Harvest. J Food Biochem. 2019, 43. DOI: 10.1111/jfbc.12881.
  • Palozza, P.; Parrone, N.; Simone, R. E.; Catalano, A. Lycopene in Atherosclerosis Prevention: An Integrated Scheme of the Potential Mechanisms of Action from Cell Culture Studies. Arch. Biochem. Biophys. 2010, 504, 26–33. DOI: 10.1016/j.abb.2010.06.031.
  • Wang, Y.; Chung, S. J.; McCullough, M. L.; Song, W. O.; Fernandez, M. L.; Koo, S. I.; Chun, O. K. Dietary Carotenoids are Associated with Cardiovascular Disease Risk Biomarkers Mediated by Serum Carotenoid Concentrations. J. Nutr. 2014, 144, 1067–1074. DOI:10.3945/jn.113.184317.
  • Khalid, M.; Saeed-ur-Rahman, B. M; Bilal, M.; Iqbal, H. M.; Huang, D. Biosynthesis and Biomedical Perspectives of Carotenoids with Special Reference to Human Health-related Applications. Biocatal. Agric. Biotechnol. 2019, 17, 399–407. DOI:10.1016/j.bcab.2018.11.027.
  • Ayseli, M. T.; Ayseli, Y. I. Flavors of the Future: Health Benefits of Flavor Precursors and Volatile Compounds in Plant Foods. Trends Food Sci. Technol. 2016, 48, 69–77. DOI: 10.1016/j.tifs.2015.11.005.
  • Yang, H.; Dou, Q. P. Targeting Apoptosis Pathway with Natural Terpenoids: Implications for Treatment of Breast and Prostate Cancer. Curr. Drug Targets. 2010, 11, 733–744. DOI: 10.2174/138945010791170842.
  • Georgiev, M. I.; Ivanovska, N.; Alipieva, K.; Dimitrova, P.; Verpoorte, R. Harpagoside: From Kalahari Desert to Pharmacy Shelf. Phytochemistry 2013, 92, 8–15. DOI:10.1016/j.phytochem.2013.04.009.
  • Gyurkovska, V.; Alipieva, K.; Maciuk, A.; Dimitrova, P.; Ivanovska, N.; Haas, C.; Bley, T.; Georgiev, M. Anti-inflammatory Activity of Devil’s Claw in Vitro Systems and Their Active Constituents. Food Chem. 2011, 125, 171–178. DOI:10.1016/j.foodchem.2010.08.056.
  • Ludwiczuk, A.; Skalicka-Wó, Z. K.; Georgiev, M. I. Terpenoids. In Pharmacognosy; Badal, S., Delgoda, R., Eds.; Academic Press: Massachussets, 2017; Vol. 1, pp 233–266.
  • Verma, P.; Basu, V.; Gupta, V.; Saxena, G.; Ur Rahman, L. Pharmacology and Chemistry of a Potent Hepatoprotective Compound Picroliv Isolated from the Roots and Rhizomes of Picrorhiza Kurroa Royle Ex Benth. (Kutki). Curr Pharm Biotechnol. 2009, 10, 641–649. DOI:10.2174/138920109789069314.
  • Silva, A. P. G.; Espindola, I. C.; Miguel, A. C. A.; Spricigo, P. C.; Sartori, S.; Jacomino, A. P. Postharvest Storage of Two Accessions of Uvaia (Eugenia Pyriformis Cambess) at Room Temperature. Acta Hortic. 2018, 959–964. DOI:10.17660/ActaHortic.2018.1194.136.
  • Haminiuk, C. W. I.; Plata-Oviedo, M. S. V.; Mattos, G.; Carpes, S. T.; Branco, I. G. Extraction and Quantification of Phenolic Acids and Flavonols from Eugenia Pyriformis Using Different Solvents. J. Food Sci. Technol. 2014, 51, 2862–2866. DOI:10.1007/s13197-012-0759-z.
  • Rufino, M. S. M.; Alves, R. E.; Brito, E. S.; Perez-Jimenez, J.; Saura-Calixto, F. D. Total Phenolic Content and Antioxidant Activity in Acerola, Açaí, Mangaba and Uvaia Fruits by DPPH Method. Acta Hortic. 2009, 841, 459–462. DOI:10.17660/ActaHortic.2009.841.58.
  • Stefanello, M. E.; Wisniewski, E. L.; Simionatto, A. C. CERVI, A.C. Composição Química E Variação Sazonal Dos Óleos Essenciais De Eugenia Pyriformis (Myrtaceae). Lat. Am. J. Pharm. 2009, 28, 449–453.
  • Durazzini, A. M. S.; Machado, C. H. M.; Fernandes, C. C.; Willrich, G. B.; Crotti, A. E. M.; Candido, A. C. B. B.; Magalhães, L. G.; Squarisi, I. S.; Ribeiro, A. B.; Tavares, D. C. Eugenia Pyriformis Cambess: A Species of the Myrtaceae Family with Bioactive Essential Oil. Nat. Prod. Res. 2019, 1–5. DOI:10.1080/14786419.2019.1669031.
  • Fiedor, J.; Burda, K. Potential Role of Carotenoids as Antioxidants in Human Health and Disease. Nutrients. 2014, 6, 466–488. DOI: 10.3390/nu6020466.
  • Kiokias, S.; Varzakas, T.; Oreopoulou, V. In Vitro Activity of Vitamins, Flavonoids, and Natural Phenolic Antioxidants against the Oxidative Deterioration of Oil-based Systems. Crit. Rev. Food Sci. Nutr. 2008, 48, 78–93. DOI: 10.1080/10408390601079975.
  • Mansouri, M. T.; Farbood, Y.; Sameri, M. J.; Sarkaki, A.; Naghizadeh, B.; Rafeirad, M. Neuroprotective Effects of Oral Gallic Acid against Oxidative Stress Induced by 6-hydroxydopamine in Rats. Food Chem. 2013, 138, 1028–1033. DOI:10.1016/j.foodchem.2012.11.022.
  • Ho, H. H.; Chang, C. S.; Ho, W. C.; Liao, S.-Y.; Lin, W.-L.; Wang, C.-J. Gallic Acid Inhibits Gastric Cancer Cells Metastasis and Invasive Growth via Increased Expression of RhoB, Downregulation of AKT/small GTPase Signals and Inhibition of NF-κB Activity. Toxicol Appl Pharmacol. 2013, 266, 76–85. DOI:10.1016/j.taap.2012.10.019.
  • Hsiang, C. Y.; Hseu, Y. C.; Chang, Y. C.; Kumar, K. J. S.; Ho, T.-Y.; Yang, H.-L. Toona Sinensis and Its Major Bioactive Compound Gallic Acid Inhibit LPS-induced Inflammation in Nuclear factor-κB Transgenic Mice as Evaluated by in Vivo Bioluminescence Imaging. Food Chem. 2013, 136, 426–434. DOI:10.1016/j.foodchem.2012.08.009.
  • Tung, Y. T.; Wu, J. H.; Huang, C. C.; Peng, H. C.; Chen, Y. L.; Yang, S. C.; Chang, S. T. Protective Effect of Acacia Confusa Bark Extract and Its Active Compound Gallic Acid against Carbon Tetrachloride-induced Chronic Liver Injury in Rats. Food Chem Toxicol. 2009, 47, 1385–1392. DOI:10.1016/j.fct.2009.03.021.
  • Pal, C.; Bindu, S.; Dey, S.; Alam, A.; Goyal, M.; Iqbal, M. S.; Maity, P.; Adhikari, S. S.; Bandyopadhyay, U. Gallic Acid Prevents Nonsteroidal Anti-inflammatory Drug-induced Gastropathy in Rat by Blocking Oxidative Stress and Apoptosis. Free Radic Biol Med. 2010, 49, 258–267. DOI:10.1016/j.freeradbiomed.2010.04.013.
  • Farias, D. P.; Neri-Numa, A. I.; Araújo, F. F.; Pastore, G. M. A Critical Review of Some Fruit Trees from the Myrtaceae Family as Promising Sources for Food Applications with Functional Claims. Food Chem. 2020, 306, 125630. DOI: 10.1016/j.foodchem.2019.125630.
  • Salehi, B.; Martorell, M.; Arbiser, J. L.; Sureda, A.; Martins, N.; Maurya, P.; Sharifi-Rad, M.; Kumar, P.; Sharifi-Rad, J. Antioxidants: Positive or Negative Actors? Biomolecules 2018, 8, 124. DOI:10.3390/biom8040124.
  • Salehi, B.; Ata, A.; Kumar, N. V. A.; Sharopov, F.; Ramírez-Alarcón, K.; Ruiz-Ortega, A.; Abdulmajid Ayatollahi, S.; Valere Tsouh Fokou, P.; Kobarfard, F.; Amiruddin Zakaria, Z.; et al. Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules 2019. DOI:10.3390/biom9100551.
  • Satija, A.; Hu, F. B. Plant-based Diets and Cardiovascular Health. Trends Cardiovasc. Med. 2018, 28, 437–441. DOI: 10.1016/j.tcm.2018.02.004.
  • Haminiuk, C. W. I.; Plata-Oviedo, M. S. V.; Guedes, A. R.; Stafussa, A. P.; Bona, E.; Carpes, S. T. Chemical, Antioxidant and Antibacterial Study of Brazilian Fruits. Int J Food Sci Technol. 2011, 46, 1529–1537. DOI:10.1111/j.1365-2621.2011.02653.x.
  • Ramirez, M. R.; Schnorr, C. E.; Feistauer, L. B.; Apel, M.; Henriques, A. T.; Moreira, J. O. S. E. C. L. A. U. D. I. O. F. O. N. S. E. C. A.; Zuanazzi, J. O. S. E. Â. N. G. E. L. O. S. Evaluation of the Polyphenolic Content, Anti-inflammatory and Antioxidant Activities of Total Extract from Eugeniapyriformes Cambess (Uvaia) Fruits. J Food Biochem. 2012, 36, 405–412. DOI:10.1111/j.1745-4514.2011.00558.x.
  • Egea, M. B.; Pereira-Netto, A. B. Bioactive Compound-rich, Virtually Unknown, Edible Fruits from the Atlantic Rainforest: Changes in Antioxidant Activity and Related Bioactive Compounds during Ripening. Eur. Food Res. Technol. 2019, 245, 1081–1093. DOI: 10.1007/s00217-018-3208-z.
  • Lopes, J. M. M.; Lage, N. N.; Guerra, J. F. C.; Silva, M.; Bonomo, L. F.; Paulino, A. H. S.; Regis, A. L. R. S.; Pedrosa, M. L.; Silva, M. E. A Preliminary Exploration of the Potential of Eugenia Uvalha Cambess Juice Intake to Counter Oxidative Stress. Food Res. Int. 2018, 105, 563–569. DOI:10.1016/j.foodres.2017.11.067.
  • Angela, M. S.; Lorene, A.; Cristina, L. B. M.; Obdulio, G. M.; Marilis, D. M. In Vitro Effects of Eugenia Pyriformis Cambess., Myrtaceae: Antimicrobial Activity and Synergistic Interactions with Vancomycin and Fluconazole. African J Pharm Pharmacol. 2014, 8, 862–867. DOI:10.5897/ajpp2014.4100.
  • Agredo, S.; Estefanía, L. Caracterização Dos Compostos Voláteis E Avaliação Das Propriedades Antioxidantes E Antimicrobianas De Óleo Essencial E Extrato De Uvaia Obtido Com CO2 Supercrítico. Diss - Univ Estadual Campinas, Fac Eng Aliment Campinas, SP, 2017.
  • Medina, A. L.; Haas, L. I. R.; Chaves, F. C.; Salvador, M.; Zambiazi, R. C.; Da Silva, W. P.; Nora, L.; Rombaldi, C. V. Araçá (Psidium Cattleianum Sabine) Fruit Extracts with Antioxidant and Antimicrobial Activities and Antiproliferative Effect on Human Cancer Cells. Food Chem. 2011, 128, 916–922. DOI:10.1016/j.foodchem.2011.03.119.
  • Theoduloz, C.; Franco, L.; Ferro, E.; Rarschmann, G. S. Xanthine Oxidase Inhibitory Activity of Paraguayan Myrtaceae. J Ethnopharmacol. 1988, 24, 179–183. DOI: 10.1016/0378-8741(88)90149-3.
  • Infante, J.; Rosalen, P. L.; Lazarini, J. G.; Franchin, M.; de Alencar, S. M. Antioxidant and Anti-Inflammatory Activities of Unexplored Brazilian Native Fruits. PLoS ONE. 2016, 11. DOI: 10.1371/journal.pone.0152974.
  • Silva, Y. L.; Takemura, O. S.; Santos, S. R. S. R.; Romagnolo, M. B.; Laverde Junior, A. Triagem Fitoquímica E Avaliação De Propriedades Biológicas Do Extrato Alcoólico Das Folhas De Eugenia Pyriformis Cambess. (Myrtaceae). 2016. DOI:10.25110/arqsaude.v19i3.2015.5550.
  • Nunes, T. A. L.; Costa, L. H.; De Sousa, J. M. S.; De Souza, V. M. R.; Rodrigues, R. R. L., Val, M. D. C. A.; da Cunha Pereira, A. C. T.; Ferreira, G. P.; Da Silva, M. V.; Da Costa, J. M. A. R.; et al. Eugenia Piauhiensis Vellaff. Essential Oil and γ-elemene Its Major Constituent Exhibit Antileishmanial Activity, Promoting Cell Membrane Damage and in Vitro Immunomodulation. Chem.-Biol. Interact. 2021, 339–109429. DOI:10.1016/j.cbi.2021.109429.
  • Sobral de Souza, C. E.; Pereira da silva, A. R.; Rocha, J. E.; Vega Gomez, M. C.; Rolóm, M.; Coronel, C.; Martins Da Costa, J. G.; Netto, M. L. C.; Rolim, L. A.; Coutinho, H. D. M. LC–MS Characterization, Anti-kinetoplastide and Cytotoxic Activities of Natural Products from Eugenia Jambolana Lam. And Eugenia Uniflora. Asian Pac. J. Trop. Biomed. 2017, 7, 836–841. DOI: 10.1016/j.apjtb.2017.08.007.
  • Gasca, C. A.; Castillo, W. O.; Takahashi, C. S.; Fagg, C. W.; Magalhães, P. O.; Fonseca- Bazzo, Y. M.; Silveira, D. Assessment of Anti-cholinesterase Activity and Cytotoxicity of Cagaita (Eugenia Dysenterica) Leaves. Food Chem. Toxicol. 2017, 109, 996–1002. DOI: 10.1016/J.FCT.2017.02.032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.